dft_zmp/n2v.patched/grid/grider.py
2024-02-26 10:44:51 +01:00

775 lines
29 KiB
Python
Executable file

"""
grider.py
Generates grid for plotting
"""
import numpy as np
import warnings
from opt_einsum import contract
import psi4
psi4.core.be_quiet()
try:
from pylibxc import LibXCFunctional as Functional
except:
pass
# from .cubeprop import Cubeprop
from .basis_set_artifact_correction import basis_set_correction, invert_kohn_sham_equations
class Grider():
def grid_to_blocks(self, grid, basis=None):
"""
Generate list of blocks to allocate given grid
Parameters
----------
grid: np.ndarray
Grid to be distributed into blocks
Size: (3, npoints) for homogeneous grid
(4, npoints) for inhomogenous grid to account for weights
basis: psi4.core.BasisSet; optional
The basis set. If not given, it will use target wfn.basisset().
Returns
-------
blocks: list
List with psi4.core.BlockOPoints
npoints: int
Total number of points (for one dimension)
points: psi4.core.{RKS, UKS}
Points function to set matrices.
"""
assert (grid.shape[0] == 3) or (grid.shape[0] == 4), """Grid does not have the correct dimensions. \n
Array must be of size (3, npoints) or (4, npoints)"""
if_w = grid.shape[0] == 4
if basis is None:
#basis = self.basis
#added by Ehsan
basis = psi4.core.BasisSet.build(self.molecule, "ORBITAL", self.basis)
epsilon = psi4.core.get_global_option("CUBIC_BASIS_TOLERANCE")
# added by Ehsan
#print("\nThis is the epsilon: ", float(epsilon))
# basis_set = psi4.core.BasisSet.build(self.molecule, "ORBITAL", basis)
extens = psi4.core.BasisExtents(basis, epsilon)
#extens = psi4.core.BasisExtents(psi4.core.BasisExtents.basis(), 0.004)
max_points = psi4.core.get_global_option("DFT_BLOCK_MAX_POINTS")
npoints = grid.shape[1]
nblocks = int(np.floor(npoints/max_points))
blocks = []
max_functions = 0
#Run through full blocks
idx = 0
for nb in range(nblocks):
x = psi4.core.Vector.from_array(grid[0][idx : idx + max_points])
y = psi4.core.Vector.from_array(grid[1][idx : idx + max_points])
z = psi4.core.Vector.from_array(grid[2][idx : idx + max_points])
if if_w:
w = psi4.core.Vector.from_array(grid[3][idx : idx + max_points])
else:
w = psi4.core.Vector.from_array(np.zeros(max_points)) # When w is not necessary and not given
blocks.append(psi4.core.BlockOPoints(x, y, z, w, extens))
idx += max_points
max_functions = max_functions if max_functions > len(blocks[-1].functions_local_to_global()) \
else len(blocks[-1].functions_local_to_global())
#Run through remaining points
if idx < npoints:
x = psi4.core.Vector.from_array(grid[0][idx:])
y = psi4.core.Vector.from_array(grid[1][idx:])
z = psi4.core.Vector.from_array(grid[2][idx:])
if if_w:
w = psi4.core.Vector.from_array(grid[3][idx:])
else:
w = psi4.core.Vector.from_array(np.zeros_like(grid[2][idx:])) # When w is not necessary and not given
blocks.append(psi4.core.BlockOPoints(x, y, z, w, extens))
max_functions = max_functions if max_functions > len(blocks[-1].functions_local_to_global()) \
else len(blocks[-1].functions_local_to_global())
zero_matrix = psi4.core.Matrix(basis.nbf(), basis.nbf())
if self.ref == 1:
point_func = psi4.core.RKSFunctions(basis, max_points, max_functions)
point_func.set_pointers(zero_matrix)
else:
point_func = psi4.core.UKSFunctions(basis, max_points, max_functions)
point_func.set_pointers(zero_matrix, zero_matrix)
return blocks, npoints, point_func
def generate_grids(self, x, y, z):
"""
Genrates Mesh from 3 separate linear spaces and flatten,
needed for cubic grid.
