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Abstract: We present a new time discretization scheme adapted to the structure of GENERIC systems.
The scheme is based on incremental minimization and is therefore variational in nature. The GENERIC
structure of the scheme provides stability and conditional convergence. We show that the scheme can
be rigorously implemented in the classical case of the damped harmonic oscillator. Numerical evidence
is collected, illustrating the performance of the method and, in particular, the conservation of the energy
at the discrete level.
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1. Introduction

The aim of this note is to discuss a new variational time-discretization scheme adapted to the
structure of General Equations for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC).
Introduced by Grmela & Öttinger, this formulation provides a unified frame for describing the time
evolution of physical systems out of equilibrium in presence of reversible and irreversible
dynamics [37].
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Let y denote the state of a closed, nonequilibrium physical system and let E(y) and S (y) be the
corresponding total energy and total entropy, respectively. The GENERIC formulation of the time
evolution of the system reads

y′ = L(y) DE(y) + K(y) DS (y). (1.1)

Here, y′ denotes the time derivative, L is the antisymmetric Poisson operator, and K is the symmetric
and positive definite Onsager operator (details in Section 2).

The gist of the GENERIC system (1.1) is that conservative and dissipative dynamics are clearly
separated. Under a specific compatibility condition, see (2.4) below, this entails that a solution t 7→ y(t)
to (1.1) conserves energy and accumulates entropy in a quantifiable way, namely

d
dt

E(y) = 0 and
d
dt

S (y) = 〈DS (y),K(y)DS 〉 ≥ 0.

The conservation of energy and the quantified dissipative character are the distinguishing traits of the
GENERIC system (1.1). To replicate these properties at the discrete level leads to so-called
structure-preserving approximations. These have drawn interest in the last years, giving rise to
different numerical solutions adapted to diverse applicative contexts.

In the last years, GENERIC has attracted increasing attention and has been applied to a number of
situations ranging from complex fluids [18], to dissipative quantum mechanics [32], to
thermomechanics [5, 21–23, 31], to electromagnetism [24], to shape-memory alloys [3], to the
Vlasov-Fokker-Planck [13, 14, 20] and the Boltzmann equation [35], and to large-deviation limits of
reversible stochastic processes [26, 27].

Numerical schemes conserving energy can be found for instance in [16,41,43–45,48]; see [8] for a
review and [50] for a contribution explicitly focusing on GENERIC formulations. These schemes are
often discrete-gradient methods, where gradients of functionals are specifically modified in order to
fulfill a discrete chain rule and exactly replicate conservation [16,17,19,30]. In the thermomechanical
context, structure-preserving discretizations either in terms of the absolute temperature [9, 10, 15, 39]
or of the internal energy or the entropy [5, 6] have been obtained. The reader is referred to [28] for an
approach to open systems.

GENERIC integrators able to conserve energy and accurately describe entropy accumulation have
been proposed in [38], where however some limitations are also mentioned. In particular, energy and
Onsager operators have to be suitably modified in a time-step dependent manner in order energy
conservation to hold. Integrators are actually constructed in case of a single dissipation mechanism
only (were K be a matrix, it would have to have rank one) and no convergence theory is provided. The
discretization of the damped harmonic oscillator is addressed in [38], where nonetheless the
temperature is given by a prescribed heat bath. In this case, explicit solutions have to be used in order
to specify the GENERIC integrator.

To the best of our knowledge, all available numerical schemes directly target GENERIC systems
in their differential form (1.1). Our focus is here on a time-discretization of variational nature instead,
fitting into the general scheme of so-called minimizing movements [1, 2]. In particular, at all discrete
steps we aim at solving a specific minimization problem. We start by defining the entropy-production
potential Ψ(y, ξ) = 〈ξ,K(y)ξ〉/2 and denoting by Ψ∗(y, ·) its conjugate in the second variable. Then, the
GENERIC relation (1.1) in [0,T ] can be equivalently rewritten in terms of the scalar equation

− S (y(t)) +

∫ t

0
Ψ∗(y, y′−L(y) DE(y)) dr +

∫ t

0
Ψ(y,DS (y)) dr + S (y(0)) = 0 (1.2)
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for all t ∈ [0,T ]. The reformulation of dissipative systems in terms of scalar equations as (1.2) is
usually referred to as De Giorgi’s Energy-Dissipation Principle [12, 29, 33]. This principle has already
been applied in a variety of different contexts, including generalized gradient flows [4, 47], curves of
maximal slope in metric spaces [2,11], rate-independent systems [34,42], and optimal control [40]. For
GENERIC systems, the reformulation of (1.1) in terms of such variational principle has been already
presented in [14].

Our new minimizing-movements approach to (1.1) consists in tackling a discrete version of relation
(1.2). Assume to be given a time partition 0 = t0 < t1 < · · · < tN = T with steps τi = ti − ti−1, and
an initial state y0. We define the time-discrete trajectory {yi}

N
i=0 by letting y0 = y0 and subsequently

perform the minimization

min
y

{
−S (y) + τiΨ

∗

(
yφ,

y − yi−1

τi
− L(y) DE(yφ)

)
+ τiΨ(yφ,DS (y)) + S (yi−1)

}
for i = 1, . . . ,N where yφ := φy + (1 − φ)yi−1 for some fixed φ ∈ [0, 1]. The latter is nothing but a
localized and discretized version of the De Giorgi’s Energy-Dissipation Principle (1.2).

