In diesem Seminar betrachten wir den so genannten "Curve Shortening
Flow" für ebene Kurven und konzentrieren uns dabei auf den Beitrag von M. Gage und R. Hamilton: Geschlossene konvexe Anfangskurven schrumpfen in endlicher Zeit zu einem sogenannten „runden Punkt“, d. h. sie konvergieren im Hausdorffabstand zu einem Punkt und nach geeignetem Reskalieren zu einem (runden) Kreis.
\[1\] S. J. Altschuler and M. A. Grayson. *Shortening Space Curves and Flow through Singularities*. Journal of Differential Geometry 35, no. 2 (1992): 283–98. \[[pdf](https://gaspard.janko.fr/s/enseignement/konstanz/2021-2022/GA_Seminar/doc/Altschuler-Grayson.Shortening.space.curves.and.flow.through.singularities.pdf)\]
\[2\] B. Andrews and P. Bryan. *Curvature Bound for Curve Shortening Flow via Distance Comparison and a Direct Proof of Grayson’s Theorem*. Journal für die reine und angewandte Mathematik 2011, no. 653 (2011): 179–87. \[[pdf](https://gaspard.janko.fr/s/enseignement/konstanz/2021-2022/GA_Seminar/doc/Bryan.Curvature-bound-for-CSF-via-distance-comparion.pdf)\]
\[3\] M. Gage and R. S. Hamilton. *The Heat Equation Shrinking Convex Plane Curves*. Journal of Differential Geometry 23, no. 1 (1986): 69–96. \[[pdf](https://gaspard.janko.fr/s/enseignement/konstanz/2021-2022/GA_Seminar/doc/Gage-Hamilton.The-heat-equation-shrinking-convex-plane-curves.pdf)\]
\[5\] G. Huisken. *A Distance Comparison Principle for Evolving Curves*. Asian Journal of Mathematics 2, no. 1 (1998): 127–34. \[[pdf](https://gaspard.janko.fr/s/enseignement/konstanz/2021-2022/GA_Seminar/doc/Huisken.A-distance-comparison-principle-for-evolving-curves.pdf)\]