Parameters
----------
grid: tuple of three np.ndarray
(x, y, z)
Returns
-------
grid: np.ndarray
shape (3, len(x)*len(y)*len(z)).
"""
# x,y,z, = grid
shape = (len(x), len(y), len(z))
X,Y,Z = np.meshgrid(x, y, z, indexing='ij')
X = X.reshape((X.shape[0] * X.shape[1] * X.shape[2], 1))
Y = Y.reshape((Y.shape[0] * Y.shape[1] * Y.shape[2], 1))
Z = Z.reshape((Z.shape[0] * Z.shape[1] * Z.shape[2], 1))
grid = np.concatenate((X,Y,Z), axis=1).T
return grid, shape
def generate_dft_grid(self, Vpot):
"""
Extracts DFT spherical grid and weights from wfn object
Parameters
----------
Vpot: psi4.core.VBase
Vpot object with dft grid data
Returns
-------
dft_grid: list
Numpy arrays corresponding to x,y,z, and w.
Shape: (4, npoints)
"""
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
dft_grid = np.zeros((4, npoints))
offset = 0
for i_block in blocks:
b_points = i_block.npoints()
offset += b_points
dft_grid[0, offset - b_points : offset] = i_block.x().np
dft_grid[1, offset - b_points : offset] = i_block.y().np
dft_grid[2, offset - b_points : offset] = i_block.z().np
dft_grid[3, offset - b_points : offset] = i_block.w().np
return dft_grid
#Quantities on Grid
def on_grid_ao(self, coeff, grid=None, basis=None, Vpot=None):
"""
Generates a quantity on the grid given its ao representation.
*This is the most general function for basis to grid transformation.
Parameters
----------
coeff: np.ndarray
Vector/Matrix of quantity on ao basis. Shape: {(num_ao_basis, ), (num_ao_basis, num_ao_basis)}
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
basis: psi4.core.BasisSet, optional
The basis set. If not given it will use target wfn.basisset().
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
coeff_r: np.ndarray Shape: (npoints, )
Quantity expressed by the coefficient on the given grid
"""
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid, basis=basis)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
coeff_r = np.zeros((npoints))
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
lpos = np.array(i_block.functions_local_to_global())
if len(lpos)==0:
continue
phi = np.array(points_function.basis_values()["PHI"])[:b_points, :lpos.shape[0]]
if coeff.ndim == 1:
l_mat = coeff[(lpos[:])]
coeff_r[offset - b_points : offset] = contract('pm,m->p', phi, l_mat)
elif coeff.ndim == 2:
l_mat = coeff[(lpos[:, None], lpos)]
coeff_r[offset - b_points : offset] = contract('pm,mn,pn->p', phi, l_mat, phi)
return coeff_r
def on_grid_density(self, grid=None,
Da=None,
Db=None,
Vpot=None):
"""
Generates Density given grid
Parameters
----------
Da, Db: np.ndarray
Alpha, Beta densities. Shape: (num_ao_basis, num_ao_basis)
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
density: np.ndarray Shape: (ref, npoints)
Density on the given grid.
"""
if Da is None and Db is None:
Da = psi4.core.Matrix.from_array(self.Dt[0])
Db = psi4.core.Matrix.from_array(self.Dt[1])
else:
Da = psi4.core.Matrix.from_array(Da)
Db = psi4.core.Matrix.from_array(Db)
if self.ref == 2 and Db is None:
raise ValueError("Db is required for an unrestricted system")
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
if self.ref == 1:
points_function.set_pointers(Da)
rho_a = points_function.point_values()["RHO_A"]
density = np.zeros((npoints))
if self.ref == 2:
points_function.set_pointers(Da, Db)
rho_a = points_function.point_values()["RHO_A"]
rho_b = points_function.point_values()["RHO_B"]
density = np.zeros((npoints, self.ref))
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
if self.ref == 1:
density[offset - b_points : offset] = rho_a.np[ :b_points]
else:
density[offset - b_points : offset, 0] = rho_a.np[ :b_points]
density[offset - b_points : offset, 1] = rho_b.np[ :b_points]
return density
def on_grid_orbitals(self, Ca=None, Cb=None, grid=None, Vpot=None):
"""
Generates orbitals given grid
Parameters
----------
Ca, Cb: np.ndarray
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
orbitals: np.ndarray
Orbitals on the given grid of size .
