import
This commit is contained in:
commit
f06696aff3
6 changed files with 2058 additions and 0 deletions
193
n2v.patched/engines/psi4.py
Executable file
193
n2v.patched/engines/psi4.py
Executable file
|
@ -0,0 +1,193 @@
|
|||
"""
|
||||
Provides interface n2v interface to Psi4
|
||||
"""
|
||||
|
||||
|
||||
from .engine import Engine
|
||||
import numpy as np
|
||||
from opt_einsum import contract
|
||||
|
||||
try:
|
||||
import psi4
|
||||
psi4.set_options({"save_jk" : True})
|
||||
has_psi4 = True
|
||||
except ImportError:
|
||||
has_psi4 = False
|
||||
|
||||
if has_psi4:
|
||||
from ..grid import Psi4Grider
|
||||
class Psi4Engine(Engine):
|
||||
"""
|
||||
Psi4 Engine Class
|
||||
"""
|
||||
|
||||
def set_system(self, molecule, basis, ref='1', pbs='same', wfn=None):
|
||||
"""
|
||||
Initializes geometry and basis infromation
|
||||
|
||||
Parameters
|
||||
----------
|
||||
molecule: psi4.core.Molecule
|
||||
Molecule of the system used
|
||||
basis: str
|
||||
Basis set of calculation
|
||||
ref: int
|
||||
Reference: Restricted -> 1
|
||||
Unrestricted -> 2
|
||||
pbs: str
|
||||
Basis set of potential used
|
||||
wfn : psi4.core.{RHF, UHF, RKS, UKS, Wavefunction, CCWavefuncion...}
|
||||
Psi4 wavefunction object
|
||||
"""
|
||||
self.mol = molecule
|
||||
|
||||
#Assert units are in bohr
|
||||
# units = self.mol.to_schema(dtype='psi4')['units']
|
||||
# if units != "Bohr":
|
||||
# raise ValueError("Units need to be set in Bohr")
|
||||
self.basis_str = basis
|
||||
self.ref = ref
|
||||
self.pbs = pbs
|
||||
self.pbs_str = basis if pbs == 'same' else pbs
|
||||
|
||||
self.nalpha = wfn.nalpha()
|
||||
self.nbeta = wfn.nbeta()
|
||||
|
||||
self.wfn = wfn
|
||||
|
||||
def initialize(self):
|
||||
"""
|
||||
Initializes basic objects required for the Psi4Engine
|
||||
"""
|
||||
self.basis = psi4.core.BasisSet.build( self.mol, key='BASIS', target=self.basis_str)
|
||||
self.pbs = psi4.core.BasisSet.build( self.mol, key='BASIS', target=self.pbs_str)
|
||||
|
||||
self.nbf = self.basis.nbf()
|
||||
self.npbs = self.pbs.nbf()
|
||||
|
||||
self.mints = psi4.core.MintsHelper( self.basis )
|
||||
self.jk = self.generate_jk()
|
||||
|
||||
self.grid = Psi4Grider(self.mol, self.basis, self.ref)
|
||||
|
||||
def get_T(self):
|
||||
"""Kinetic Potential in ao basis"""
|
||||
return np.array( self.mints.ao_kinetic() )
|
||||
|
||||
def get_Tpbas(self):
|
||||
"""Kinetic Potential in pbs"""
|
||||
return np.array( self.mints.ao_kinetic(self.pbs, self.pbs) )
|
||||
|
||||
def get_V(self):
|
||||
"""External potential in ao basis"""
|
||||
return np.array( self.mints.ao_potential() )
|
||||
|
||||
def get_A(self):
|
||||
"""Inverse squared root of S matrix"""
|
||||
A = self.mints.ao_overlap()
|
||||
A.power( -0.5, 1e-16 )
|
||||
return np.array( A )
|
||||
|
||||
def get_S(self):
|
||||
"""Overlap matrix in AO basis"""
|
||||
return np.array( self.mints.ao_overlap() )
|
||||
|
||||
def get_S3(self):
|
||||
"""3 Orbitals Overlap matrix in AO basis"""
|
||||
return np.array( self.mints.ao_3coverlap(self.basis,self.basis,self.pbs) )
|
||||
|
||||
def get_S4(self):
|
||||
"""
|
||||
Calculates four overlap integral with Density Fitting method.
|
||||
S4_{ijkl} = \int dr \phi_i(r)*\phi_j(r)*\phi_k(r)*\phi_l(r)
|
||||
Parameters
|
||||
----------
|
||||
wfn: psi4.core.Wavefunction
|
||||
Wavefunction object of moleculep
|
||||
Return
|
||||
------
|
||||
S4
|
||||
"""
|
||||
|
||||
print(f"4-AO-Overlap tensor will take about {self.nbf **4 / 8 * 1e-9:f} GB.")
|
||||
|
||||
aux_basis = psi4.core.BasisSet.build(self.mol, "DF_BASIS_SCF", "", "JKFIT", self.basis_str)
|
||||
S_Pmn = np.squeeze(self.mints.ao_3coverlap(aux_basis, self.basis, self.basis ))
|
||||
S_PQ = np.array(self.mints.ao_overlap(aux_basis, aux_basis))
|
||||
S_PQinv = np.linalg.pinv(S_PQ, rcond=1e-9)
|
||||
S4 = contract('Pmn,PQ,Qrs->mnrs', S_Pmn, S_PQinv, S_Pmn)
|
||||
return S4
|
||||
|
||||
def generate_jk(self, gen_K=False):
|
||||
"""
|
||||
Creates jk object for generation of Coulomb and Exchange matrices
|
||||
1.0e9 B -> 1.0 GB
|
||||
"""
|
||||
jk = psi4.core.JK.build(self.basis)
|
||||
memory = int(jk.memory_estimate() * 1.1)
|
||||
jk.set_memory(int(memory))
|
||||
# added by Ehsan
|
||||
# .set_do_K(gen_K = False) determines if exchane matrices should be calculated or not
|
||||
jk.set_do_K(gen_K)
|
||||
jk.initialize()
|
||||
#print("jk: ", jk)
|
||||
return jk
|
||||
|
||||
def compute_hartree(self, Cocc_a, Cocc_b):
|
||||
"""
|
||||
Generates Coulomb and Exchange matrices from occupied orbitals
|
||||
"""
|
||||
Cocc_a = psi4.core.Matrix.from_array(Cocc_a)
|
||||
Cocc_b = psi4.core.Matrix.from_array(Cocc_b)
|
||||
self.jk.C_left_add(Cocc_a)
|
||||
self.jk.C_left_add(Cocc_b)
|
||||
self.jk.compute()
|
||||
self.jk.C_clear()
|
||||
J = (np.array(self.jk.J()[0]), np.array(self.jk.J()[1]))
|
||||
return J
|
||||
|
||||
def hartree_NO(self, Dta):
|
||||
"""
|
||||
Computes Hartree potential in AO basis from Natural Orbitals
|
||||
"""
|
||||
|
||||
if self.wfn is None:
|
||||
raise ValueError('Please provide a wfn object to the Inverter, i.e., Inverter.eng = wfn')
|
||||
|
||||
if type(self.wfn) == psi4.core.CCWavefunction:
|
||||
C_NO = psi4.core.Matrix(self.nbf, self.nbf)
|
||||
eigs_NO = psi4.core.Vector(self.nbf)
|
||||
self.wfn.Da().diagonalize( C_NO, eigs_NO, psi4.core.DiagonalizeOrder.Descending )
|
||||
occ = np.sqrt( np.array(eigs_NO) )
|
||||
new_CA = occ * np.array(C_NO)
|
||||
assert np.allclose( new_CA @ new_CA.T, Dta )
|
||||
if self.ref == 1:
|
||||
new_CB = np.copy( new_CA )
|
||||
else:
|
||||
self.wfn.Db().diagonalize( C_NO, eigs_NO, psi4.core.DiagonalizeOrder.Descending )
|
||||
occ_b = np.sqrt( np.array( eigs_NO ) )
|
||||
new_CB = occ_b * np.array( C_NO )
|
||||
J0 = self.compute_hartree(new_CA, new_CB)
|
||||
return J0
|
||||
|
||||
def run_single_point(self, mol, basis, method):
|
||||
"""
|
||||
Run a standard energy calculation
|
||||
"""
|
||||
|
||||
wfn_temp = psi4.energy(init+"/" + self.basis_str,
|
||||
molecule=self.mol,
|
||||
return_wfn=True)[1]
|
||||
|
||||
if self.ref == 1:
|
||||
D = np.array(wfn_temp.Da()) + np.array(wfn_temp.Db())
|
||||
C = np.array(wfn_temp.Ca())
|
||||
e = np.array(wfn_temp.epsilon_a())
|
||||
|
||||
else:
|
||||
D = np.stack( (np.array(wfn_temp.Da()), np.array(wfn_temp.Db())) )
|
||||
C = np.stack( (np.array(wfn_temp.Ca()), np.array(wfn_temp.Cb())) )
|
||||
e = np.stack( (np.array(wfn_temp.epsilon_a()), np.array(wfn_temp.epsilon_b())) )
|
||||
|
||||
return D, C, e
|
||||
|
775
n2v.patched/grid/grider.py
Executable file
775
n2v.patched/grid/grider.py
Executable file
|
@ -0,0 +1,775 @@
|
|||
"""
|
||||
grider.py
|
||||
|
||||
Generates grid for plotting
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import warnings
|
||||
from opt_einsum import contract
|
||||
import psi4
|
||||
psi4.core.be_quiet()
|
||||
|
||||
try:
|
||||
from pylibxc import LibXCFunctional as Functional
|
||||
except:
|
||||
pass
|
||||
|
||||
# from .cubeprop import Cubeprop
|
||||
from .basis_set_artifact_correction import basis_set_correction, invert_kohn_sham_equations
|
||||
|
||||
class Grider():
|
||||
|
||||
def grid_to_blocks(self, grid, basis=None):
|
||||
"""
|
||||
Generate list of blocks to allocate given grid
|
||||
|
||||
Parameters
|
||||
----------
|
||||
grid: np.ndarray
|
||||
Grid to be distributed into blocks
|
||||
Size: (3, npoints) for homogeneous grid
|
||||
(4, npoints) for inhomogenous grid to account for weights
|
||||
basis: psi4.core.BasisSet; optional
|
||||
The basis set. If not given, it will use target wfn.basisset().
|
||||
|
||||
Returns
|
||||
-------
|
||||
blocks: list
|
||||
List with psi4.core.BlockOPoints
|
||||
npoints: int
|
||||
Total number of points (for one dimension)
|
||||
points: psi4.core.{RKS, UKS}
|
||||
Points function to set matrices.