The minimizing-movements scheme above has been introduced in [25]. The theory in [25] is
however restricted to φ = 1 and to the case of state-independent operators L and K, which severely
limits the applicability to real GENERIC systems. In addition, the convergence analysis in [25] relies
on a suitable set of a priori assumptions, leaving open the discussion whether these can be met in
practice.

The aim of this note is then threefold. First, we extend the reach of the numerical method to include
the case of state dependent operators L(y) and K(y), hence covering the full extent of the GENERIC
theory (Section 2). In addition, we investigate the general case φ ∈ [0, 1]. Our main result is the
conditional convergence of Theorem 2.1. Second, we provide the detailed analysis in the classical
case of the damped harmonic oscillator for the choice φ = 1/2. In this case, the above-mentioned
convergence assumptions can actually be proved to hold (Section 3). Eventually, we present numerical
experiments assessing the performance of the minimizing-movements scheme (Subsection 3.4). In
particular, we show that the scheme conserves the energy.

2. The minimizing-movements scheme for GENERIC systems

In this section, we recall the structure of a GENERIC system [37] by specifying the assumptions
on functionals and operators that will be used throughout. Moreover, we formulate our minimizing-
movements scheme and present a conditional convergence result, namely Theorem 2.1.

The GENERIC system

y′ = L(y) DE(y) + K(y) ∂S (y) a.e. in [0,T ] (2.1)

is defined by specifying the quintuple (Y, E, S , L,K). In the following, the state space Y is assumed to
be a reflexive Banach space. The functionals E and S represent the total energy and the total entropy of
the system, respectively. We assume E to be Fréchet differentiable, with strongly-weakly continuous
differential DE, and −S : Y → (−∞,∞] to be proper and lower semicontinuous with single-valued
and strongly-weakly continuous Fréchet subdifferential ∂(−S ) [36]. Recall that one has ξ ∈ ∂(−S )(y)
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iff S (y) > −∞ and

lim inf
x→y

S (y) − S (x) − 〈ξ, x − y〉
‖x − y‖Y

≥ 0.

In the following, we also make use of the obvious notation −∂S = ∂(−S ).
The operators L and K define a Poisson and an Onsager geometric structure on Y , respectively. In

particular, for all states y ∈ Y we assume that L(y) and K(y) are linear and continuous from Y∗ to
Y . Moreover, L(y) is required to be antisymmetric, L∗(y) = −L(y), and to fulfill the Jacobi identity
{{g1, g2}, g3} + {{g2, g3}, g1} + {{g3, g1}, g2} = 0. Here, gi denotes any differentiable function on Y and
the Poisson bracket is defined as {g, g̃}(y) = 〈Dg(y), L(y)Dg̃(y)〉, where 〈·, ·〉 denotes the duality pairing
between Y∗ (dual) and Y . Moreover, we assume the strong-weak continuity

yn
Y
→ y and ξn

Y∗
⇀ ξ ⇒ L(yn)ξn

Y
⇀ L(y)ξ. (2.2)

The mapping K(y) is asked to be symmetric and positive definite, namely K(y) = K∗(y) ≥ 0. We
associate with K the so-called entropy-production potential Ψ : Y × Y∗ → [0,∞) given by Ψ(y, ξ) =

〈ξ,K(y)ξ〉/2 and let Ψ∗ be its conjugate in the second variable, namely Ψ∗(y, η) = supξ(〈ξ, η〉−Ψ(y, ξ)).
We also assume the lower semicontinuity of the sum of the entropy-production potential and its dual,
that is

yn
Y
→ y, ηn

Y
⇀ η, and ξn

Y∗
⇀ ξ

⇒ lim inf
n→∞

(Ψ∗(yn, ηn) + Ψ(yn, ξn)) ≥ Ψ∗(y, η) + Ψ(y, ξ). (2.3)

In addition, functionals and operators are asked to satisfy the crucial noninteraction condition

L∗(y) ∂S (y) = K∗(y) DE(y) = 0 ∀y ∈ Y. (2.4)

This condition ensures that the system of dissipative actions K(y) ∂S (y) does not spoil energy
conservation and the system of conservative actions L(y) DE(y) does not contribute to dissipation.
Indeed, by assuming sufficient smoothness one checks that

d
dt

E(y) = 〈DE(y), y′〉
(2.1)
= 〈DE(y), L(y)DE(y)〉 + 〈DE(y),K(y)∂S (y)〉

= 0 + 〈∂S (y),K∗(y)DE(y)〉
(2.4)
= 0,

d
dt

S (y) = 〈∂S (y), y′〉
(2.1)
= 〈∂S (y), L(y)DE(y)〉 + 〈∂S (y),K(y)∂S (y)〉

= 〈DE(y), L∗(y)∂S (y)〉 + 〈∂S (y),K(y)∂S (y)〉
(2.4)
= 〈∂S (y),K(y)∂S (y)〉 ≥ 0. (2.5)