Shape: (nbasis, npoints, ref)
"""
if Ca is None and Cb is None:
Ca = psi4.core.Matrix.from_array(self.Ca)
Cb = psi4.core.Matrix.from_array(self.Cb)
else:
Ca = psi4.core.Matrix.from_array(Ca)
Cb = psi4.core.Matrix.from_array(Cb)
if self.ref == 2 and Cb is None:
raise ValueError("Db is required for an unrestricted system")
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
if self.ref == 1:
orbitals_r = [np.zeros((npoints)) for i_orb in range(self.nbf)]
points_function.set_pointers(Ca)
Ca_np = Ca.np
if self.ref == 2:
orbitals_r = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
points_function.set_pointers(Ca, Cb)
Ca_np = Ca.np
Cb_np = Cb.np
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
lpos = np.array(i_block.functions_local_to_global())
if len(lpos)==0:
continue
phi = np.array(points_function.basis_values()["PHI"])[:b_points, :lpos.shape[0]]
for i_orb in range(self.nbf):
Ca_local = Ca_np[lpos, i_orb]
if self.ref == 1:
orbitals_r[i_orb][offset - b_points : offset] = contract('m, pm -> p', Ca_local, phi)
else:
Cb_local = Cb_np[lpos, i_orb]
orbitals_r[i_orb][offset - b_points : offset,0] = contract('m, pm -> p', Ca_local, phi)
orbitals_r[i_orb][offset - b_points : offset,1] = contract('m, pm -> p', Cb_local, phi)
return orbitals_r
def on_grid_esp(self, Da=None, Db=None, grid=None, Vpot=None, wfn=None):
"""
Generates EXTERNAL/ESP/HARTREE and Fermi Amaldi Potential on given grid
Parameters
----------
Da,Db: np.ndarray, opt, shape (nbf, nbf)
The electron density in the denominator of Hartee potential. If None, the original density matrix
will be used.
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
vext, hartree, esp, v_fa: np.ndarray
External, Hartree, ESP, and Fermi Amaldi potential on the given grid
Shape: (npoints, )
"""
if wfn is None:
wfn = self.wfn
if Da is not None or Db is not None:
Da_temp = np.copy(self.wfn.Da().np)
Db_temp = np.copy(self.wfn.Db().np)
if Da is not None:
wfn.Da().np[:] = Da
if Db is not None:
wfn.Db().np[:] = Db
nthreads = psi4.get_num_threads()
psi4.set_num_threads(1)
if grid is not None:
if type(grid) is np.ndarray:
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
#Initialize Arrays
vext = np.zeros(npoints)
esp = np.zeros(npoints)
#Get Atomic Information
mol_dict = self.mol.to_schema(dtype='psi4')
natoms = len(mol_dict["elem"])
indx = [i for i in range(natoms) if self.mol.charge(i) != 0.0]
natoms = len(indx)
#Atomic numbers and Atomic positions
zs = [mol_dict["elez"][i] for i in indx]
rs = [self.mol.geometry().np[i] for i in indx]
esp_wfn = psi4.core.ESPPropCalc(wfn)
#Loop Through blocks
offset = 0
with np.errstate(divide='ignore'):
for i_block in blocks:
b_points = i_block.npoints()
offset += b_points
x = i_block.x().np
y = i_block.y().np
z = i_block.z().np
#EXTERNAL
for atom in range(natoms):
r = np.sqrt((x-rs[atom][0])**2 + (y-rs[atom][1])**2 + (z-rs[atom][2])**2)
vext_temp = - 1.0 * zs[atom] / r
vext_temp[np.isinf(vext_temp)] = 0.0
vext[offset - b_points : offset] += vext_temp
#ESP
xyz = np.concatenate((x[:,None],y[:,None],z[:,None]), axis=1)
grid_block = psi4.core.Matrix.from_array(xyz)
esp[offset - b_points : offset] = esp_wfn.compute_esp_over_grid_in_memory(grid_block).np
#Hartree
hartree = - 1.0 * (vext + esp)
v_fa = (1 - 1.0 / (self.nalpha + self.nbeta)) * hartree
if Da is not None:
wfn.Da().np[:] = Da_temp
if Db is not None:
wfn.Db().np[:] = Db_temp
psi4.set_num_threads(nthreads)
return vext, hartree, v_fa, esp
def on_grid_vxc(self, func_id=1, grid=None, Da=None, Db=None,
Vpot=None):
"""
Generates Vxc given grid
Parameters
----------
Da, Db: np.ndarray
Alpha, Beta densities. Shape: (num_ao_basis, num_ao_basis)
func_id: int
Functional ID associated with Density Functional Approximationl.