|
||||
"""
|
||||
assert (grid.shape[0] == 3) or (grid.shape[0] == 4), """Grid does not have the correct dimensions. \n
|
||||
Array must be of size (3, npoints) or (4, npoints)"""
|
||||
if_w = grid.shape[0] == 4
|
||||
|
||||
if basis is None:
|
||||
#basis = self.basis
|
||||
#added by Ehsan
|
||||
basis = psi4.core.BasisSet.build(self.molecule, "ORBITAL", self.basis)
|
||||
|
||||
epsilon = psi4.core.get_global_option("CUBIC_BASIS_TOLERANCE")
|
||||
# added by Ehsan
|
||||
#print("\nThis is the epsilon: ", float(epsilon))
|
||||
# basis_set = psi4.core.BasisSet.build(self.molecule, "ORBITAL", basis)
|
||||
extens = psi4.core.BasisExtents(basis, epsilon)
|
||||
#extens = psi4.core.BasisExtents(psi4.core.BasisExtents.basis(), 0.004)
|
||||
max_points = psi4.core.get_global_option("DFT_BLOCK_MAX_POINTS")
|
||||
npoints = grid.shape[1]
|
||||
nblocks = int(np.floor(npoints/max_points))
|
||||
blocks = []
|
||||
|
||||
max_functions = 0
|
||||
#Run through full blocks
|
||||
idx = 0
|
||||
for nb in range(nblocks):
|
||||
x = psi4.core.Vector.from_array(grid[0][idx : idx + max_points])
|
||||
y = psi4.core.Vector.from_array(grid[1][idx : idx + max_points])
|
||||
z = psi4.core.Vector.from_array(grid[2][idx : idx + max_points])
|
||||
if if_w:
|
||||
w = psi4.core.Vector.from_array(grid[3][idx : idx + max_points])
|
||||
else:
|
||||
w = psi4.core.Vector.from_array(np.zeros(max_points)) # When w is not necessary and not given
|
||||
|
||||
blocks.append(psi4.core.BlockOPoints(x, y, z, w, extens))
|
||||
idx += max_points
|
||||
max_functions = max_functions if max_functions > len(blocks[-1].functions_local_to_global()) \
|
||||
else len(blocks[-1].functions_local_to_global())
|
||||
|
||||
#Run through remaining points
|
||||
if idx < npoints:
|
||||
x = psi4.core.Vector.from_array(grid[0][idx:])
|
||||
y = psi4.core.Vector.from_array(grid[1][idx:])
|
||||
z = psi4.core.Vector.from_array(grid[2][idx:])
|
||||
if if_w:
|
||||
w = psi4.core.Vector.from_array(grid[3][idx:])
|
||||
else:
|
||||
w = psi4.core.Vector.from_array(np.zeros_like(grid[2][idx:])) # When w is not necessary and not given
|
||||
blocks.append(psi4.core.BlockOPoints(x, y, z, w, extens))
|
||||
|
||||
max_functions = max_functions if max_functions > len(blocks[-1].functions_local_to_global()) \
|
||||
else len(blocks[-1].functions_local_to_global())
|
||||
|
||||
zero_matrix = psi4.core.Matrix(basis.nbf(), basis.nbf())
|
||||
if self.ref == 1:
|
||||
point_func = psi4.core.RKSFunctions(basis, max_points, max_functions)
|
||||
point_func.set_pointers(zero_matrix)
|
||||
else:
|
||||
point_func = psi4.core.UKSFunctions(basis, max_points, max_functions)
|
||||
point_func.set_pointers(zero_matrix, zero_matrix)
|
||||
|
||||
return blocks, npoints, point_func
|
||||
|
||||
def generate_grids(self, x, y, z):
|
||||
"""
|
||||
Genrates Mesh from 3 separate linear spaces and flatten,
|
||||
needed for cubic grid.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
grid: tuple of three np.ndarray
|
||||
(x, y, z)
|
||||
|
||||
Returns
|
||||
-------
|
||||
grid: np.ndarray
|
||||
shape (3, len(x)*len(y)*len(z)).
|
||||
"""
|
||||
# x,y,z, = grid
|
||||
shape = (len(x), len(y), len(z))
|
||||
X,Y,Z = np.meshgrid(x, y, z, indexing='ij')
|
||||
X = X.reshape((X.shape[0] * X.shape[1] * X.shape[2], 1))
|
||||
Y = Y.reshape((Y.shape[0] * Y.shape[1] * Y.shape[2], 1))
|
||||
Z = Z.reshape((Z.shape[0] * Z.shape[1] * Z.shape[2], 1))
|
||||
grid = np.concatenate((X,Y,Z), axis=1).T
|
||||
|
||||
return grid, shape
|
||||
|
||||
def generate_dft_grid(self, Vpot):
|
||||
"""
|
||||
Extracts DFT spherical grid and weights from wfn object
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Vpot: psi4.core.VBase
|
||||
Vpot object with dft grid data
|
||||
|
||||
Returns
|
||||
-------
|
||||
dft_grid: list
|
||||
Numpy arrays corresponding to x,y,z, and w.
|
||||
Shape: (4, npoints)
|
||||
|
||||
"""
|
||||
|
||||
nblocks = Vpot.nblocks()
|
||||
blocks = [Vpot.get_block(i) for i in range(nblocks)]
|
||||
npoints = Vpot.grid().npoints()
|
||||
|
||||
dft_grid = np.zeros((4, npoints))
|
||||
|
||||
offset = 0
|
||||
for i_block in blocks:
|
||||
b_points = i_block.npoints()
|
||||
offset += b_points
|
||||
|
||||
dft_grid[0, offset - b_points : offset] = i_block.x().np
|
||||
dft_grid[1, offset - b_points : offset] = i_block.y().np
|
||||
dft_grid[2, offset - b_points : offset] = i_block.z().np
|
||||
dft_grid[3, offset - b_points : offset] = i_block.w().np
|
||||
|
||||
return dft_grid
|
||||
|
||||
#Quantities on Grid
|
||||
def on_grid_ao(self, coeff, grid=None, basis=None, Vpot=None):
|
||||
"""
|
||||
Generates a quantity on the grid given its ao representation.
|
||||
*This is the most general function for basis to grid transformation.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
coeff: np.ndarray
|
||||
Vector/Matrix of quantity on ao basis. Shape: {(num_ao_basis, ), (num_ao_basis, num_ao_basis)}
|
||||
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
|
||||
grid where density will be computed.
|
||||
basis: psi4.core.BasisSet, optional
|
||||
The basis set. If not given it will use target wfn.basisset().
|
||||
Vpot: psi4.core.VBase
|
||||
Vpotential object with info about grid.
|
||||
Provides DFT spherical grid. Only comes to play if no grid is given.
|
||||
|
||||
Returns
|
||||
-------
|
||||
coeff_r: np.ndarray Shape: (npoints, )
|
||||
Quantity expressed by the coefficient on the given grid
|
||||
|
||||
|
||||
"""
|
||||
|
||||
|
||||
if grid is not None:
|
||||
if type(grid) is np.ndarray:
|
||||
if grid.shape[0] != 3 and grid.shape[0] != 4:
|
||||
raise ValueError("The shape of grid should be (3, npoints) "
|
||||
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
|
||||
blocks, npoints, points_function = self.grid_to_blocks(grid, basis=basis)
|
||||
else:
|
||||
blocks, npoints, points_function = grid
|
||||
elif grid is None and Vpot is not None:
|
||||
nblocks = Vpot.nblocks()
|
||||
blocks = [Vpot.get_block(i) for i in range(nblocks)]
|
||||
npoints = Vpot.grid().npoints()
|
||||
points_function = Vpot.properties()[0]
|
||||
else:
|
||||
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
|
||||
|
||||
coeff_r = np.zeros((npoints))
|
||||
|
||||
offset = 0
|
||||
for i_block in blocks:
|
||||
points_function.compute_points(i_block)
|
||||
b_points = i_block.npoints()
|
||||
offset += b_points
|
||||
lpos = np.array(i_block.functions_local_to_global())
|
||||
if len(lpos)==0:
|
||||
continue
|
||||
phi = np.array(points_function.basis_values()["PHI"])[:b_points, :lpos.shape[0]]
|
||||
|
||||
if coeff.ndim == 1:
|
||||
l_mat = coeff[(lpos[:])]
|
||||
coeff_r[offset - b_points : offset] = contract('pm,m->p', phi, l_mat)
|
||||
elif coeff.ndim == 2:
|
||||
l_mat = coeff[(lpos[:, None], lpos)]
|
||||
coeff_r[offset - b_points : offset] = contract('pm,mn,pn->p', phi, l_mat, phi)
|
||||
|
||||
return coeff_r
|
||||
|
||||
def on_grid_density(self, grid=None,
|
||||
Da=None,
|
||||
Db=None,
|
||||
Vpot=None):
|
||||
"""
|
||||
Generates Density given grid
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Da, Db: np.ndarray
|
||||
Alpha, Beta densities. Shape: (num_ao_basis, num_ao_basis)
|
||||
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
|
||||
grid where density will be computed.
|
||||
Vpot: psi4.core.VBase
|
||||
Vpotential object with info about grid.
|
||||
Provides DFT spherical grid. Only comes to play if no grid is given.
|
||||
|
||||
Returns
|
||||
-------
|
||||
density: np.ndarray Shape: (ref, npoints)
|
||||
Density on the given grid.
|
||||
"""
|
||||
|
||||
if Da is None and Db is None:
|
||||
Da = psi4.core.Matrix.from_array(self.Dt[0])
|
||||
Db = psi4.core.Matrix.from_array(self.Dt[1])
|
||||
else:
|
||||
Da = psi4.core.Matrix.from_array(Da)
|
||||
Db = psi4.core.Matrix.from_array(Db)
|
||||
|
||||
if self.ref == 2 and Db is None:
|
||||
raise ValueError("Db is required for an unrestricted system")
|
||||
|
||||
if grid is not None:
|
||||
if type(grid) is np.ndarray:
|
||||
if grid.shape[0] != 3 and grid.shape[0] != 4:
|
||||
raise ValueError("The shape of grid should be (3, npoints) "
|
||||
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
|
||||
blocks, npoints, points_function = self.grid_to_blocks(grid)
|
||||
else:
|
||||
blocks, npoints, points_function = grid
|
||||
elif grid is None and Vpot is not None:
|
||||
nblocks = Vpot.nblocks()
|
||||
blocks = [Vpot.get_block(i) for i in range(nblocks)]
|
||||
npoints = Vpot.grid().npoints()
|
||||
points_function = Vpot.properties()[0]
|
||||
else:
|
||||
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
|
||||
|
||||
|
||||
if self.ref == 1:
|
||||
points_function.set_pointers(Da)
|
||||
rho_a = points_function.point_values()["RHO_A"]
|
||||
density = np.zeros((npoints))
|
||||
if self.ref == 2:
|
||||
points_function.set_pointers(Da, Db)
|
||||
rho_a = points_function.point_values()["RHO_A"]
|
||||
rho_b = points_function.point_values()["RHO_B"]
|
||||
density = np.zeros((npoints, self.ref))
|
||||
|
||||
offset = 0
|
||||
for i_block in blocks:
|
||||
points_function.compute_points(i_block)
|
||||
b_points = i_block.npoints()
|
||||
offset += b_points
|
||||
|
||||
if self.ref == 1:
|
||||
density[offset - b_points : offset] = rho_a.np[ :b_points]
|
||||
else:
|
||||
density[offset - b_points : offset, 0] = rho_a.np[ :b_points]
|
||||
density[offset - b_points : offset, 1] = rho_b.np[ :b_points]
|
||||
|
||||
return density
|
||||
|
||||
def on_grid_orbitals(self, Ca=None, Cb=None, grid=None, Vpot=None):
|
||||
"""
|
||||
Generates orbitals given grid
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Ca, Cb: np.ndarray
|
||||
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
|
||||
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
|
||||
grid where density will be computed
|
||||
Vpot: psi4.core.VBase
|
||||
Vpotential object with info about grid.
|
||||
Provides DFT spherical grid. Only comes to play if no grid is given.
|
||||
|
||||
Returns
|
||||
-------
|
||||
orbitals: np.ndarray
|
||||
Orbitals on the given grid of size .