The noninteraction condition (2.4) hence implies that trajectories y solving (2.1) have constant total
energy, and that the entropy rate is 〈∂S (y),K(y)∂S (y)〉. In particular, the entropy is nondecreasing
and entropy production results solely from irreversible processes. In computing (2.5) we have used
the chain rule (d/dt)S (y) = 〈∂S (y), y′〉 almost everywhere. This is classical in case −S is (a regular
perturbation of) a convex functional [7, Prop. 3.3, p. 73]. The reader is referred to [46] for a general
discussion out of the convex case.

Mathematics in Engineering Volume 4, Issue 1, 1–18.



5

Before moving on, let us remark that the structure of GENERIC is geometric in nature. Indeed,
it is invariant by coordinate changes. Let y = φ(ỹ) for ỹ ∈ Ỹ and define Ẽ(ỹ) = E(φ(ỹ)), −S̃ (ỹ) =

−S (φ(ỹ)), L̃(ỹ) = Dφ(ỹ)−1L(φ(ỹ))Dφ(ỹ)−∗, and K̃(ỹ) = Dφ(ỹ)−1K(φ(ỹ))Dφ(ỹ)−∗, where Dφ(ỹ)−∗ : Ỹ∗ →
Y∗ is the adjoint of the inverse of Dφ(ỹ) : Ỹ → Y . Then, the quintuple (Ỹ , Ẽ, S̃ , L̃, K̃) satisfies the
above structural assumptions and the GENERIC structure (2.1) can be rewritten as ỹ′ = L̃(ỹ) DẼ(ỹ) +

K̃(ỹ) ∂S̃ (ỹ).
We now reconsider the discussion leading to (1.2) and specify it further by remarking that relation

(2.1) is actually equivalent to the inequality

− S (y(t)) +

∫ t

0
Ψ∗

(
y, y′−L(y) DE(y)

)
dr

+

∫ t

0
Ψ
(
y, ∂S (y)

)
dr + S (y(0)) ≤ 0 (2.6)

for all t ∈ [0,T ]. The equivalence between (2.1) and (2.6) follows from Fenchel’s relations. Applied
to the entropy-production potential Ψ, these relations read

Ψ∗(y, η) + Ψ(y, ξ) ≥ 〈ξ, η〉 ∀y, η ∈ Y, ξ ∈ Y∗, (2.7)
Ψ∗(y, η) + Ψ(y, ξ) = 〈ξ, η〉 ⇔ ξ ∈ ∂Ψ(y, η), (2.8)

where the subdifferential is taken in the second variable only. By noting that ∂Ψ(y, ∂S (y)) = K(y) ∂S (y)
and using (2.7) and (2.8), one can prove the equivalences

(2.1) ⇔ y′ − L(y) DE(y) = ∂Ψ(y, ∂S (y)) a.e.
(2.8)
⇔ Ψ∗(y, y′−L(y) DE(y)) + Ψ(y, ∂S (y)) − 〈y′−L(y) DE(y), ∂S (y)〉 ≤ 0 a.e.
(2.4)
⇔ Ψ∗(y, y′−L(y) DE(y)) + Ψ(y, ∂S (y)) −

d
dt

S (y) ≤ 0 a.e.

(2.7)
⇔ (2.6).

In particular, the last left-to-right implication follows by integration while the right-to-left counterpart
from the nonnegativity of the integrand, given (2.4) and (2.7).

The minimizing-movements scheme corresponds to a discretization of inequality (2.6). To each
time partition 0 = t0 < t1 < · · · < tN = T , we associate the time steps τi = ti − ti−1 and the diameter
τ = max τi. Given the vector {yi}

N
i=0 ∈ YN+1, we introduce the backward piecewise constant and

piecewise linear interpolations y : [0,T ]→ Y and ŷ : [0,T ]→ Y ,

y(0) = ŷ(0), y(t) = yi, ŷ(t) =
t − ti−t

τi
yi−1 +

ti − t
τi

yi,

∀t ∈ (ti−1, ti], i = 1, . . . ,N.

We define the incremental functional by G : (0,∞) × Y × Y → (−∞,∞] as

G(τ, η; y) = −S (y) + τΨ∗
(
yφ,

y − η
τ
− L(y) DE(yφ)

)
+ τΨ(yφ, ∂S (y)) + S (η)
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where yφ = φy + (1 − φ)η and φ ∈ [0, 1] is fixed throughout. By letting y0 = y0 we find the discrete
solution {yi}

N
i=0 by subsequently solving the minimization problem

min
y

G(τi, yi−1; y) for i = 1, . . . ,N. (2.9)

The state dependence in Ψ, Ψ∗, and DE can be made implicit or explicit suitably choosing the parameter
φ ∈ [0, 1], and our analysis is independent from such a specific choice.

