91 lines
2.2 KiB
Julia
91 lines
2.2 KiB
Julia
function gauss(p::Vector{Float64}; x::Float64=0.0)
|
||
λ, μ, σ = p
|
||
return λ / sqrt(2π * σ^2) * exp(-(x - μ)^2 / 2σ^2)
|
||
end
|
||
|
||
function J_gauss(p::Vector{Float64}; x::Float64=0.0)
|
||
λ, μ, σ = p
|
||
c = [(1 / λ) ((x - μ) / σ^2) ((x - μ)^2 - σ^2) / σ^3]
|
||
return c .* gauss(p; x=x)
|
||
end
|
||
|
||
function H_gauss(p::Vector{Float64}; x::Float64=0.0)
|
||
λ, μ, σ = p
|
||
c = zeros(3, 3)
|
||
|
||
# c[1,1] = 0
|
||
c[1, 2] = c[2, 1] = (x - μ) / (λ * σ^2)
|
||
c[1, 3] = c[3, 1] = -((μ + σ - x) * (-μ + σ + x)) / (λ * σ^3)
|
||
|
||
c[2, 2] = ((x - μ)^2 - σ^2) / σ^4
|
||
c[2, 3] = c[3, 2] = -((μ - x) * ((μ - x)^2 - 3σ^2)) / σ^5
|
||
|
||
c[3, 3] = (-5 * σ^2 * (μ - x)^2 + (μ - x)^4 + 2 * σ^4) / σ^6
|
||
return c .* gauss(p; x=x)
|
||
end
|
||
|
||
@testset "Gauss function" begin
|
||
λ = 10 * rand()
|
||
μ = 10 * (rand() - 0.5)
|
||
σ = 10rand()
|
||
p = [λ, μ, σ]
|
||
|
||
x = σ * (2 * rand() - 1) + μ
|
||
|
||
@assert abs(gauss(p; x=x)) > 1e-7 "gauss(p; x=x) is too small: $(gauss(p; x=x))"
|
||
|
||
@test TaylorTest.check(gauss, J_gauss, p; x=x)
|
||
@test TaylorTest.check(J_gauss, H_gauss, p; x=x)
|
||
end
|
||
|
||
function check_symmetry(a)
|
||
R = true
|
||
if ndims(a) == 2
|
||
R = norm(a - a') < 1e-10
|
||
else
|
||
for i in axes(a, 1)
|
||
r = a[i, :, :]' == a[i, :, :]
|
||
R &= r
|
||
if !r
|
||
n = maximum(abs, a[i, :, :]' - a[i, :, :])
|
||
@warn "Tensor not symmetric at i=$i: $n"
|
||
end
|
||
end
|
||
end
|
||
return R
|
||
end
|
||
|
||
@testset "Composed Gauss function" begin
|
||
p = 1 .+ 5rand(6)
|
||
|
||
p_aux = _p -> [_p[1] / _p[2], _p[3] + _p[4] + 2_p[5], _p[6]]
|
||
|
||
J_p_aux = _p -> [1/_p[2] -_p[1]/_p[2]^2 0 0 0 0;
|
||
0 0 1 1 2 0;
|
||
0 0 0 0 0 1]
|
||
|
||
H_p_aux = _p -> begin
|
||
h = zeros(3, 6, 6)
|
||
h[1, 1, 2] = h[1, 2, 1] = -1 / _p[2]^2
|
||
h[1, 2, 2] = 2_p[1] / _p[2]^3
|
||
h
|
||
end
|
||
|
||
g = (_p; x = 0.0) -> gauss(p_aux(_p); x=x)
|
||
Jg = (_p; x = 0.0) -> J_gauss(p_aux(_p); x=x) * J_p_aux(_p)
|
||
Hg = (_p; x = 0.0) -> begin
|
||
p = p_aux(_p)
|
||
_J_gauss = vec(J_gauss(p; x=x))
|
||
_H_p = H_p_aux(_p)
|
||
_J_p = J_p_aux(_p)
|
||
r = _J_p' * H_gauss(p; x=x) * _J_p
|
||
r .+= TO.tensorcontract([2, 3], _J_gauss, [1], _H_p, [1, 2, 3])
|
||
r
|
||
end
|
||
|
||
_p = p_aux(p)
|
||
x = _p[2] + _p[2] * 2 * (rand() - 0.5)
|
||
|
||
@test TaylorTest.check(g, Jg, p; x=x)
|
||
@test TaylorTest.check(Jg, Hg, p; x=x)
|
||
end
|