|
||||
Shape: (nbasis, npoints, ref)
|
||||
|
||||
|
||||
"""
|
||||
|
||||
if Ca is None and Cb is None:
|
||||
Ca = psi4.core.Matrix.from_array(self.Ca)
|
||||
Cb = psi4.core.Matrix.from_array(self.Cb)
|
||||
else:
|
||||
Ca = psi4.core.Matrix.from_array(Ca)
|
||||
Cb = psi4.core.Matrix.from_array(Cb)
|
||||
|
||||
if self.ref == 2 and Cb is None:
|
||||
raise ValueError("Db is required for an unrestricted system")
|
||||
|
||||
if grid is not None:
|
||||
if type(grid) is np.ndarray:
|
||||
if grid.shape[0] != 3 and grid.shape[0] != 4:
|
||||
raise ValueError("The shape of grid should be (3, npoints) "
|
||||
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
|
||||
blocks, npoints, points_function = self.grid_to_blocks(grid)
|
||||
else:
|
||||
blocks, npoints, points_function = grid
|
||||
elif grid is None and Vpot is not None:
|
||||
nblocks = Vpot.nblocks()
|
||||
blocks = [Vpot.get_block(i) for i in range(nblocks)]
|
||||
npoints = Vpot.grid().npoints()
|
||||
points_function = Vpot.properties()[0]
|
||||
else:
|
||||
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
|
||||
|
||||
if self.ref == 1:
|
||||
orbitals_r = [np.zeros((npoints)) for i_orb in range(self.nbf)]
|
||||
points_function.set_pointers(Ca)
|
||||
Ca_np = Ca.np
|
||||
if self.ref == 2:
|
||||
orbitals_r = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
|
||||
points_function.set_pointers(Ca, Cb)
|
||||
Ca_np = Ca.np
|
||||
Cb_np = Cb.np
|
||||
|
||||
offset = 0
|
||||
for i_block in blocks:
|
||||
points_function.compute_points(i_block)
|
||||
b_points = i_block.npoints()
|
||||
offset += b_points
|
||||
lpos = np.array(i_block.functions_local_to_global())
|
||||
if len(lpos)==0:
|
||||
continue
|
||||
phi = np.array(points_function.basis_values()["PHI"])[:b_points, :lpos.shape[0]]
|
||||
|
||||
for i_orb in range(self.nbf):
|
||||
Ca_local = Ca_np[lpos, i_orb]
|
||||
if self.ref == 1:
|
||||
orbitals_r[i_orb][offset - b_points : offset] = contract('m, pm -> p', Ca_local, phi)
|
||||
else:
|
||||
Cb_local = Cb_np[lpos, i_orb]
|
||||
orbitals_r[i_orb][offset - b_points : offset,0] = contract('m, pm -> p', Ca_local, phi)
|
||||
orbitals_r[i_orb][offset - b_points : offset,1] = contract('m, pm -> p', Cb_local, phi)
|
||||
|
||||
|
||||
|
||||
|
||||
return orbitals_r
|
||||
|
||||
def on_grid_esp(self, Da=None, Db=None, grid=None, Vpot=None, wfn=None):
|
||||
|
||||
"""
|
||||
Generates EXTERNAL/ESP/HARTREE and Fermi Amaldi Potential on given grid
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Da,Db: np.ndarray, opt, shape (nbf, nbf)
|
||||
The electron density in the denominator of Hartee potential. If None, the original density matrix
|
||||
will be used.
|
||||
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
|
||||
grid where density will be computed.
|
||||
Vpot: psi4.core.VBase
|
||||
Vpotential object with info about grid.
|
||||
Provides DFT spherical grid. Only comes to play if no grid is given.
|
||||
|
||||
Returns
|
||||
-------
|
||||
vext, hartree, esp, v_fa: np.ndarray
|
||||
External, Hartree, ESP, and Fermi Amaldi potential on the given grid
|
||||
Shape: (npoints, )
|
||||
"""
|
||||
|
||||
if wfn is None:
|
||||
wfn = self.wfn
|
||||
|
||||
if Da is not None or Db is not None:
|
||||
Da_temp = np.copy(self.wfn.Da().np)
|
||||
Db_temp = np.copy(self.wfn.Db().np)
|
||||
if Da is not None:
|
||||
wfn.Da().np[:] = Da
|
||||
if Db is not None:
|
||||
wfn.Db().np[:] = Db
|
||||
|
||||
nthreads = psi4.get_num_threads()
|
||||
psi4.set_num_threads(1)
|
||||
|
||||
if grid is not None:
|
||||
if type(grid) is np.ndarray:
|
||||
blocks, npoints, points_function = self.grid_to_blocks(grid)
|
||||
else:
|
||||
blocks, npoints, points_function = grid
|
||||
elif grid is None and Vpot is not None:
|
||||
nblocks = Vpot.nblocks()
|
||||
blocks = [Vpot.get_block(i) for i in range(nblocks)]
|
||||
npoints = Vpot.grid().npoints()
|
||||
else:
|
||||
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
|
||||
|
||||
#Initialize Arrays
|
||||
vext = np.zeros(npoints)
|
||||
esp = np.zeros(npoints)
|
||||
|
||||
#Get Atomic Information
|
||||
mol_dict = self.mol.to_schema(dtype='psi4')
|
||||
natoms = len(mol_dict["elem"])
|
||||
indx = [i for i in range(natoms) if self.mol.charge(i) != 0.0]
|
||||
natoms = len(indx)
|
||||
#Atomic numbers and Atomic positions
|
||||
zs = [mol_dict["elez"][i] for i in indx]
|
||||
rs = [self.mol.geometry().np[i] for i in indx]
|
||||
|
||||
esp_wfn = psi4.core.ESPPropCalc(wfn)
|
||||
|
||||
#Loop Through blocks
|
||||
offset = 0
|
||||
with np.errstate(divide='ignore'):
|
||||
for i_block in blocks:
|
||||
b_points = i_block.npoints()
|
||||
offset += b_points
|
||||
x = i_block.x().np
|
||||
y = i_block.y().np
|
||||
z = i_block.z().np
|
||||
|
||||
#EXTERNAL
|
||||
for atom in range(natoms):
|
||||
r = np.sqrt((x-rs[atom][0])**2 + (y-rs[atom][1])**2 + (z-rs[atom][2])**2)
|
||||
vext_temp = - 1.0 * zs[atom] / r
|
||||
vext_temp[np.isinf(vext_temp)] = 0.0
|
||||
vext[offset - b_points : offset] += vext_temp
|
||||
#ESP
|
||||
xyz = np.concatenate((x[:,None],y[:,None],z[:,None]), axis=1)
|
||||
grid_block = psi4.core.Matrix.from_array(xyz)
|
||||
esp[offset - b_points : offset] = esp_wfn.compute_esp_over_grid_in_memory(grid_block).np
|
||||
|
||||
#Hartree
|
||||
hartree = - 1.0 * (vext + esp)
|
||||
v_fa = (1 - 1.0 / (self.nalpha + self.nbeta)) * hartree
|
||||
|
||||
if Da is not None:
|
||||
wfn.Da().np[:] = Da_temp
|
||||
if Db is not None:
|
||||
wfn.Db().np[:] = Db_temp
|
||||
psi4.set_num_threads(nthreads)
|
||||
|
||||
return vext, hartree, v_fa, esp
|
||||
|
||||
def on_grid_vxc(self, func_id=1, grid=None, Da=None, Db=None,
|
||||
Vpot=None):
|
||||
"""
|
||||
Generates Vxc given grid
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Da, Db: np.ndarray
|
||||
Alpha, Beta densities. Shape: (num_ao_basis, num_ao_basis)
|
||||
func_id: int
|
||||
Functional ID associated with Density Functional Approximationl.
|
||||
Full list of functionals: https://www.tddft.org/programs/libxc/functionals/
|
||||
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
|
||||
grid where density will be computed.
|
||||
Vpot: psi4.core.VBase
|
||||
Vpotential object with info about grid.
|
||||
Provides DFT spherical grid. Only comes to play if no grid is given.
|
||||
|
||||
Returns
|
||||
-------
|
||||
VXC: np.ndarray
|
||||
Exchange correlation potential on the given grid
|
||||
Shape: (npoints, )
|
||||
|
||||
"""
|
||||
|
||||
local_functionals = [1,546,549,532,692,641,552,287,307,578,5,24,4,579,308,289,551,
|
||||
22,23,14,11,574,573,554,5900,12,13,25,9,10,27,3,684,683,17,7,
|
||||
28,29,30,31,8,317,2,6,536,537,538,318,577,259,547,548,20,599,43,
|
||||
51,580,50,550
|
||||
]
|
||||
|
||||
if func_id not in local_functionals:
|
||||
raise ValueError("Only LDA fucntionals are supported on the grid")
|
||||
|
||||
if Da is None:
|
||||
Da = self.Dt[0]
|
||||
if Db is None:
|
||||
Db = self.Dt[0]
|
||||
|
||||
if grid is not None:
|
||||
if type(grid) is np.ndarray:
|
||||
blocks, npoints, points_function = self.grid_to_blocks(grid)
|
||||
else:
|
||||
blocks, npoints, points_function = grid
|
||||
density = self.on_grid_density(Da=Da, Db=Db, grid=grid)
|
||||
elif grid is None and Vpot is not None:
|
||||
nblocks = Vpot.nblocks()
|
||||
blocks = [Vpot.get_block(i) for i in range(nblocks)]
|
||||
npoints = Vpot.grid().npoints()
|
||||
density = self.on_grid_density(Da=Da, Db=Db, Vpot=Vpot)
|
||||
else:
|
||||
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
|
||||
|
||||
vxc = np.zeros((npoints, self.ref))
|
||||
ingredients = {}
|
||||
offset = 0
|
||||
for i_block in blocks:
|
||||
b_points = i_block.npoints()
|
||||
offset += b_points
|
||||
if self.ref == 1:
|
||||
ingredients["rho"] = density[offset - b_points : offset]
|
||||
else:
|
||||
ingredients["rho"] = density[offset - b_points : offset, :]
|
||||
|
||||
if self.ref == 1:
|
||||
functional = Functional(func_id, 1)
|
||||
else:
|
||||
functional = Functional(func_id, 2)
|
||||
xc_dictionary = functional.compute(ingredients)
|
||||
vxc[offset - b_points : offset, :] = xc_dictionary['vrho']
|
||||
|
||||
return np.squeeze(vxc)
|
||||
|
||||
def on_grid_lap_phi(self,
|
||||
Ca=None,
|
||||
Cb=None,
|
||||
grid=None,
|
||||
Vpot=None):
|
||||
"""
|
||||
Generates laplacian of molecular orbitals
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Ca, Cb: np.ndarray
|
||||
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
|
||||
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
|
||||
grid where density will be computed.
|
||||
Vpot: psi4.core.VBase
|
||||
Vpotential object with info about grid.
|
||||
Provides DFT spherical grid. Only comes to play if no grid is given.
|
||||
|
||||
Returns
|
||||
-------
|
||||
lap_phi: List[np.ndarray]. Where array is of shape (npoints, ref)
|
||||
Laplacian of molecular orbitals on the grid
|
||||
"""
|
||||
|
||||
if Ca is None and Cb is None:
|
||||
Ca = psi4.core.Matrix.from_array(self.Ca)
|
||||
Cb = psi4.core.Matrix.from_array(self.Cb)
|
||||
else:
|
||||
Ca = psi4.core.Matrix.from_array(Ca)
|
||||
Cb = psi4.core.Matrix.from_array(Cb)
|
||||
|
||||
if self.ref == 2 and Cb is None:
|
||||
raise ValueError("Db is required for an unrestricted system")
|
||||
|
||||
if grid is not None:
|
||||
if type(grid) is np.ndarray:
|
||||
if grid.shape[0] != 3 and grid.shape[0] != 4:
|
||||
raise ValueError("The shape of grid should be (3, npoints) "
|
||||
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
|
||||
blocks, npoints, points_function = self.grid_to_blocks(grid)
|
||||
else:
|
||||
blocks, npoints, points_function = grid
|
||||
elif grid is None and Vpot is not None:
|
||||
nblocks = Vpot.nblocks()
|
||||
blocks = [Vpot.get_block(i) for i in range(nblocks)]
|
||||
npoints = Vpot.grid().npoints()
|
||||
points_function = Vpot.properties()[0]
|
||||
else:
|
||||
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
|
||||
|
||||
points_function.set_ansatz(2)
|
||||
|
||||
if self.ref == 1:
|
||||
points_function.set_pointers(Ca)
|
||||
lap_phi = [np.zeros((npoints)) for i_orb in range(self.nbf)]
|
||||
else:
|
||||
points_function.set_pointers(Ca, Cb)
|
||||
lap_phi = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
|
||||
|
||||
offset = 0
|
||||
for i_block in blocks:
|
||||
points_function.compute_points(i_block)
|
||||
b_points = i_block.npoints()
|
||||
offset += b_points
|
||||
lpos = np.array(i_block.functions_local_to_global())
|
||||
if len(lpos)==0:
|
||||
continue
|
||||
|
||||
#Obtain subset of phi_@@ matrices
|
||||
lx = np.array(points_function.basis_values()["PHI_XX"])[:b_points, :lpos.shape[0]]
|
||||
ly = np.array(points_function.basis_values()["PHI_YY"])[:b_points, :lpos.shape[0]]
|
||||
lz = np.array(points_function.basis_values()["PHI_ZZ"])[:b_points, :lpos.shape[0]]
|
||||
|
||||
for i_orb in range(self.nbf):
|
||||
Ca_local = Ca.np[lpos, i_orb][:,None]
|
||||
|
||||
if self.ref ==1:
|
||||
lap_phi[i_orb][offset - b_points : offset] += ((lx + ly + lz) @ Ca_local)[:,0]
|
||||
else:
|
||||
Cb_local = Cb.np[lpos, i_orb][:,None]
|
||||
lap_phi[i_orb][offset - b_points : offset, 0] += ((lx + ly + lz) @ Ca_local)[:,0]
|
||||
lap_phi[i_orb][offset - b_points : offset, 1] += ((lx + ly + lz) @ Cb_local)[:,0]
|
||||
|
||||
return lap_phi
|
||||
|
||||
def on_grid_grad_phi(self,
|
||||
Ca=None,
|
||||
Cb=None,
|
||||
grid=None,
|
||||
Vpot=None):
|
||||
"""
|
||||
Generates laplacian of molecular orbitals
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Ca, Cb: np.ndarray
|
||||
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
|
||||
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
|
||||
grid where density will be computed.