For all τ > 0 and yi−1 ∈ Y with S (yi−1) > −∞, the map y 7→ G(τi, yi−1; y) is strongly lower
semicontinuous because of the lower semicontinuity of −S , the lower semicontinuity (2.3) of Ψ∗ + Ψ,
the weak-strong continuity of DE and ∂S , and the continuity (2.2) of L. In order to solve problem (2.9)
one has hence to check that y 7→ G(τi, yi−1; y) is strongly coercive.

The main result of this section is the following conditional convergence result.

Theorem 2.1 (Conditional convergence). Under the above assumptions, let a sequence of partitions
0 = tn

0 < · · · < tn
Nn = T be given with τn → 0 as n → ∞, and let {yn

i }
Nn

i=1 be such that yn
0 = y0, not

necessarily being minimizers from (2.9). Assume that

Nn∑
i=1

(
G(τn

i , y
n
i−1; yn

i )
)+
→ 0 as n→ ∞, (2.10)

{̂yn} is bounded in H1(0,T ; Y) and takes values in K ⊂⊂ Y, (2.11)

{L(yn) DE(yφn)} is bounded in L2(0,T ; Y), (2.12)
{∂S (yn)} is bounded in L2(0,T ; Y∗). (2.13)

Then, up to a subsequence, ŷn ⇀ y in H1(0,T ; H), where y is a solution of the GENERIC system (2.1)
in the sense of inequality (2.6).

Proof of Theorem 2.1. We infer from the Aubin-Lions lemma [49, Cor. 7], upon extracting not
relabeled subsequences, that

ŷn ⇀ y in H1(0,T ; Y),

yn, ŷn, yφn
→ y in C([0,T ]; Y),

L(yn) DE(yφn) ⇀ ` in L2(0,T ; Y), (2.14)
∂S (yn) ⇀ s in L2(0,T ; Y∗). (2.15)

As ∂S is strongly-weakly closed, we have that s = ∂S (y) almost everywhere. On the other hand, the
strong-weak continuity of DE and the continuity (2.2) of L imply that L(yn) DE(yφn) → L(y) DE(y)
pointwise in time, so that ` = L(y) DE(y) almost everywhere.

Fix any t ∈ (0,T ] and let tn
m be such that t ∈ (tn

m−1, t
n
m]. The discrete sequence of solutions {yn

i }
Nn

i=0
fulfills

− S (yn(t)) +

∫ tnm

0
Ψ∗

(
yφn, (̂yn)′ − L(yn) DE(yφn)

)
dr

+

∫ tnm

0
Ψ
(
yφn, ∂S (yn)

)
dr + S (y0)
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=

m∑
i=1

G(τn
i , y

n
i−1; yn

i ). (2.16)

As Ψ(ỹ, ·) ≥ Ψ(ỹ, 0) = 0 for all ỹ, we conclude that Ψ∗ ≥ 0 as well. By restricting integrals to the
interval [0, t] ⊂ [0, tn

m] equation (2.16) implies that

− S (yn(t)) +

∫ t

0
Ψ∗(yφn, (̂yn)′ − L(yn) DE(yφn)) dr

+

∫ t

0
Ψ(yφn, ∂S (yn)) dr + S (y0)

≤

Nn∑
i=1

(
G(τn

i , y
n
i−1; yn

i )
)+
. (2.17)

We now pass to the limit inferior as n → ∞ in relation (2.17). By using convergence (2.10), the lower
semicontinuity of −S , convergences (2.14) and (2.15), and the lower semicontinuity (2.3), we readily
obtain that the limit y fulfills inequality (2.6). �

The conditional convergence result of Theorem 2.1 relies on the possibility of solving the inequality
G(τn

i , y
n
i−1; yn

i ) ≤ 0 up to a small, controllable error, and establishing some a priori bounds on the discrete
solution. The validity of these conditions has to be checked on the specific problem at hand. In the
upcoming Section 3 we give an example of a situation where (2.10)–(2.13) actually hold.

In case −S is convex, an example of {yn
i }

Nn

i=0 fulfilling (2.10) are the solutions of the Euler scheme

yn
i − yn

i

τn
i

= L(yn
i ) DE(yφn

i ) + K(yφn
i ) ∂S (yn

i ) (2.18)

with yφn
i = φyn

i + (1 − φ)yn
i−1. Indeed, such {yn

i }
Nn

i=0 fulfills

G(τn
i , y

n
i−1; yn

i ) ≤ τn
i Ψ
∗

(
yφn

i ,
yn

i − yn
i

τn
i
− L(yn

i ) DE(yφn
i )

)
+ τn

i Ψ(yφn
i , ∂S (yn

i ))

− 〈∂S (yn
i ), yn

i − yn
i−1〉 = 0, (2.19)

where the last equality follows from (2.8) and (2.18).
In the purely dissipative case L = 0, the existence of a solution to the minimization problem (2.9)

is ensured as soon as τ∗ > 0 exists, such that, for all τ ∈ (0, τ∗) and yi−1 ∈ Y with S (yi−1) > −∞, the
function

y 7→ −S (y) + τΨ
(
φy + (1 − φ)yi−1,

y − yi−1

τ

)
is strongly coercive. The latter follows whenever −S has strongly compact sublevels. Note however
that the specific example of the damped harmonic oscillator from Section 3 does not fall into this class,
as it is not purely dissipative and −S does not have strongly compact sublevels. Still, existence for the
minimization problem (2.9) can be directly checked.