Full list of functionals: https://www.tddft.org/programs/libxc/functionals/
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
VXC: np.ndarray
Exchange correlation potential on the given grid
Shape: (npoints, )
"""
local_functionals = [1,546,549,532,692,641,552,287,307,578,5,24,4,579,308,289,551,
22,23,14,11,574,573,554,5900,12,13,25,9,10,27,3,684,683,17,7,
28,29,30,31,8,317,2,6,536,537,538,318,577,259,547,548,20,599,43,
51,580,50,550
]
if func_id not in local_functionals:
raise ValueError("Only LDA fucntionals are supported on the grid")
if Da is None:
Da = self.Dt[0]
if Db is None:
Db = self.Dt[0]
if grid is not None:
if type(grid) is np.ndarray:
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
density = self.on_grid_density(Da=Da, Db=Db, grid=grid)
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
density = self.on_grid_density(Da=Da, Db=Db, Vpot=Vpot)
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
vxc = np.zeros((npoints, self.ref))
ingredients = {}
offset = 0
for i_block in blocks:
b_points = i_block.npoints()
offset += b_points
if self.ref == 1:
ingredients["rho"] = density[offset - b_points : offset]
else:
ingredients["rho"] = density[offset - b_points : offset, :]
if self.ref == 1:
functional = Functional(func_id, 1)
else:
functional = Functional(func_id, 2)
xc_dictionary = functional.compute(ingredients)
vxc[offset - b_points : offset, :] = xc_dictionary['vrho']
return np.squeeze(vxc)
def on_grid_lap_phi(self,
Ca=None,
Cb=None,
grid=None,
Vpot=None):
"""
Generates laplacian of molecular orbitals
Parameters
----------
Ca, Cb: np.ndarray
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
lap_phi: List[np.ndarray]. Where array is of shape (npoints, ref)
Laplacian of molecular orbitals on the grid
"""
if Ca is None and Cb is None:
Ca = psi4.core.Matrix.from_array(self.Ca)
Cb = psi4.core.Matrix.from_array(self.Cb)
else:
Ca = psi4.core.Matrix.from_array(Ca)
Cb = psi4.core.Matrix.from_array(Cb)
if self.ref == 2 and Cb is None:
raise ValueError("Db is required for an unrestricted system")
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
points_function.set_ansatz(2)
if self.ref == 1:
points_function.set_pointers(Ca)
lap_phi = [np.zeros((npoints)) for i_orb in range(self.nbf)]
else:
points_function.set_pointers(Ca, Cb)
lap_phi = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
lpos = np.array(i_block.functions_local_to_global())
if len(lpos)==0:
continue
#Obtain subset of phi_@@ matrices
lx = np.array(points_function.basis_values()["PHI_XX"])[:b_points, :lpos.shape[0]]
ly = np.array(points_function.basis_values()["PHI_YY"])[:b_points, :lpos.shape[0]]
lz = np.array(points_function.basis_values()["PHI_ZZ"])[:b_points, :lpos.shape[0]]
for i_orb in range(self.nbf):
Ca_local = Ca.np[lpos, i_orb][:,None]
if self.ref ==1:
lap_phi[i_orb][offset - b_points : offset] += ((lx + ly + lz) @ Ca_local)[:,0]
else:
Cb_local = Cb.np[lpos, i_orb][:,None]
lap_phi[i_orb][offset - b_points : offset, 0] += ((lx + ly + lz) @ Ca_local)[:,0]