|
||||
Vpot: psi4.core.VBase
|
||||
Vpotential object with info about grid.
|
||||
Provides DFT spherical grid. Only comes to play if no grid is given.
|
||||
|
||||
Returns
|
||||
-------
|
||||
grad_phi: List[np.ndarray]. Where array is of shape (npoints, ref)
|
||||
Gradient of molecular orbitals on the grid
|
||||
"""
|
||||
|
||||
if Ca is None and Cb is None:
|
||||
Ca = psi4.core.Matrix.from_array(self.Ca)
|
||||
Cb = psi4.core.Matrix.from_array(self.Cb)
|
||||
else:
|
||||
Ca = psi4.core.Matrix.from_array(Ca)
|
||||
Cb = psi4.core.Matrix.from_array(Cb)
|
||||
|
||||
if self.ref == 2 and Cb is None:
|
||||
raise ValueError("Db is required for an unrestricted system")
|
||||
|
||||
if grid is not None:
|
||||
if type(grid) is np.ndarray:
|
||||
if grid.shape[0] != 3 and grid.shape[0] != 4:
|
||||
raise ValueError("The shape of grid should be (3, npoints) "
|
||||
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
|
||||
blocks, npoints, points_function = self.grid_to_blocks(grid)
|
||||
else:
|
||||
blocks, npoints, points_function = grid
|
||||
elif grid is None and Vpot is not None:
|
||||
nblocks = Vpot.nblocks()
|
||||
blocks = [Vpot.get_block(i) for i in range(nblocks)]
|
||||
npoints = Vpot.grid().npoints()
|
||||
points_function = Vpot.properties()[0]
|
||||
else:
|
||||
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
|
||||
|
||||
points_function.set_ansatz(2)
|
||||
|
||||
if self.ref == 1:
|
||||
points_function.set_pointers(Ca)
|
||||
grad_phi = [np.zeros((npoints)) for i_orb in range(self.nbf)]
|
||||
else:
|
||||
points_function.set_pointers(Ca, Cb)
|
||||
grad_phi = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
|
||||
|
||||
offset = 0
|
||||
for i_block in blocks:
|
||||
points_function.compute_points(i_block)
|
||||
b_points = i_block.npoints()
|
||||
offset += b_points
|
||||
lpos = np.array(i_block.functions_local_to_global())
|
||||
if len(lpos)==0:
|
||||
continue
|
||||
|
||||
#Obtain subset of phi_@ matrix
|
||||
gx = np.array(points_function.basis_values()["PHI_X"])[:b_points, :lpos.shape[0]]
|
||||
gy = np.array(points_function.basis_values()["PHI_Y"])[:b_points, :lpos.shape[0]]
|
||||
gz = np.array(points_function.basis_values()["PHI_Z"])[:b_points, :lpos.shape[0]]
|
||||
|
||||
for i_orb in range(self.nbf):
|
||||
Ca_local = Ca.np[lpos, i_orb][:,None]
|
||||
if self.ref == 1:
|
||||
grad_phi[i_orb][offset - b_points : offset] += ((gx + gy + gz) @ Ca_local)[:,0]
|
||||
if self.ref == 2:
|
||||
Cb_local = Cb.np[lpos, i_orb][:,None]
|
||||
grad_phi[i_orb][offset - b_points : offset, 0] += ((gx + gy + gz) @ Ca_local)[:,0]
|
||||
grad_phi[i_orb][offset - b_points : offset, 1] += ((gx + gy + gz) @ Cb_local)[:,0]
|
||||
|
||||
return grad_phi
|
||||
|
||||
def dft_grid_to_fock(self, value, Vpot):
|
||||
"""For value on DFT spherical grid, Fock matrix is returned.
|
||||
VFock_ij = \int dx \phi_i(x) \phi_j(x) value(x)
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
value: np.ndarray of shape (npoint, ).
|
||||
|
||||
Vpot:psi4.core.VBase
|
||||
Vpotential object with info about grid.
|
||||
Provides DFT spherical grid. Only comes to play if no grid is given.
|
||||
|
||||
Returns:
|
||||
---------
|
||||
VFock: np.ndarray of shape (nbasis, nbasis)
|
||||
"""
|
||||
|
||||
VFock = np.zeros((self.nbf, self.nbf))
|
||||
points_func = Vpot.properties()[0]
|
||||
|
||||
i = 0
|
||||
# Loop over the blocks
|
||||
for b in range(Vpot.nblocks()):
|
||||
# Obtain block information
|
||||
block = Vpot.get_block(b)
|
||||
points_func.compute_points(block)
|
||||
npoints = block.npoints()
|
||||
lpos = np.array(block.functions_local_to_global())
|
||||
if len(lpos) == 0:
|
||||
i += npoints
|
||||
continue
|
||||
# Obtain the grid weight
|
||||
w = np.array(block.w())
|
||||
|
||||
# Compute phi!
|
||||
phi = np.array(points_func.basis_values()["PHI"])[:npoints, :lpos.shape[0]]
|
||||
|
||||
Vtmp = np.einsum('pb,p,p,pa->ab', phi, value[i:i+npoints], w, phi, optimize=True)
|
||||
|
||||
# Add the temporary back to the larger array by indexing, ensure it is symmetric
|
||||
VFock[(lpos[:, None], lpos)] += 0.5 * (Vtmp + Vtmp.T)
|
||||
|
||||
i += npoints
|
||||
assert i == value.shape[0], "Did not run through all the points. %i %i" %(i, value.shape[0])
|
||||
return VFock
|
||||
|
||||
#Miscellaneous
|
||||
def get_basis_set_correction(self, grid):
|
||||
return basis_set_correction(self, grid)
|
542
n2v.patched/inverter.py
Executable file
542
n2v.patched/inverter.py
Executable file
|
@ -0,0 +1,542 @@
|
|||
"""
|
||||
Inverter.py
|
||||
"""
|
||||
from warnings import warn
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
from opt_einsum import contract
|
||||
|
||||
from .methods.zmp import ZMP
|
||||
from .methods.wuyang import WuYang
|
||||
from .methods.pdeco import PDECO
|
||||
from .methods.oucarter import OC
|
||||
from .methods.mrks import MRKS
|
||||
from .methods.direct import Direct
|
||||
|
||||
#Grider was imported by Ehsan
|
||||
from .grid.grider import Grider
|
||||
|
||||
@dataclass
|
||||
class V:
|
||||
"""Stores Potentials on AO"""
|
||||
T : np.ndarray
|
||||
|
||||
class E:
|
||||
"""Stores Energies"""
|
||||
|
||||
# Grider was added by Ehsan
|
||||
class Inverter(Direct, ZMP, WuYang, PDECO, OC, MRKS, Grider):
|
||||
"""
|
||||
Attributes:
|
||||
----------
|
||||
|
||||
mol : Engine.molecule
|
||||
Molecule class of engine used
|
||||
basis : Engine.basis
|
||||
Basis class of engine used
|
||||
basis_str : str
|
||||
Basis set
|
||||
nbf : int
|
||||
Number of basis functions for main calculation
|
||||
nalpha : int
|
||||
Number of alpha electrons
|
||||
nbeta : int
|
||||
Number of beta electrons
|
||||
ref : {1,2}
|
||||
Reference calculation
|
||||
1 -> Restricted
|
||||
2 -> Unrestricted
|
||||
Dt : List
|
||||
List of np.ndarray for target density matrices (on AO).
|
||||
ct : List
|
||||
List of np.ndarray for input occupied orbitals. This might not be correct for post-HartreeFock methods.
|
||||
pbs_str: string
|
||||
name of Potential basis set
|
||||
pbs : Engine.basis
|
||||
Basis class for Potential basis set of the engine used.
|
||||
npbs : int
|
||||
the length of pbs
|
||||
v_pbs : np.ndarray shape (npbs, ) for ref==1 and (2*npbs, ) for ref==2.
|
||||
potential vector on the Potential Baiss Set.
|
||||
If the potential is not represented on the basis set, this should
|
||||
remain 0. It will be initialized to a 0 array. One can set this
|
||||
value for initial guesses before Wu-Yang method (WY) or PDE-Constrained
|
||||
Optimization method (PDE-CO). For example, if PDE-CO is ran after
|
||||
a WY calculation, the initial for PDE-CO will be the result of WY
|
||||
if v_pbs is not zeroed.
|
||||
S2 : np.ndarray
|
||||
The ao overlap matrix (i.e. S matrix)
|
||||
S3 : np.ndarray
|
||||
The three ao overlap matrix (ao, ao, pbs)
|
||||
S4 : np.ndarray
|
||||
The four ao overlap matrix, the size should be (ao, ao, ao, ao)
|
||||
jk : Engine.jk
|
||||
Engine jk object.
|
||||
T : np.ndarray
|
||||
kinetic matrix on ao
|
||||
V : np.ndarray
|
||||
external potential matrix on ao
|
||||
T_pbs: np.ndarray
|
||||
kinetic matrix on pbs. Useful for regularization.
|
||||
guide_potential_components: list of string
|
||||
guide potential components name
|
||||
va, vb: np.ndarray of shape (nbasis, nbasis)
|
||||
guide potential Fock matrix.