Let us mention that, in specific applications, the bounds (2.11)–(2.13) may follow from (2.10). For
instance, this would be the case if the coercivity

Ψ∗(ỹ, η) + Ψ(ỹ, ξ) ≥ c‖η‖2Y + c‖ξ‖2Y∗ −
1
c

(2.20)
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holds for some c > 0 and all ỹ, η ∈ Y and ξ ∈ Y∗, namely in case K(ỹ) is positive definite and bounded,
uniformly with respect to ỹ. This however does not apply to the example of the damped harmonic
oscillator from Section 3, for K is singular there.

The quadratic nature of the entropy-production potential could be generalized to the case of p-
growth with p > 1 without any specific intricacy. In particular, one could consider the polynomial case
∂Ψ(ỹ, ξ) = K(ỹ)‖ξ‖p−2

Y∗ ξ and coercivity (2.20) would then read

Ψ∗(ỹ, η) + Ψ(ỹ, ξ) ≥ c‖η‖p′

Y + c‖ξ‖p
Y∗ −

1
c

for 1/p + 1/p′ = 1. This setting would correspond to the case of doubly-nonlinear GENERIC
continuous dynamics, namely

y′ = L(y) DE(y) + K(y)‖∂S (y)‖p−2
Y∗ ∂S (y).

Again, under the noninteraction condition (2.4), suitably regular solutions conserve energy, since
〈DE(y), ∂Ψ(y, ∂S (y))〉 = ‖∂S (y)‖p−2

Y∗ 〈∂S (y),K∗(y) DE(y)〉 = 0, and have entropy rate
(d/dt)(S (y)) = ‖∂S (y)‖p−2

Y∗ 〈∂S (y),K(y) DS (y)〉 ≥ 0.
Let us further remark that the conditional convergence result of Theorem 2.1 can serve as an a-

posteriori tool to check the convergence of time-discrete approximations {yn
i }, regardless of the method

used to generate them. Indeed, as already mentioned in the statement of Theorem 2.1, {yn
i } need not

be a minimizer. In particular, the case of suitable approximate minimizers can be treated as well. In
essence, relation (2.10) can be seen as a sort of a-posteriori error estimator.

3. The minimizing-movements scheme for the damped harmonic oscillator

In this section, we analyze the simplest GENERIC system fulfilling conditions (2.10)–(2.13). We
consider the case of the damped harmonic oscillator, namely

mq′′ + νq′ + κq + λθ = 0, (3.1)
cθ′ = ν(q′)2 + λq′θ. (3.2)

Here, q ∈ R represents the position of the harmonic oscillator and θ > 0 is its absolute temperature.
Note that the case of θ being the given, constant temperature of a surrounding heat bath is considered
in [38] instead. The positive constants m, ν, κ, λ and c are the mass of the oscillator, the viscosity of
the medium, the elastic modulus, the thermal-exchange coefficient, and the heat capacity, respectively.

By letting p ∈ R be the momentum of the harmonic oscillator, we rewrite (3.1)–(3.2) as the first-
order system

q′ =
p
m
, (3.3)

p′ = −
νp
m
− κq − λθ, (3.4)

θ′ =
νp2

m2c
+
λpθ
mc

. (3.5)
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System (3.3)–(3.5) can be written in the GENERIC form (2.1) by letting y = (q, p, θ) ∈ Y =

R2 × (0,∞) represent the state of the harmonic oscillator and by defining the total energy and the total
entropy as

E(q, p, θ) =
p2

2m
+ cθ +

κq2

2
and S (q, p, θ) = −λq + c + c ln θ.

These definitions comply with the classical Helmholtz relations under the choice for the free energy

Φ(q, p, θ) =
κq2

2
+ λqθ − cθ ln θ.

In particular, S = −∂θΦ and E = p2/(2m) + Φ + θS . Note that both E and S are smooth, −S is convex,
and S (y) > −∞ iff θ > 0.

The operators L, K : R3 → R3×3 are given by

L(x) =


0 1 0
−1 0 −λθ/c
0 λθ/c 0

 and K(x) = νθ


0 0 0
0 1 −p/(mc)
0 −p/(mc) p2/(mc)2

 .
One readily checks that L is antisymmetric and a tedious computation shows that the Jacobi identity
holds. On the other hand, K is symmetric and positive semidefinite, while not being invertible. Note
that K(y) has rank two for all p , 0, so that the construction in [38] does not apply here.

By computing the gradients DE(y) = (κq, p/m, c) and DS (y) = (−λ, 0, c/θ), one can easily check
that the noninteraction condition (2.4) holds.

