4 KiB
layout | lang | subtitle | math |
---|---|---|---|
default | en | FJMT.2024 / 23 April 2024 | true |
Lancichinetti-Fortunato-Radicchi (N_mfl = 301)
{% assign sigma_array = "0.001, 0.004, 0.012" | split: ", " %} {% assign mu_array = "0.001, 0.005, 0.01, 0.05, 0.5" | split: ", " %} {% assign prefix = "https://gaspard.janko.fr/s/numerics/FJMT.2024/plots_23_04_2024/results/LFR_single_graph/N_micro=1000,N_mfl=301" %}
This page shows the differences in the dynamics between the microscopic and the kinetic (meanfield) model for Lancichinetti-Fortunato-Radicchi (LFR) type graphs, depending on two parameters:
\sigma^2
, which is the variance of the\beta
distributions making up the initial distributionf
,\mu
, the so-called mixing parameter for the construction of the LFR graphs.
Graphs
|----------| | {% for mu in mu_array -%} | [μ={{ mu | round: 4 }}]({{ prefix }}/reference/μ={{ mu }}/graph_LFR.png){% if forloop.last -%} | {% endif -%} {% endfor %}
{% for sigma in sigma_array %}
$β$ distribution with $σ² = {{sigma}}$
Movies (ensemble averages)
|----------| {% for mu in mu_array -%} | μ={{ mu | round: 4 }}{% if forloop.last -%} | {% endif -%}
{% endfor %} |
---|
{% for mu in mu_array -%} |
[plain $w_i$]({{ prefix }}/σ²={{ sigma }}/μ={{ mu }}/movie_without_g.mp4){% if forloop.last -%} |
{% endfor %} |
{% for mu in mu_array -%} |
[centered $w_i$]({{ prefix }}/σ²={{ sigma }}/μ={{ mu }}/movie_without_g.mp4){% if forloop.last -%} |
{% endfor %} |
{:.headerline.center} |
Dynamics
Convergence rates are computed over the time span marked in blue in the first plot.
Parameters:
\mu
: LFR mixing parameterT^*
: time to consensus =-1/\log(\vert\lambda_2\vert) \cdot \delta t
, where\lambda_2
is the second largest eigenvalue of the transition matrix for the associated time discrete model. See here.- assortativity
- clustering coeff.
![convergence]({{ prefix }}/σ²={{ sigma }}/comparison.svg){:.manual_center_1500}
Graph properties
![graph metrics]({{ prefix }}/σ²={{ sigma }}/graph_analysis.svg){:.manual_center_1500}g(t=0), 1 row per run, p increasing →
{% endfor %}