|
||||
"""
|
||||
|
||||
def __init__( self, engine='psi4' ):
|
||||
engine = 'psi4'
|
||||
self.eng_str = engine.lower()
|
||||
if engine.lower() == 'psi4':
|
||||
from .engines import Psi4Engine
|
||||
self.eng = Psi4Engine()
|
||||
elif engine.lower() == 'pyscf':
|
||||
from .engines import PySCFEngine
|
||||
self.eng = PySCFEngine()
|
||||
else:
|
||||
raise ValueError("Engine name is incorrect. The availiable engines are: {psi4, pyscf}")
|
||||
|
||||
def __repr__( self ):
|
||||
return "n2v.Inverter"
|
||||
|
||||
def set_system( self, molecule, basis, ref=1, pbs='same' , **kwargs):
|
||||
"""
|
||||
Stores relevant information and intitializes Engine
|
||||
|
||||
Parameters
|
||||
----------
|
||||
molecule: Engine.molecule
|
||||
Molecule object of selected engine
|
||||
basis: str
|
||||
Basis set of the main calculation
|
||||
ref: int
|
||||
reference for system. Restricted -> 1
|
||||
Unrestricted -> 2
|
||||
pbs: str, default='same'
|
||||
Basis set for the potential
|
||||
**kwargs:
|
||||
Optional Parameters for different Engiens
|
||||
Psi4 Engine:
|
||||
wfn : psi4.core.{RHF, UHF, RKS, UKS, Wavefunction, CCWavefuncion...}
|
||||
Psi4 wavefunction object
|
||||
PySCF Engine:
|
||||
None
|
||||
|
||||
"""
|
||||
# Communicate TO engine
|
||||
|
||||
self.eng.set_system(molecule, basis, ref, pbs, **kwargs)
|
||||
self.ref = ref
|
||||
|
||||
#added by Ehsan
|
||||
self.basis = basis
|
||||
|
||||
#added by Ehsan
|
||||
self.molecule = molecule
|
||||
|
||||
self.nalpha = self.eng.nalpha
|
||||
self.nbeta = self.eng.nbeta
|
||||
|
||||
# Initialize ecompasses everything the engine builds with basis set
|
||||
self.eng.initialize()
|
||||
self.set_basis_matrices()
|
||||
|
||||
# Receive FROM engine
|
||||
self.nbf = self.eng.nbf
|
||||
self.npbs = self.eng.npbs
|
||||
self.v_pbs = np.zeros( (self.npbs) ) if self.ref == 1 \
|
||||
else np.zeros( 2 * self.npbs )
|
||||
|
||||
@classmethod
|
||||
def from_wfn( self, wfn, pbs='same' ):
|
||||
"""
|
||||
Generates Inverter directly from wavefunction.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
wfn: Psi4.Core.{RHF, RKS, ROHF, CCWavefunction, UHF, UKS, CUHF}
|
||||
Wavefunction Object
|
||||
Returns
|
||||
-------
|
||||
inv: n2v.Inverter
|
||||
Inverter Object.
|
||||
"""
|
||||
from .engines import Psi4Engine
|
||||
inv = self( engine='psi4' )
|
||||
inv.eng = Psi4Engine()
|
||||
ref = 1 if wfn.to_file()['boolean']['same_a_b_dens'] else 2
|
||||
inv.set_system( wfn.molecule(), wfn.basisset().name(), pbs=pbs, ref=ref, wfn=wfn )
|
||||
# done by Ehsan
|
||||
#inv.Dt = [ np.array(wfn.Da()), np.array(wfn.Db()) ]
|
||||
self.Dt = [ np.array(wfn.Da()), np.array(wfn.Db()) ]
|
||||
|
||||
# done by Ehsan
|
||||
#inv.ct = [ np.array(wfn.Ca_subset("AO", "OCC")), np.array(wfn.Cb_subset("AO", "OCC")) ]
|
||||
# ct contains matrices of occupied orbitals alpah and betta (n x m)
|
||||
self.ct = [ np.array(wfn.Ca_subset("AO", "OCC")), np.array(wfn.Cb_subset("AO", "OCC")) ]
|
||||
|
||||
inv.et = [ np.array(wfn.epsilon_a_subset("AO", "OCC")), np.array(wfn.epsilon_b_subset("AO", "OCC")) ]
|
||||
inv.eng_str = 'psi4'
|
||||
inv.eng.wfn = wfn
|
||||
|
||||
return inv
|
||||
|
||||
def set_basis_matrices( self ):
|
||||
"""
|
||||
Generate basis dependant matrices
|
||||
"""
|
||||
self.T = self.eng.get_T()
|
||||
self.V = self.eng.get_V()
|
||||
self.A = self.eng.get_A()
|
||||
self.S2 = self.eng.get_S()
|
||||
self.S3 = self.eng.get_S3()
|
||||
|
||||
if self.eng.pbs_str != 'same':
|
||||
self.T_pbs = self.eng.get_Tpbas()
|
||||
|
||||
self.S4 = None
|
||||
|
||||
def compute_hartree( self, Cocc_a, Cocc_b ):
|
||||
"""
|
||||
Computes Hartree Potential on AO basis set.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
Cocc_a, Cocc_b: np.ndarray (nbf, nbf)
|
||||
Occupied orbitals in ao basis
|
||||
|
||||
Returns
|
||||
-------
|
||||
J: List of np.ndarray
|
||||
Hartree potential due to density from Cocc_a and Cocc_b
|
||||
"""
|
||||
return self.eng.compute_hartree(Cocc_a, Cocc_b )
|
||||
|
||||
def diagonalize( self, matrix, ndocc ):
|
||||
"""
|
||||
Diagonalizes Fock Matrix
|
||||
|
||||
Parameters
|
||||
----------
|
||||
marrix: np.ndarray
|
||||
Matrix to be diagonalized
|
||||
ndocc: int
|
||||
Number of occupied orbitals
|
||||
|
||||
Returns
|
||||
-------
|
||||
C: np.ndarray
|
||||
Orbital Matrix
|
||||
Cocc: np.ndarray
|
||||
Occupied Orbital Matrix
|
||||
D: np.ndarray
|
||||
Density Matrix
|
||||
eigves: np.ndarray
|
||||
Eigenvalues
|
||||
"""
|
||||
|
||||
# np.linalg.eigh() gives eigenvalues and eigenvectors for a symmetric matrix of choice
|
||||
Fp = self.A.dot(matrix).dot(self.A)
|
||||
# eigvecs must be eigenvalues or energies here!
|
||||
eigvecs, Cp = np.linalg.eigh(Fp)
|
||||
C = self.A.dot(Cp)
|
||||
Cocc = C[:, :ndocc]
|
||||
# contract converts pi and qi to pq . here two matrices with n x m dimension
|
||||
#are converted to one matrix with n x n shape,
|
||||
#In fact it gives the product of Cocc matrix and its transpose matrix
|
||||
D = contract('pi,qi->pq', Cocc, Cocc)
|
||||
|
||||
|
||||
return C, Cocc, D, eigvecs
|
||||
|
||||
def diagonalize_with_potential_vFock(self, v=None):
|
||||
"""
|
||||
Diagonalize Fock matrix with additional external potential
|
||||
Stores values in object.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
v: np.ndarray
|
||||
Additional external potential to be added to hamiltonian along with:
|
||||
Kinetic_nm
|
||||
External_nm
|
||||
Guide_Potential_nm
|
||||
"""
|
||||
|
||||
if v is None:
|
||||
fock_a = self.V + self.T + self.va
|
||||
else:
|
||||
if self.ref == 1:
|
||||
fock_a = self.V + self.T + self.va + v
|
||||
else:
|
||||
valpha, vbeta = v
|
||||
fock_a = self.V + self.T + self.va + valpha
|
||||
fock_b = self.V + self.T + self.vb + vbeta
|
||||
|
||||
|
||||
self.Ca, self.Coca, self.Da, self.eigvecs_a = self.diagonalize( fock_a, self.nalpha )
|
||||
|
||||
if self.ref == 1:
|
||||
self.Cb, self.Cocb, self.Db, self.eigvecs_b = self.Ca.copy(), self.Coca.copy(), self.Da.copy(), self.eigvecs_a.copy()
|
||||
else:
|
||||
self.Cb, self.Cocb, self.Db, self.eigvecs_b = self.diagonalize( fock_b, self.nbeta )
|
||||
|
||||
# Actual Methods
|
||||
def generate_components(self, guide_components, **keywords):
|
||||
"""
|
||||
Generates exact potential components to be added to
|
||||
the Hamiltonian to aide in the inversion procedure.
|
||||
Parameters:
|
||||
-----------
|
||||
guide_potential_components: list
|
||||
Components added as to guide inversion.
|
||||
Can be chosen from ["hartree", "fermi_amandi", "svwn"]
|
||||
"""
|
||||
|
||||
self.guide_components = guide_components
|
||||
self.va = np.zeros( (self.nbf, self.nbf) )
|
||||
self.vb = np.zeros( (self.nbf, self.nbf) )
|
||||
self.J0 = self.compute_hartree(self.ct[0], self.ct[1])
|
||||
N = self.nalpha + self.nbeta
|
||||
|
||||
if self.eng_str == 'psi4':
|
||||
J0_NO = self.eng.hartree_NO(self.Dt[0])
|
||||
self.J0 = J0_NO if J0_NO is not None else self.J0
|
||||
|
||||
if guide_components == 'none':
|
||||
warn("No guide potential was provided. Convergence may not be achieved")
|
||||
elif guide_components == 'hartree':
|
||||
self.va += self.J0[0] + self.J0[1]
|
||||
self.vb += self.J0[0] + self.J0[1]
|
||||
elif guide_components == 'fermi_amaldi':
|
||||
v_fa = (1-1/N) * (self.J0[0] + self.J0[1])
|
||||
self.va += v_fa
|
||||
self.vb += v_fa
|
||||
else:
|
||||
raise ValueError("Guide component not recognized")
|
||||
|
||||
def invert(self, method,
|
||||
guide_components = 'hartree',
|
||||
opt_max_iter = 50,
|
||||
**keywords):
|
||||
"""
|
||||
Handler to all available inversion methods
|
||||
Parameters
|
||||
----------
|
||||
method: str
|
||||
Method used to invert density.
|
||||
Can be chosen from {wuyang, zmp, mrks, oc}.
|
||||
See documentation below for each method.
|
||||
guide_components: list, opt
|
||||
Components added as to guide inversion.
|
||||
Can be chosen from {"fermi_amandi", "svwn"}
|
||||
Default: ["fermi_amaldi"]
|
||||
opt_max_iter: int, opt
|
||||
Maximum number of iterations inside the chosen inversion.
|
||||
Default: 50
|
||||
direct
|
||||
------
|
||||
Direct inversion of a set of Kohn-Sham equations.
|
||||
$$v_{xc}(r) = \frac{1}{n(r)} \sum_i^N [\phi_i^{*} (r) \nabla^2 \phi_i(r) + \varepsilon_i | \phi_i(r)|^2] $$
|
||||
Parameters:
|
||||
-----------
|
||||
grid: np.ndarray, opt
|
||||
Grid where result will be expressed in.
|
||||
If not provided, dft grid will be used instead.
|
||||
|
||||
wuyang
|
||||
------
|
||||
the Wu-Yang method:
|
||||
The Journal of chemical physics 118.6 (2003): 2498-2509.
|
||||
Parameters:
|
||||
----------
|
||||
opt_max_iter: int
|
||||
maximum iteration
|
||||
opt_method: string, opt
|
||||
Method for scipy optimizer
|
||||
Currently only used by wuyang and pdeco method.
|
||||
Defaul: 'trust-krylov'
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
|
||||
reg : float, opt
|
||||
Regularization constant for Wuyant Inversion.
|
||||
Default: None -> No regularization is added.
|
||||
Becomes attribute of inverter -> inverter.lambda_reg
|
||||
tol: float
|
||||
tol for scipy.optimize.minimize
|
||||
gtol: float
|
||||
gtol for scipy.optimize.minimize: the gradient norm for
|
||||
convergence
|
||||
opt: dict
|
||||
options for scipy.optimize.minimize
|
||||
Notice that opt has lower priorities than opt_max_iter and gtol.
|
||||
return:
|
||||
the result are stored in self.v_pbs
|
||||
|
||||
zmp
|
||||
---
|
||||
The Zhao-Morrison-Parr Method:
|
||||
Phys. Rev. A 50, 2138
|
||||
Parameters:
|
||||
----------
|
||||
lambda_list: list
|
||||
List of Lamda parameters used as a coefficient for Hartree
|
||||
difference in SCF cycle.
|
||||
zmp_mixing: float, optional
|
||||
mixing \in [0,1]. How much of the new potential is added in.
|
||||
For example, zmp_mixing = 0 means the traditional ZMP, i.e. all the potentials from previous
|
||||
smaller lambda are ignored.