Letting ξ = (ξq, ξp, ξθ) ∈ R3, η = (ηq, ηp, ηθ) ∈ R3, and ỹ = (q̃, p̃, θ̃) ∈ R2 × (0,∞), the entropy-
production potential and its dual read

Ψ(ỹ, ξ) =
1
2
ξ · K(ỹ)ξ =

νθ̃

2

(
ξp −

p̃
mc

ξθ
)2
,

Ψ∗(ỹ, η) =


1
2

η2
p

νθ̃
if ηq = 0 and p̃ηp + mcηθ = 0,

∞ otherwise.

We now choose φ = 1/2, so that the state dependences in Ψ, Ψ∗, and DE are evaluated at the
midpoint. With the definitions above, the incremental functional G : (0,∞) × R3 × R3 → (−∞,∞] for
y = (q, p, θ) and y = (q, p, θ) takes the form

G(τ, y; y) = λq − c ln θ +
τ

2ν
2

(θ + θ)

( p − p
τ

+ κ
q + q

2
+ λθ

)2

+
τν

2
θ + θ

2

(
p + p

2

)2( 1
mθ

)2
−λq + c ln θ

if θ > 0,
q − q
τ

=
p + p
2m

,

and
p2

2m
+ cθ +

κq2

2
=

p2

2m
+ cθ +

κq2

2
,

G(τ, y; y) = ∞ otherwise.
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Assume to be given the time partition 0 = t0 < · · · < tN = T with τi = ti − ti−1 for i = 1, . . . ,N. By
letting y = (qi−1, pi−1, θi−1) and defining (q0, p0, θ0) = (q0, p0, θ0) for some given initial state
(q0, p0, θ0) ∈ R2 × (0,∞), the incremental minimization problem (2.9) becomes

min
(qi,pi,θi)

{
λqi − c ln θi +

τi

ν(θi + θi−1)

( pi − pi−1

τi
+ κ

qi + qi−1

2
+ λθi

)2

+
τiν

2
θi + θi−1

2

( pi + pi−1

2

)2 1
m2θ2

i

− λqi−1 + c ln θi−1

}
(3.6)

under the constraints

θi > 0, (3.7)
qi − qi−1

τi
=

pi + pi−1

2m
, (3.8)

p2
i

2m
+ cθi +

κq2
i

2
=

p2
i−1

2m
+ cθi−1 +

κq2
i−1

2
, (3.9)

for i = 1, . . . ,N.

Note in particular that the constraint (3.9) is nothing but the conservation of energy, namely

E(qi, pi, θi) = E(qi−1, pi−1, θi−1).

This property is of course of great physical relevance and plays a crucial role in the a priori
estimates. In particular, one has that

E(qi, pi, θi) = E(q0, p0, θ0).

This entails the bound
|pi| + |θi| + |qi| ≤ C ∀i = 1, . . . ,N, (3.10)

where, here and in the following, the symbol C denotes a generic positive constant depending on the
initial data y0 and on material parameters, but not on the time partition and, in particular, not on i.
In addition, bound (3.10) entails that there exists θmin > 0 independent of the time partition such that
θi ≥ θmin, see (3.19) below. Note that energy conservation is specific of the current choice φ = 1/2 and
hinges on the quadratic nature of E.

We devote the remainder of this section to prove that the convergence result of Theorem 2.1
applies to the scheme (3.6)–(3.9), namely that conditions (2.10)–(2.13) are fulfilled. In particular, we
check that the minimization problem admits a solution {yi}

N
i=0 = {(qi, pi, θi)}Ni=0 (Subsection 3.1) and

that each such solution fulfills condition (2.10) in the stronger sense G(τi, yi−1; yi) ≤ 0 (Subsection
3.2), and that the bounds (2.11)–(2.13) can be established, independently of the partition (Subsection
3.3). Eventually, numerical simulations are presented in Subsection 3.4.

3.1. Existence of minimizers

Assume to be given y = (qi−1, pi−1, θi−1) ∈ R2× (0,∞). As y 7→ G(τi, y; y) is smooth on its domain, in
order to prove that the scheme (3.6)–(3.9) admits a solution, we just need to check coercivity, namely
that sublevels of y 7→ G(τi, y; y) are bounded.
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By using the constraints (3.8)–(3.9) we can express qi and θi in terms of pi and the values
(qi−1, pi−1, θi−1) in the form

qi = τi
pi + pi−1

2m
+ qi−1 and θi = f (pi), (3.11)

where the second-order polynomial f in pi is defined by

f (pi) =

(
−

1
2mc

−
κτ2

i

8m2c

)
p2

i +

(
−
κτ2

i pi−1

4m2c
−
κτiqi−1

2mc

)
pi

+

(
p2

i−1

2mc
+ θi−1 −

κτ2
i p2

i−1

8m2c
−
κτi pi−1qi−1

2mc

)
.

