Submitted
- G. Favre, G. Jankowiak, S. Merino-Aceituno, L.T. An application-oriented framework for continuum modeling of opinion dynamics on a network, [arxiv] submitted.
- E. Davoli, E. Rocca, L. Scarpa, L.T. Local asymptotics and optimal control for a viscous Cahn-Hilliard-Reaction-Diffusion model for tumor growth, [arxiv] submitted.
Published
- P. Gwiazda, J. Skrzeczkowski, L. T. On the rate of convergence of Yosida approximation for the nonlocal Cahn-Hilliard equation, IMA Journal of Numerical Analysis (2024). [link]
- L. Boudin, L.T., Concentration effects in a kinetic model with wealth and knowledge exchanges, La Matematica 3, 166–195 (2024). [PDF]
- A. Jüngel, U. Stefanelli, L.T., A minimizing-movements approach to GENERIC systems, Mathematics in Engineering 4(1) (2022), 1–18 [PDF]
- E. Davoli, L. Scarpa, L.T., Local asymptotics for nonlocal convective Cahn-Hilliard equations with $W^{1,1}$ kernel and singular potential, Journal of Differential Equations 289 (2021), 35–58 [PDF]
- E. Davoli, L. Scarpa, L.T., Nonlocal-to-local convergence of Cahn-Hilliard equations: Neumann boundary conditions and viscosity terms, Archive for Rational Mechanics and Analysis 239(1) (2021), 117–149 [Link]
- E. Davoli, H. Ranetbauer, L. Scarpa, L.T., Degenerate nonlocal Cahn-Hilliard equations: well-posedness, regularity and local asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020), 627–651 [link]
- A. Jüngel, U. Stefanelli, L.T., Two structure-preserving time discretizations for gradient flows, Appl. Math. Optim. 80(3), 733–764 (2019) [pdf]
- S. Melchionna, H. Ranetbauer, L. Scarpa, L.T., From nonlocal to local Cahn-Hilliard equation, Adv. Math. Sci. Appl. 28(2), 197–211 (2019) [pdf]
- A. Jüngel , C. Kuehn, L.T., A meeting point of entropy and bifurcations in cross-diffusion herding, European J. Appl. Math. 28(2), 317–356 (2017) [arxiv]
- B. Düring, A. Jüngel , L.T., A kinetic equation for economic value estimation with irrationality and herding, Kinet. Relat. Models 10(1), 239–261 (2017) [arxiv]
Thesis:
- Phd: Kinetic and diffusion equations for socio-economic scenarios [HAL]
Others:
- A. Jüngel , L.T., Modeling of Herding and Wealth Distribution in Large Markets, Chapter in: M. Ehrhardt, M. Günther, J. ter Maten (eds.). Novel Methods in Computational Finance. Mathematics in Industry, Vol. 25, pp. 17-29. Springer, Cham, 2017.
- A. Nicolopoulos, N. Riane, A. Saint-Dizier, L. T., Analyse d’images de pales d’éoliennes – Semaine d’étude maths-entreprises, Paris, 2017. [HAL]