|
||||
Zmp_mixing = 1 means that all the potentials of previous lambdas are accumulated, the larger lambda
|
||||
potential are meant to fix the wrong/inaccurate region of the potential of the sum of the previous
|
||||
potentials instead of providing an entire new potentials.
|
||||
default: 1
|
||||
opt_max_iter: float
|
||||
Maximum number of iterations for scf cycle
|
||||
opt_tol: float
|
||||
Convergence criteria set for Density Difference and DIIS error.
|
||||
return:
|
||||
The result will be stored in self.proto_density_a and self.proto_density_b
|
||||
For zmp_mixing==1, restricted (ref==1):
|
||||
self.proto_density_a = \sum_i lambda_i * (Da_i - Dt[0]) - 1/N * (Dt[0])
|
||||
self.proto_density_b = \sum_i lambda_i * (Db_i - Dt[1]) - 1/N * (Dt[1]);
|
||||
unrestricted (ref==1):
|
||||
self.proto_density_a = \sum_i lambda_i * (Da_i - Dt[0]) - 1/N * (Dt[0] + Dt[1])
|
||||
self.proto_density_b = \sum_i lambda_i * (Db_i - Dt[1]) - 1/N * (Dt[0] + Dt[1]);
|
||||
For restricted (ref==1):
|
||||
vxc = \int dr' \frac{self.proto_density_a + self.proto_density_b}{|r-r'|}
|
||||
= 2 * \int dr' \frac{self.proto_density_a}{|r-r'|};
|
||||
for unrestricted (ref==2):
|
||||
vxc_up = \int dr' \frac{self.proto_density_a}{|r-r'|}
|
||||
vxc_down = \int dr' \frac{self.proto_density_b}{|r-r'|}.
|
||||
To get potential on grid, one needs to do
|
||||
vxc = self.on_grid_esp(Da=self.proto_density_a, Db=self.proto_density_b, grid=grid) for restricted;
|
||||
vxc_up = self.on_grid_esp(Da=self.proto_density_a, Db=np.zeros_like(self.proto_density_a),
|
||||
grid=grid) for unrestricted;
|
||||
mRKS
|
||||
----
|
||||
the modified Ryabinkin-Kohut-Staroverov method:
|
||||
Phys. Rev. Lett. 115, 083001
|
||||
J. Chem. Phys. 146, 084103p
|
||||
Parameters:
|
||||
-----------
|
||||
maxiter: int
|
||||
same as opt_max_iter
|
||||
vxc_grid: np.ndarray of shape (3, num_grid_points), opt
|
||||
When this is given, the final result will be represented
|
||||
v_tol: float, opt
|
||||
convergence criteria for vxc Fock matrices.
|
||||
default: 1e-4
|
||||
D_tol: float, opt
|
||||
convergence criteria for density matrices.
|
||||
default: 1e-7
|
||||
eig_tol: float, opt
|
||||
convergence criteria for occupied eigenvalue spectrum.
|
||||
default: 1e-4
|
||||
frac_old: float, opt
|
||||
Linear mixing parameter for current vxc and old vxc.
|
||||
If 0, no old vxc is mixed in.
|
||||
Should be in [0,1)
|
||||
default: 0.5.
|
||||
init: string or psi4.core.Wavefunction, opt
|
||||
Initial guess method.
|
||||
default: "SCAN"
|
||||
1) If None, input wfn info will be used as initial guess.
|
||||
2) If "continue" is given, then it will not initialize
|
||||
but use the densities and orbitals stored. Meaningly,
|
||||
one can run a quick WY calculation as the initial
|
||||
guess. This can also be used to user speficified
|
||||
initial guess by setting Da, Coca, eigvec_a.
|
||||
3) If it's not continue, it would be expecting a
|
||||
method name string that works for psi4. A separate psi4 calculation
|
||||
would be performed.
|
||||
sing: tuple of float of length 4, opt.
|
||||
Singularity parameter for _vxc_hole_quadrature()
|
||||
default: (1e-5, 1e-4, 1e-5, 1e-4)
|
||||
[0]: atol, [1]: atol1 for dft_spherical grid calculation.
|
||||
[2]: atol, [3]: atol1 for vxc_grid calculation.
|
||||
return:
|
||||
The result will be stored in self.grid.vxc
|
||||
oc
|
||||
--
|
||||
Ou-Carter method
|
||||
J. Chem. Theory Comput. 2018, 14, 5680−5689
|
||||
Parameters:
|
||||
-----------
|
||||
maxiter: int
|
||||
same as opt_max_iter
|
||||
vxc_grid: np.ndarray of shape (3, num_grid_points)
|
||||
The final result will be represented on this grid
|
||||
default: 1e-4
|
||||
D_tol: float, opt
|
||||
convergence criteria for density matrices.
|
||||
default: 1e-7
|
||||
eig_tol: float, opt
|
||||
convergence criteria for occupied eigenvalue spectrum.
|
||||
default: 1e-4
|
||||
frac_old: float, opt
|
||||
Linear mixing parameter for current vxc and old vxc.
|
||||
If 0, no old vxc is mixed in.
|
||||
Should be in [0,1)
|
||||
default: 0.5.
|
||||
init: string, opt
|
||||
Initial guess method.
|
||||
default: "SCAN"
|
||||
1) If None, input wfn info will be used as initial guess.
|
||||
2) If "continue" is given, then it will not initialize
|
||||
but use the densities and orbitals stored. Meaningly,
|
||||
one can run a quick WY calculation as the initial
|
||||
guess. This can also be used to user speficified
|
||||
initial guess by setting Da, Coca, eigvec_a.
|
||||
3) If it's not continue, it would be expecting a
|
||||
method name string that works for psi4. A separate psi4 calculation
|
||||
would be performed.
|
||||
wuyang
|
||||
pdeco
|
||||
-----
|
||||
the PDE-Constrained Optimization method:
|
||||
Int J Quantum Chem. 2018;118:e25425;
|
||||
Nat Commun 10, 4497 (2019).
|
||||
Parameters:
|
||||
----------
|
||||
opt_max_iter: int
|
||||
maximum iteration
|
||||
opt_method: string, opt
|
||||
Method for scipy optimizer
|
||||
Currently only used by wuyang and pdeco method.
|
||||
Defaul: 'L-BFGS-B'
|
||||
Options: ['L-BFGS-B', 'BFGS']
|
||||
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
|
||||
reg : float, opt
|
||||
Regularization constant for Wuyant Inversion.
|
||||
Default: None -> No regularization is added.
|
||||
Becomes attribute of inverter -> inverter.lambda_reg
|
||||
gtol: float
|
||||
gtol for scipy.optimize.minimize: the gradient norm for
|
||||
convergence
|
||||
opt: dict
|
||||
options for scipy.optimize.minimize
|
||||
Notice that opt has lower priorities than opt_max_iter and gtol.
|
||||
return:
|
||||
the result are stored in self.v_pbs
|
||||
"""
|
||||
|
||||
self.generate_components(guide_components)
|
||||
|
||||
if method.lower() == "direct":
|
||||
return self.direct_inversion(**keywords)
|
||||
elif method.lower() == "wuyang":
|
||||
self.wuyang(opt_max_iter, **keywords)
|
||||
elif method.lower() == "zmp":
|
||||
self.zmp(opt_max_iter, **keywords)
|
||||
elif method.lower() == "mrks":
|
||||
if self.eng_str == 'pyscf':
|
||||
raise ValueError("mRKS method not yet available with the PySCF engine. Try another method or another engine.")
|
||||
return self.mRKS(opt_max_iter, **keywords)
|
||||
elif method.lower() == 'oc':
|
||||
if self.eng_str == 'pyscf':
|
||||
raise ValueError("OuCarter method not yet available with the PySCF engine. Try another method or another engine.")
|
||||
return self.oucarter(opt_max_iter, **keywords)
|
||||
elif method.lower() == 'pdeco':
|
||||
return self.pdeco(opt_max_iter, **keywords)
|
||||
else:
|
||||
raise ValueError(f"Inversion method not available. Methods available: {['wuyang', 'zmp', 'mrks', 'oc', 'pdeco']}")
|
||||
|
394
n2v.patched/methods/zmp.py
Executable file
394
n2v.patched/methods/zmp.py
Executable file
|
@ -0,0 +1,394 @@
|
|||
"""
|
||||
zmp.py
|
||||
|
||||
Functions associated with zmp inversion
|
||||
"""
|
||||
|
||||
|
||||
import psi4
|
||||
psi4.core.be_quiet()
|
||||
import numpy as np
|
||||
from functools import reduce
|
||||
|
||||
|
||||
eps = np.finfo(float).eps
|
||||
|
||||
#added by Ehsan
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class ZMP():
|
||||
"""
|
||||
ZMP Class
|
||||
Performs ZMP optimization according to:
|
||||
|
||||
1) 'From electron densities to Kohn-Sham kinetic energies, orbital energies,
|
||||
exchange-correlation potentials, and exchange-correlation energies' by
|
||||
Zhao + Morrison + Parr.
|
||||
https://doi.org/10.1103/PhysRevA.50.2138
|
||||
"""
|
||||
def zmp(self,
|
||||
opt_max_iter=100,
|
||||
opt_tol= psi4.core.get_option("SCF", "D_CONVERGENCE"),
|
||||
lambda_list=[70],
|
||||
zmp_mixing = 1,
|
||||
print_scf = False,
|
||||
):
|
||||
|
||||
"""
|
||||
Performs ZMP optimization according to:
|
||||
|
||||
1) 'From electron densities to Kohn-Sham kinetic energies, orbital energies,
|
||||
exchange-correlation potentials, and exchange-correlation energies' by
|
||||
Zhao + Morrison + Parr.
|
||||
https://doi.org/10.1103/PhysRevA.50.2138
|
||||
|
||||
Additional DIIS algorithms obtained from:
|
||||
2) 'Psi4NumPy: An interactive quantum chemistry programming environment
|
||||
for reference implementations and rapid development.' by
|
||||
Daniel G.A. Smith and others.
|
||||
https://doi.org/10.1021/acs.jctc.8b00286
|
||||
|
||||
Functionals that drive the SCF procedure are obtained from:
|
||||
https://doi.org/10.1002/qua.26400
|
||||
|
||||
Parameters:
|
||||
-----------
|
||||
lambda_list: list
|
||||
List of Lamda parameters used as a coefficient for Hartree
|
||||
difference in SCF cycle.
|
||||
zmp_mixing: float, optional
|
||||
mixing \in [0,1]. How much of the new potential is added in.
|
||||
For example, zmp_mixing = 0 means the traditional ZMP, i.e. all the potentials from previous
|
||||
smaller lambda are ignored.
|
||||
Zmp_mixing = 1 means that all the potentials of previous lambdas are accumulated, the larger lambda
|
||||
potential are meant to fix the wrong/inaccurate region of the potential of the sum of the previous
|
||||
potentials instead of providing an entire new potentials.
|
||||
default: 1
|
||||
opt_max_iter: float
|
||||
Maximum number of iterations for scf cycle
|
||||
opt_tol: float
|
||||
Convergence criteria set for Density Difference and DIIS error.
|
||||
return:
|
||||
The result will be stored in self.proto_density_a and self.proto_density_b
|
||||
For zmp_mixing==1, restricted (ref==1):
|
||||
self.proto_density_a = \sum_i lambda_i * (Da_i - Dt[0]) - 1/N * (Dt[0])
|
||||
self.proto_density_b = \sum_i lambda_i * (Db_i - Dt[1]) - 1/N * (Dt[1]);
|
||||
unrestricted (ref==1):
|
||||
self.proto_density_a = \sum_i lambda_i * (Da_i - Dt[0]) - 1/N * (Dt[0] + Dt[1])
|
||||
self.proto_density_b = \sum_i lambda_i * (Db_i - Dt[1]) - 1/N * (Dt[0] + Dt[1]);
|
||||
For restricted (ref==1):
|
||||
vxc = \int dr' \frac{self.proto_density_a + self.proto_density_b}{|r-r'|}
|
||||
= 2 * \int dr' \frac{self.proto_density_a}{|r-r'|};
|
||||
for unrestricted (ref==2):
|
||||
vxc_up = \int dr' \frac{self.proto_density_a}{|r-r'|}
|
||||
vxc_down = \int dr' \frac{self.proto_density_b}{|r-r'|}.