By substituting the two expressions in the minimum problem (3.6)–(3.9), we can reduce it to a
minimization in the variable pi only. Indeed, problem (3.6)–(3.9) is equivalent to

min
pi

F(pi) under the constraint f (pi) > 0, (3.12)

where we have defined

F(pi) :=
τiλ(pi + pi−1)

2m
− c ln f (pi)

+
τi

ν( f (pi) + θi−1)

( pi − pi−1

τi
+
τiκ

2m

( pi + pi−1

2

)
+ κqi−1 + λ f (pi)

)2

+
τiν

2

(
f (pi) + θi−1

2

) ( pi + pi−1

2

)2 1
m2( f (pi))2 .

As F is smooth on its domain, in order to solve the minimization problem (3.12) we just need to prove
that F has bounded sublevels. This follows from the fact that F(pi) → ∞ if f (pi) → 0+. Hence, it
remains to prove that f (pi) > 0 holds on a bounded interval only, depending on (qi−1, pi−1, θi−1), for τi

chosen to be small enough. Since f has the form f (pi) = αp2
i + βpi + γ, it suffices to check that α < 0

and γ > 0, for τi small enough. In fact, α < 0 as soon as τ2 < 4m/κ. On the other hand, under the same
upper bound on τi we have

γ =

(
1

2mc
−

κτ2
i

8m2c

)
p2

i−1 + θi−1 −
κτi pi−1qi−1

2mc

≥ θi−1 −
κτi pi−1qi−1

2mc

(3.10)
≥ θmin −

κτiC2

2mc
,

where C is the constant in (3.10). In particular, γ > 0 if τi is chosen such that τi < 2mcθmin/(κC2).
We have hence proved that, for all given (qi−1, pi−1, θi−1) ∈ R2 × (0,∞), we can find a solution pi of

(3.12). We conclude from (3.11) that for τi small enough there exists (qi, pi, θi) solving (3.6)–(3.9). In
particular, we have that θi > 0.

3.2. Minimizers fulfill condition (2.10)

Moving from relation (2.19), the convexity of −S ensures that condition (2.10) holds, for minimizers
can be compared with solutions of the Euler scheme (2.18)

qi − qi−1

τi
=

pi + pi−1

2m
, (3.13)
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pi − pi−1

τi
= −

ν(pi + pi−1)(θi + θi−1)
4m

− κ
qi + qi−1

2
− λθi, (3.14)

θi − θi−1

τi
=

ν

m2c
θi + θi−1

2θi

( pi + pi−1

2

)2
+
λ(pi + pi−1)θi

2mc
(3.15)

for i = 1, . . . ,N.
By adapting the argument from Subsection 3.1, an elementary but tedious computation ensures that

the Euler scheme (3.13)–(3.15) admits indeed a solution ye
i = (qi, pi, θi).

Let now yi be a solution to the incremental minimization problem (3.6). Owing to (2.19), we
conclude that

G(τi, yi−1; yi) = min
y

G(τi, yi−1; y) ≤ G(τi, yi−1; ye
i )

(2.19)
= 0,

where we have also used the fact that ye
i fulfills the constraints (3.7)–(3.9). In particular, condition

(2.10) holds in the even stronger form

G(τi, yi−1; yi) ≤ 0 for i = 1, . . . ,N. (3.16)

3.3. A priori bounds

We now prove that condition (2.11)–(2.13) of Theorem 2.1 hold. This will follow by checking a
priori bounds on minimizers {yi}

N
i=0 of (3.6), independently from the time partition.

Bound (3.10) and constraint (3.8) imply that∣∣∣∣∣qi − qi−1

τi

∣∣∣∣∣ ≤ C ∀i = 1, . . . ,N. (3.17)

Moreover, we readily check that∣∣∣∣∣L(yi) DE
(yi + yi−1

2

)∣∣∣∣∣
=

∣∣∣∣∣∣
(

pi + pi−1

2m
,−κ

qi + qi−1

2
− λθi,

λ(pi + pi−1)θi

2mc

)∣∣∣∣∣∣ (3.10)
≤ C ∀i = 1, . . . ,N. (3.18)

Let us take the sum for i = 1, . . . , j for j ≤ N in (3.16), getting

−S (y j) + ψ∗j + ψ j ≤ −S (y0),

where

ψ∗j =

j∑
i=1

τi

ν(θi + θi−1)

( pi − pi−1

τi
+ κ

qi + qi−1

2
+ λθi

)2
,

ψ j =

j∑
i=1

τiν

2
θi + θi−1

2

( pi + pi−1

2

)2 1
m2θ2

i

.

