50 lines
1.4 KiB
Julia
50 lines
1.4 KiB
Julia
function J_gauss(p::Vector{Float64}; x::Float64=0.0)
|
||
λ, μ, σ = p
|
||
c = [1 / λ (2 * (x - μ) / σ^2) (-1 + 2 * ((x - μ) / σ)^2) / σ]
|
||
return c .* gauss(p; x=x)
|
||
end
|
||
|
||
function H_gauss(p::Vector{Float64}; x::Float64=0.0)
|
||
λ, μ, σ = p
|
||
c = zeros(3, 3)
|
||
|
||
# c[1,1] = 0
|
||
c[1, 2] = c[2, 1] = (2x) / (λ * σ^2) - (2 * μ) / (λ * σ^2)
|
||
c[1, 3] = c[3, 1] = (2 * (x - μ)^2 - σ^2) / (λ * σ^3)
|
||
|
||
c[2, 2] = (4 * (x - μ)^2 - 2 * σ^2) / σ^4
|
||
c[2, 3] = c[3, 2] = (2λ * (x - μ) * (2μ^2 - 3σ^2 + 2x^2 - 4μ * x)) / (λ * σ^5)
|
||
|
||
c[3, 3] = (2 * (σ^4 - 5σ^2 * (x - μ)^2 + 2 * (x - μ)^4)) / σ^6
|
||
return c .* gauss(p; x=x)
|
||
end
|
||
|
||
@testset "Gauss function" begin
|
||
λ = 10 * (rand() - 0.5)
|
||
μ = 10 * (rand() - 0.5)
|
||
σ = 10rand()
|
||
|
||
x = σ * (2 * rand() - 0.5) + μ
|
||
p = [λ, μ, σ]
|
||
|
||
@test TaylorTest.check(gauss, J_gauss, p; x=x)
|
||
@test TaylorTest.check(J_gauss, H_gauss, p; x=x)
|
||
end
|
||
|
||
@testset "Composed Gauss function" begin
|
||
p = 1 .+ 5 * rand(6)
|
||
|
||
x = p[3] + p[4] + 2p[5] + sqrt(p[6]) * (2rand() - 1)
|
||
|
||
p_aux = _p -> [_p[1]/_p[2], _p[3] + _p[4] + 2_p[5], _p[6]]
|
||
|
||
J_p_aux = _p -> [1/_p[2] -_p[1]/_p[2]^2 0 0 0 0;
|
||
0 0 1 1 2 0;
|
||
0 0 0 0 0 1]
|
||
|
||
g = (_p; x=x) -> gauss(p_aux(_p); x=x)
|
||
Jg = (_p; x=x) -> J_gauss(p_aux(_p); x=x) * J_p_aux(p)
|
||
Hg = (_p; x=x) -> J_gauss(p_aux(_p); x=x) * J_p_aux(p)
|
||
|
||
@test TaylorTest.check(g, Jg, p; x=x)
|
||
end
|