|
||||
To get potential on grid, one needs to do
|
||||
vxc = self.on_grid_esp(Da=self.proto_density_a, Db=self.proto_density_b, grid=grid) for restricted;
|
||||
vxc_up = self.on_grid_esp(Da=self.proto_density_a, Db=np.zeros_like(self.proto_density_a),
|
||||
grid=grid) for unrestricted;
|
||||
"""
|
||||
self.diis_space = 100
|
||||
self.mixing = zmp_mixing
|
||||
|
||||
print("\nRunning ZMP:")
|
||||
self.zmp_scf(lambda_list, opt_max_iter, print_scf, D_conv=opt_tol)
|
||||
|
||||
def zmp_scf(self,
|
||||
lambda_list,
|
||||
maxiter,
|
||||
print_scf,
|
||||
D_conv):
|
||||
"""
|
||||
Performs scf cycle
|
||||
Parameters:
|
||||
zmp_functional: options the penalty term.
|
||||
But others are not currently working except for Hartree penalty (original ZMP).
|
||||
----------
|
||||
"""
|
||||
# Target density on grid
|
||||
if self.ref == 1:
|
||||
# density() is a method in the class Psi4Grider() in module psi4grider.py (added by Ehsan)
|
||||
D0 = self.eng.grid.density(Da=self.Dt[0])
|
||||
|
||||
|
||||
else:
|
||||
D0 = self.eng.grid.density(Da=self.Dt[0], Db=self.Dt[1])
|
||||
|
||||
# Initialize Stuff
|
||||
vc_previous_a = np.zeros((self.nbf, self.nbf))
|
||||
|
||||
vc_previous_b = np.zeros((self.nbf, self.nbf))
|
||||
self.Da = self.Dt[0]
|
||||
self.Db = self.Dt[1]
|
||||
Da = self.Dt[0]
|
||||
Db = self.Dt[1]
|
||||
Cocca = self.ct[0]
|
||||
#print("Cocca: ", Cocca, type(Cocca))
|
||||
Coccb = self.ct[1]
|
||||
|
||||
grid_diff_old = 1/np.finfo(float).eps
|
||||
|
||||
self.proto_density_a = np.zeros_like(Da)
|
||||
|
||||
self.proto_density_b = np.zeros_like(Db)
|
||||
|
||||
#-------------> Iterating over lambdas:
|
||||
Ddif = []
|
||||
L = []
|
||||
for lam_i in lambda_list:
|
||||
self.shift = 0.1 * lam_i
|
||||
D_old = self.Dt[0]
|
||||
|
||||
# Trial & Residual Vector Lists
|
||||
state_vectors_a, state_vectors_b = [], []
|
||||
error_vectors_a, error_vectors_b = [], []
|
||||
|
||||
for SCF_ITER in range(1,maxiter):
|
||||
|
||||
#-------------> Generate Fock Matrix:
|
||||
vc = self.generate_s_functional(lam_i,
|
||||
Cocca, Coccb,
|
||||
Da, Db)
|
||||
|
||||
#Equation 10 of Reference (1). Level shift.
|
||||
Fa = self.T + self.V + self.va + vc[0] + vc_previous_a
|
||||
Fa += (self.S2 - reduce(np.dot, (self.S2, Da, self.S2))) * self.shift
|
||||
#added by Ehsan: a function (np.dot : dot product) applies on an iterable (self.S2, Da, self.S2) and gives one output (a new matrix)
|
||||
|
||||
if self.ref == 2:
|
||||
Fb = self.T + self.V + self.vb + vc[1] + vc_previous_b
|
||||
Fb += (self.S2 - reduce(np.dot, (self.S2, Db, self.S2))) * self.shift
|
||||
|
||||
|
||||
#-------------> DIIS:
|
||||
if SCF_ITER > 1:
|
||||
#Construct the AO gradient
|
||||
# r = (A(FDS - SDF)A)_mu_nu
|
||||
# added by Ehsan (self.A: Inverse squared root of S matrix), grad_a is a matrix showing the gradients
|
||||
grad_a = self.A.dot(Fa.dot(Da).dot(self.S2) - self.S2.dot(Da).dot(Fa)).dot(self.A)
|
||||
grad_a[np.abs(grad_a) < eps] = 0.0
|
||||
|
||||
if SCF_ITER < self.diis_space:
|
||||
state_vectors_a.append(Fa.copy())
|
||||
error_vectors_a.append(grad_a.copy())
|
||||
|
||||
else:
|
||||
state_vectors_a.append(Fa.copy())
|
||||
error_vectors_a.append(grad_a.copy())
|
||||
del state_vectors_a[0]
|
||||
del error_vectors_a[0]
|
||||
|
||||
#Build inner product of error vectors
|
||||
#dimension of the DIIS subspace = Bdim (by Ehsan)
|
||||
Bdim = len(state_vectors_a)
|
||||
# one column and one row are added to the matrix to be fiiled with -1 (this is part of the DIIS prodecure)
|
||||
#np.empty: the elements of the array will initially contain whatever data was already in the memory allocated for the array
|
||||
Ba = np.empty((Bdim + 1, Bdim + 1))
|
||||
|
||||
# sets the last row and the last column of the matrix Ba to -1
|
||||
Ba[-1, :] = -1
|
||||
Ba[:, -1] = -1
|
||||
Ba[-1, -1] = 0
|
||||
|
||||
Bb = Ba.copy()
|
||||
|
||||
|
||||
for i in range(len(state_vectors_a)):
|
||||
for j in range(len(state_vectors_a)):
|
||||
# Ba[i,j] will be a number made of the sum of inner products of corresponding elements in matrices
|
||||
Ba[i,j] = np.einsum('ij,ij->', error_vectors_a[i], error_vectors_a[j])
|
||||
|
||||
|
||||
#Build almost zeros matrix to generate inverse.
|
||||
RHS = np.zeros(Bdim + 1)
|
||||
RHS[-1] = -1
|
||||
|
||||
|
||||
#Find coefficient matrix:
|
||||
|
||||
# x = np.linalg.solve(A, b) Solve the linear system A*x = b
|
||||
|
||||
Ca = np.linalg.solve(Ba, RHS.copy())
|
||||
|
||||
Ca[np.abs(Ca) < eps] = 0.0
|
||||
|
||||
#Generate new fock Matrix:
|
||||
Fa = np.zeros_like(Fa)
|
||||
# .shape[0] gives the number of rows in a 2D array
|
||||
for i in range(Ca.shape[0] - 1):
|
||||
Fa += Ca[i] * state_vectors_a[i]
|
||||
|
||||
#diis_error_a is the maximum error element in the last error vectors matrix
|
||||
diis_error_a = np.max(np.abs(error_vectors_a[-1]))
|
||||
if self.ref == 1:
|
||||
Fb = Fa.copy()
|
||||
diis_error = 2 * diis_error_a
|
||||
|
||||
else:
|
||||
grad_b = self.A.dot(Fb.dot(Db).dot(self.S2) - self.S2.dot(Db).dot(Fb)).dot(self.A)
|
||||
grad_b[np.abs(grad_b) < eps] = 0.0
|
||||
|
||||
if SCF_ITER < self.diis_space:
|
||||
state_vectors_b.append(Fb.copy())
|
||||
error_vectors_b.append(grad_b.copy())
|
||||
else:
|
||||
state_vectors_b.append(Fb.copy())
|
||||
error_vectors_b.append(grad_b.copy())
|
||||
del state_vectors_b[0]
|
||||
del error_vectors_b[0]
|
||||
|
||||
for i in range(len(state_vectors_b)):
|
||||
for j in range(len(state_vectors_b)):
|
||||
Bb[i,j] = np.einsum('ij,ij->', error_vectors_b[i], error_vectors_b[j])
|
||||
|
||||
diis_error_b = np.max(np.abs(error_vectors_b[-1]))
|
||||
diis_error = diis_error_a + diis_error_b
|
||||
|
||||
Cb = np.linalg.solve(Bb, RHS.copy())
|
||||
Cb[np.abs(Cb) < eps] = 0.0
|
||||
|
||||
Fb = np.zeros_like(Fb)
|
||||
for i in range(Cb.shape[0] - 1):
|
||||
Fb += Cb[i] * state_vectors_b[i]
|
||||
# for the first iteration the error is set to 1.0
|
||||
else:
|
||||
diis_error = 1.0
|
||||
|
||||
#-------------> Diagonalization | Check convergence:
|
||||
# diagonalize() method has been defined in inventer.py . the inputs are fock matrix and number of occupied orbitals
|
||||
# this is to find the new density matrix. Here the eigenfunction is solved to get eigenvalues and coefficients
|
||||
Ca, Cocca, Da, eigs_a = self.diagonalize(Fa, self.nalpha)
|
||||
# eigs_a is a one dimensioanl matrix (size = nbf) of eigenvalues or enrgies
|
||||
|
||||
if self.ref == 2:
|
||||
Cb, Coccb, Db, eigs_b = self.diagonalize(Fb, self.nbeta)
|
||||
else:
|
||||
Cb, Coccb, Db, eigs_b = Ca.copy(), Cocca.copy(), Da.copy(), eigs_a.copy()
|
||||
|
||||
#difference of the new and old density matrices
|
||||
ddm = D_old - Da
|
||||
D_old = Da
|
||||
# the maximum element in the differnce denstiy matrix is taken as the density error value
|
||||
derror = np.max(np.abs(ddm))
|
||||
|
||||
if print_scf:
|
||||
if np.mod(SCF_ITER,5) == 0.0:
|
||||
print(f"Iteration: {SCF_ITER:3d} | Self Convergence Error: {derror:10.5e} | DIIS Error: {diis_error:10.5e}")
|
||||
|
||||
#DIIS error may improve as fast as the D_conv. Relax the criteria an order of magnitude.
|
||||
if abs(derror) < D_conv and abs(diis_error) < D_conv*10:
|
||||
# here SCF convergence is reached
|
||||
break
|
||||
if SCF_ITER == maxiter - 1:
|
||||
raise ValueError("ZMP Error: Maximum Number of SCF cycles reached. Try different settings.")
|
||||
|
||||
if self.ref == 1:
|
||||
# map the current density on grid with n points depending on the size of basis set
|
||||
density_current = self.eng.grid.density(Da=Da)
|
||||
|
||||
else:
|
||||
density_current_a = self.eng.grid.density(Da=Da, Db=Db)
|
||||
#the difference between the current and exact density is evaluated on grid
|
||||
grid_diff = np.max(np.abs(D0 - density_current))
|
||||
if np.abs(grid_diff_old) < np.abs(grid_diff):
|
||||
# This is a greedy algorithm: if the density error stopped improving for this lambda, we will stop here.
|
||||
print(f"\nZMP halted at lambda={lam_i}. Density Error Stops Updating: old: {grid_diff_old}, current: {grid_diff}.")