As ψ∗j and ψ j are nonnegative, we infer that S (yi) is nondecreasing. In particular,

−c ln θ j ≤ −S (y0) − λq j + c
(3.10)
≤ C ∀ j = 1, . . . ,N.
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and consequently,
θi ≥ θmin > 0 ∀i = 1, . . . ,N, (3.19)

for some given θmin depending just on y0 and the material parameters. This ensures that

|DS (yi)| = |(−λ, 0, c/θi)| ≤ C ∀i = 1, . . . ,N. (3.20)

It follows from the bound (3.10) on qi and θi that S (yi) = −λqi + c + c ln θi ≤ C for all i = 1, . . . ,N.
We conclude that ψ∗N ≤ −S (y0) + S (yN) ≤ C and

N∑
i=1

τi

ν(θi + θi−1)

∣∣∣∣∣ pi − pi−1

τi

∣∣∣∣∣2
= ψ∗N −

N∑
i=1

τi

ν(θi + θi−1)

(
κ

qi + qi−1

2
+ λθi

)2

− 2
N∑

i=1

τi

ν(θi + θi−1)

(
pi − pi−1

τi

) (
κ

qi + qi−1

2
+ λθi

)
(3.10)
≤ C +

N∑
i=1

τi

2ν(θi + θi−1)

∣∣∣∣∣ pi − pi−1

τi

∣∣∣∣∣2 . (3.21)

Using the fact that θi is uniformly bounded by (3.10), we can hence bound

N∑
i=1

τi

∣∣∣∣∣ pi − pi−1

τi

∣∣∣∣∣2 ≤ 4ν (max
i
θi)

N∑
i=1

τi

2ν(θi + θi−1)

∣∣∣∣∣ pi − pi−1

τi

∣∣∣∣∣2 (3.10)+(3.21)
≤ C. (3.22)

Eventually, we infer from constraint (3.9) that

c
N∑

i=1

τi

∣∣∣∣∣θi − θi−1

τi

∣∣∣∣∣2
≤

N∑
i=1

τi

∣∣∣∣∣ − 1
2m

(pi + pi−1)
pi − pi−1

τi
−
κ

2
(qi + qi−1)

qi − qi−1

τi

∣∣∣∣∣2 ≤ C, (3.23)

where the last inequality follows from bounds (3.10), (3.17), and (3.22).
Bounds (3.10)–(3.17) and (3.22)–(3.23) imply condition (2.11) from Theorem 2.1. On the other

hand, bounds (3.18) and (3.20) imply conditions (2.12) and (2.13), respectively. Hence, the
convergence statement of Theorem 2.1 holds. In particular, given initial values (q0, p0, θ0) ∈ R3 with
θ0 > 0, a sequence of partitions 0 = tn

0 < · · · < tn
Nn = T with τn = maxi(tn

i − tn
i−1) → 0, and

corresponding minimizers {(qn
i , pn

i , θ
n
i )}Ni=0 of (3.6), it follows that

(̂qn, p̂n, θ̂n) ⇀ (q, p, θ) in H1(0,T ;R3), (3.24)

where (q, p, θ) solves the damped harmonic oscillator system (3.3)–(3.5) with initial value
(q(0), p(0), θ(0)) = (q0, p0, θ0). Note that solutions of (3.3)–(3.5) are unique. Hence, convergence
(3.24) holds for the whole sequence of discrete solutions, not just for a subsequence.
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3.4. Numerical tests

We record here some illustration of the performance of the minimizing-movements scheme (3.6)–
(3.9). All computations are made in Matlab. In the following, we choose

m = ν = κ = λ = c = 1, y0 = (q0, p0, θ0) = (1, 1, 1), T = 15. (3.25)

Given a uniform time-partition with time step τ = T/N, we find a solution {yi}
N
i=0 of the minimizing-

movements scheme (3.6)–(3.9) via Newton’s method. The numerical reference solution t 7→ y(t) is
calculated by means of the Matlab solver ode45 choosing 10−4 for the maximal time step and 10−8 for
the absolute tolerance.

Figures 1–3 illustrate the numerical reference solution and the time-discrete solution for τ = 1/4.
As expected, the minimizing-movement scheme conserves energy, see Figure 3 left, while entropy is
nondecreasing, see Figure 3 right. A second set of experiments is illustrated in Figure 4. For the same
choices in (3.25) and different time steps

τn = 2−n for n = −1, 0, . . . , 11, (3.26)

we compute the uniform errors of the temperature component of the solution with respect to the
numerical reference solution.

0 5 10 15
-2

-1

0

1

0 5 10 15
-1.5

-1

-0.5

0

0.5

1

Figure 1. Position q (left) and momentum p (right) with respect to time for the numerical
reference solution (red, dotted) and for the minimizing-movements scheme (solid). The
curves differ only slightly.

0 5 10 15
0.9

1

1.1

1.2

1.3

1.4

Figure 2. Temperature with respect to time for the numerical reference solution (red, dotted)
and for the minimizing-movements scheme (solid).
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0 5 10 15
0
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1

1.5

2

2.5

Figure 3. Energy (left) and entropy (right) as function of time for the numerical reference
solution (red dotted) and for the minimizing-movements scheme (solid).

10
0

10
1

10
2

10
-2

10
0

Figure 4. Error maxt∈[0,T ] |p(t) − p̂(t)| with respect to 1/τn. The (green) dotted lines indicate
the order of convergence 1.

As τ converges to 0, our computations confirm that the minimizing-movements is of order τ. Let
us mention that a proof of first-order convergence for the minimizing-movements scheme in the
nondissipative regime (L = 0, K independent of the state) is given in [25, Prop. 4.3].
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