lap_phi[i_orb][offset - b_points : offset, 1] += ((lx + ly + lz) @ Cb_local)[:,0]
return lap_phi
def on_grid_grad_phi(self,
Ca=None,
Cb=None,
grid=None,
Vpot=None):
"""
Generates laplacian of molecular orbitals
Parameters
----------
Ca, Cb: np.ndarray
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
grad_phi: List[np.ndarray]. Where array is of shape (npoints, ref)
Gradient of molecular orbitals on the grid
"""
if Ca is None and Cb is None:
Ca = psi4.core.Matrix.from_array(self.Ca)
Cb = psi4.core.Matrix.from_array(self.Cb)
else:
Ca = psi4.core.Matrix.from_array(Ca)
Cb = psi4.core.Matrix.from_array(Cb)
if self.ref == 2 and Cb is None:
raise ValueError("Db is required for an unrestricted system")
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
points_function.set_ansatz(2)
if self.ref == 1:
points_function.set_pointers(Ca)
grad_phi = [np.zeros((npoints)) for i_orb in range(self.nbf)]
else:
points_function.set_pointers(Ca, Cb)
grad_phi = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
lpos = np.array(i_block.functions_local_to_global())
if len(lpos)==0:
continue
#Obtain subset of phi_@ matrix
gx = np.array(points_function.basis_values()["PHI_X"])[:b_points, :lpos.shape[0]]
gy = np.array(points_function.basis_values()["PHI_Y"])[:b_points, :lpos.shape[0]]
gz = np.array(points_function.basis_values()["PHI_Z"])[:b_points, :lpos.shape[0]]
for i_orb in range(self.nbf):
Ca_local = Ca.np[lpos, i_orb][:,None]
if self.ref == 1:
grad_phi[i_orb][offset - b_points : offset] += ((gx + gy + gz) @ Ca_local)[:,0]
if self.ref == 2:
Cb_local = Cb.np[lpos, i_orb][:,None]
grad_phi[i_orb][offset - b_points : offset, 0] += ((gx + gy + gz) @ Ca_local)[:,0]
grad_phi[i_orb][offset - b_points : offset, 1] += ((gx + gy + gz) @ Cb_local)[:,0]
return grad_phi
def dft_grid_to_fock(self, value, Vpot):
"""For value on DFT spherical grid, Fock matrix is returned.
VFock_ij = \int dx \phi_i(x) \phi_j(x) value(x)
Parameters:
-----------
value: np.ndarray of shape (npoint, ).
Vpot:psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns:
---------
VFock: np.ndarray of shape (nbasis, nbasis)
"""
VFock = np.zeros((self.nbf, self.nbf))
points_func = Vpot.properties()[0]
i = 0
# Loop over the blocks
for b in range(Vpot.nblocks()):
# Obtain block information
block = Vpot.get_block(b)
points_func.compute_points(block)
npoints = block.npoints()
lpos = np.array(block.functions_local_to_global())
if len(lpos) == 0:
i += npoints
continue
# Obtain the grid weight
w = np.array(block.w())
# Compute phi!
phi = np.array(points_func.basis_values()["PHI"])[:npoints, :lpos.shape[0]]
Vtmp = np.einsum('pb,p,p,pa->ab', phi, value[i:i+npoints], w, phi, optimize=True)
# Add the temporary back to the larger array by indexing, ensure it is symmetric
VFock[(lpos[:, None], lpos)] += 0.5 * (Vtmp + Vtmp.T)
i += npoints
assert i == value.shape[0], "Did not run through all the points. %i %i" %(i, value.shape[0])
return VFock
#Miscellaneous
def get_basis_set_correction(self, grid):
return basis_set_correction(self, grid)