|
||||
break
|
||||
|
||||
grid_diff_old = grid_diff
|
||||
print(f"SCF Converged for lambda:{int(lam_i):5d}. Max density difference: {grid_diff}")
|
||||
#added by Ehsan
|
||||
Ddif.append(grid_diff)
|
||||
L.append(lam_i)
|
||||
# D0 is on grid. density_current is also on grid.
|
||||
# Dt[Dta,Dtb] and Da or Db are just arrays or matrices
|
||||
self.proto_density_a += lam_i * (Da - self.Dt[0]) * self.mixing
|
||||
if self.ref == 2:
|
||||
self.proto_density_b += lam_i * (Db - self.Dt[1]) * self.mixing
|
||||
else:
|
||||
self.proto_density_b = self.proto_density_a.copy()
|
||||
|
||||
vc_previous_a += vc[0] * self.mixing
|
||||
if self.ref == 2:
|
||||
#add a portion of previous vc to the new one
|
||||
vc_previous_b += vc[1] * self.mixing
|
||||
|
||||
# this is the lambda that is already proven to be improving the density, i.e. the corresponding
|
||||
# potential has updated to proto_density
|
||||
successful_lam = lam_i
|
||||
# The proto_density corresponds to successful_lam
|
||||
successful_proto_density = [(Da - self.Dt[0]), (Db - self.Dt[1])]
|
||||
# -------------> END Iterating over lambdas:
|
||||
|
||||
#added by Ehsan
|
||||
plt.plot(L, Ddif)
|
||||
plt.xlabel('Lambda')
|
||||
plt.ylabel('Delta-Density')
|
||||
plt.title(f"basis set: {self.basis}")
|
||||
plt.savefig('Lam_D_' + self.basis+ '.pdf')
|
||||
plt.close()
|
||||
|
||||
self.proto_density_a += successful_lam * successful_proto_density[0] * (1 - self.mixing)
|
||||
if self.guide_components.lower() == "fermi_amaldi":
|
||||
# for ref==1, vxc = \int dr (proto_density_a + proto_density_b)/|r-r'| - 1/N*vH
|
||||
if self.ref == 1:
|
||||
self.proto_density_a -= (1 / (self.nalpha + self.nbeta)) * (self.Dt[0])
|
||||
# for ref==1, vxc = \int dr (proto_density_a)/|r-r'| - 1/N*vH
|
||||
else:
|
||||
self.proto_density_a -= (1 / (self.nalpha + self.nbeta)) * (self.Dt[0] + self.Dt[1])
|
||||
|
||||
self.Da = Da
|
||||
self.Ca = Ca
|
||||
self.Coca = Cocca
|
||||
self.eigvecs_a = eigs_a
|
||||
|
||||
if self.ref == 2:
|
||||
self.proto_density_b += successful_lam * successful_proto_density[1] * (1 - self.mixing)
|
||||
if self.guide_components.lower() == "fermi_amaldi":
|
||||
# for ref==1, vxc = \int dr (proto_density_a + proto_density_b)/|r-r'| - 1/N*vH
|
||||
# an inner if caluse with an opposite condition!!!
|
||||
if self.ref == 1:
|
||||
self.proto_density_b -= (1 / (self.nalpha + self.nbeta)) * (self.Dt[1])
|
||||
# for ref==1, vxc = \int dr (proto_density_a)/|r-r'| - 1/N*vH
|
||||
else:
|
||||
self.proto_density_b -= (1 / (self.nalpha + self.nbeta)) * (self.Dt[0] + self.Dt[1])
|
||||
self.Db = Db
|
||||
self.Cb = Cb
|
||||
self.Cocb = Coccb
|
||||
self.eigvecs_b = eigs_b
|
||||
|
||||
else:
|
||||
self.proto_density_b = self.proto_density_a.copy()
|
||||
self.Db = self.Da.copy()
|
||||
self.Cb = self.Ca.copy()
|
||||
self.Cocb = self.Coca.copy()
|
||||
self.eigvecs_b = self.eigvecs_a.copy()
|
||||
|
||||
|
||||
|
||||
def generate_s_functional(self, lam, Cocca, Coccb, Da, Db):
|
||||
"""
|
||||
Generates S_n Functional as described in:
|
||||
https://doi.org/10.1002/qua.26400
|
||||
"""
|
||||
|
||||
# J is the Coulomb Matrix (note added by Ehsan)
|
||||
J = self.eng.compute_hartree(Cocca, Coccb)
|
||||
# J is computed from the occupied orbitals with the compoute_hartree() method in engine/psi4.py
|
||||
# the matrix Cocc is typically an n×m matrix, where n is the total number of basis functions and m is the number of occupied orbitals.
|
||||
# J[0] corresponds to the Coulomb Matrix based on alpha occupied orbitals (note added by Ehsan)
|
||||
# Here density (D0) is not directly used!
|
||||
#D0 = Cocc x Cocc*+, Cocc*+ is the conjugate transpose of the coefficient matrix of occupied orbitals
|
||||
|
||||
#Equation 7 of Reference (1), which gives Vc(r) for each lambda (original ZMP paper)
|
||||
if self.ref == 1:
|
||||
vc_a = 2 * lam * ( J[0] - self.J0[0] )
|
||||
self.vca = J[0] - self.J0[0]
|
||||
vc = [vc_a]
|
||||
else:
|
||||
vc_a = lam * ( J[0] - self.J0[0] )
|
||||
vc_b = lam * ( J[1] - self.J0[1] )
|
||||
vc = [vc_a, vc_b]
|
||||
# in practice Vc(r) will be a matrix (nbf x nbf) obtained from the difference between two Coulomb matrices
|
||||
return vc
|
||||
|
48
start.py
Normal file
48
start.py
Normal file
|
@ -0,0 +1,48 @@
|
|||
import n2v
|
||||
import psi4
|
||||
|
||||
H2O = psi4.geometry(
|
||||
"""
|
||||
0 1
|
||||
O 0.000000 0.000000 0.000000
|
||||
H 0.757459 0.586790 0.000000
|
||||
H -0.757459 0.586790 0.000000
|
||||
noreorient
|
||||
nocom
|
||||
units bohr
|
||||
symmetry c1
|
||||
""" )
|
||||
|
||||
|
||||
#n2v is driven by psi4's reference option. Make sure you set it accordingly.
|
||||
psi4.set_options({"reference" : "rhf"})
|
||||
|
||||
#Perform a calculation for a target density.
|
||||
#Remember that for post scf calculations, Psi4 does not update the density.
|
||||
#Thus make sure you obtain something like a dipole in order to do so.
|
||||
e, wfn = psi4.properties("ccsd/cc-pvtz", return_wfn=True, properties=["dipole"], molecule=H2O)
|
||||
|
||||
#Define inverter objects for each molcule. Simply use the wnf object from psi4 as an argument.
|
||||
ine = n2v.Inverter()
|
||||
ine.set_system(H2O, "cc-pvtz",wfn=wfn)
|
||||
ine.from_wfn(wfn)
|
||||
|
||||
|
||||
# how to change the increase lambda
|
||||
start = 1
|
||||
stop = 1000
|
||||
step = 2
|
||||
lam_list = []
|
||||
|
||||
lam = start
|
||||
for i in range(int(start), int(stop), int(step)):
|
||||
lam_list.append(i)
|
||||
|
||||
|
||||
# do zmp
|
||||
ine.invert("zmp", guide_components='fermi_amaldi', opt_max_iter=2000, opt_tol=1e-7, zmp_mixing=0, print_scf=False,
|
||||
lambda_list=lam_list)
|
||||
|
||||
print(ine)
|
||||
|
||||
|
106
zmp_xc.py
Normal file
106
zmp_xc.py
Normal file
|
@ -0,0 +1,106 @@
|
|||
import os
|
||||
import psi4
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
# import numpy_html
|
||||
psi4.set_options({"save_jk" : True})
|
||||
psi4.set_memory(int(2.50e9))
|
||||
psi4.core.clean()
|
||||
|
||||
import n2v
|
||||
|
||||
import matplotlib as mpl
|
||||
mpl.rcParams["font.size"] = 11
|
||||
mpl.rcParams["font.family"] = "sans-serif"
|
||||
mpl.rcParams["axes.edgecolor"] = "#eae8e9"
|
||||
|
||||
#Define Psi4 geometries. Symmetries need to be set to C1.
|
||||
|
||||
|
||||
Ne = psi4.geometry(
|
||||
"""
|
||||
0 1
|
||||
Ne 0.0 0.0 0.0
|
||||
noreorient
|
||||
nocom
|
||||
units bohr
|
||||
symmetry c1
|
||||
""" )
|
||||
|
||||
#n2v is driven by psi4's reference option. Make sure you set it accordingly.
|
||||
psi4.set_options({"reference" : "rhf"})
|
||||
|
||||
#Perform a calculation for a target density.
|
||||
#Remember that for post scf calculations, Psi4 does not update the density.
|
||||
#Thus make sure you obtain something like a dipole in order to do so.
|
||||
e, wfn = psi4.properties("CCSD/aug-cc-pvtz", return_wfn=True, properties=["dipole"], molecule=Ne)
|
||||
|
||||
arrDa = wfn.Da().to_array()
|
||||
arrDb = wfn.Db().to_array()
|
||||
|
||||
diff = arrDa - arrDb
|
||||
sum_difference = sum(sum(row) for row in diff)
|
||||
|
||||
#Define inverter objects for each molcule. Simply use the wnf object from psi4 as an argument.
|
||||
inv = n2v.Inverter('psi4')
|
||||
inv.set_system(Ne, 'aug-cc-pvtz', wfn=wfn)
|
||||
inv.Dt = [ np.array(wfn.Da()), np.array(wfn.Db()) ]
|
||||
inv.ct = [ np.array(wfn.Ca_subset("AO", "OCC")), np.array(wfn.Cb_subset("AO", "OCC")) ]
|
||||
inv.et = [ np.array(wfn.epsilon_a_subset("AO", "OCC")), np.array(wfn.epsilon_b_subset("AO", "OCC"))]
|
||||
|
||||
# Additionally one can simply initialize an Inverter using the wavefunction.
|
||||
inv = n2v.Inverter.from_wfn(wfn)
|
||||
|
||||
# Let us define a plotting grid:
|
||||
|
||||
npoints=1001
|
||||
x = np.linspace(-5,5,npoints)[:,None]
|
||||
y = np.zeros_like(x)
|
||||
z = y
|
||||
grid = np.concatenate((x,y,z), axis=1).T
|
||||
|
||||
mix = [0.0, 0.1, 0.5, 1.0]
|
||||
vxc_lab = ['Vxc_mix0', 'Vxc_mix0.5', 'Vxc_mix_1.0']
|
||||
vxc_dic = {}
|
||||
for m in mix:
|
||||
inv.invert("zmp", opt_max_iter=200, opt_tol=1e-7, zmp_mixing=m,
|
||||
lambda_list=np.linspace(10, 1000, 20), guide_components="fermi_amaldi")
|
||||
inv.eigvecs_a[:inv.nalpha]
|
||||
np.diag(inv.Da)[:inv.nalpha]
|
||||
results = inv.eng.grid.esp(Da=inv.proto_density_a, Db=inv.proto_density_b, grid=grid, )
|
||||
vxc_dic[m] = results[1]
|
||||
|
||||
|
||||
|
||||
for k,v in vxc_dic.items():
|
||||
plt.plot(x, v, label="Vxc_mix_"+str(k))
|
||||
|
||||
plt.legend()
|
||||
plt.xlim(-5,5)
|
||||
|
||||
fig, ax = plt.subplots()
|
||||
ls = ["solid","--", "-.", "-."]
|
||||
i = 0
|
||||
for k,v in vxc_dic.items():
|
||||
ax.plot(x, v, label="vxc_mix_"+str(k), ls=ls[i])
|
||||
i += 1
|
||||
|
||||
ax.set_title("Neon Exchange Correlation Potenial")
|
||||
ax.legend()
|
||||
ax.set_xlim(1e-5,5)
|
||||
ax.set_xscale("log")
|
||||
|
||||
|
||||
|
||||
#ax.set_title("Neon Exchange Correlation Potential")
|
||||
|
||||
#ax.legend()
|
||||
#ax.set_xlim(-5,5)
|
||||
|
||||
pltname = '_Vxc_' + '.pdf'
|
||||
plt.savefig(pltname)
|
||||
plt.close()
|
||||
|
||||
|
||||
plt.show()
|
||||
plt.close()
|
Loading…
Reference in a new issue