TaylorTest/test/gauss.jl

91 lines
2.2 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

function gauss(p::Vector{Float64}; x::Float64=0.0)
λ, μ, σ = p
return λ / sqrt(2π * σ^2) * exp(-(x - μ)^2 / 2σ^2)
end
function J_gauss(p::Vector{Float64}; x::Float64=0.0)
λ, μ, σ = p
c = [(1 / λ) ((x - μ) / σ^2) ((x - μ)^2 - σ^2) / σ^3]
return c .* gauss(p; x=x)
end
function H_gauss(p::Vector{Float64}; x::Float64=0.0)
λ, μ, σ = p
c = zeros(3, 3)
# c[1,1] = 0
c[1, 2] = c[2, 1] = (x - μ) / (λ * σ^2)
c[1, 3] = c[3, 1] = -((μ + σ - x) * (-μ + σ + x)) / (λ * σ^3)
c[2, 2] = ((x - μ)^2 - σ^2) / σ^4
c[2, 3] = c[3, 2] = -((μ - x) * ((μ - x)^2 - 3σ^2)) / σ^5
c[3, 3] = (-5 * σ^2 * (μ - x)^2 + (μ - x)^4 + 2 * σ^4) / σ^6
return c .* gauss(p; x=x)
end
@testset "Gauss function" begin
λ = 10 * rand()
μ = 10 * (rand() - 0.5)
σ = 10rand()
p = [λ, μ, σ]
x = σ * (2 * rand() - 1) + μ
@assert abs(gauss(p; x=x)) > 1e-7 "gauss(p; x=x) is too small: $(gauss(p; x=x))"
@test TaylorTest.check(gauss, J_gauss, p; x=x)
@test TaylorTest.check(J_gauss, H_gauss, p; x=x)
end
function check_symmetry(a)
R = true
if ndims(a) == 2
R = norm(a - a') < 1e-10
else
for i in axes(a, 1)
r = a[i, :, :]' == a[i, :, :]
R &= r
if !r
n = maximum(abs, a[i, :, :]' - a[i, :, :])
@warn "Tensor not symmetric at i=$i: $n"
end
end
end
return R
end
@testset "Composed Gauss function" begin
p = 1 .+ 5rand(6)
p_aux = _p -> [_p[1] / _p[2], _p[3] + _p[4] + 2_p[5], _p[6]]
J_p_aux = _p -> [1/_p[2] -_p[1]/_p[2]^2 0 0 0 0;
0 0 1 1 2 0;
0 0 0 0 0 1]
H_p_aux = _p -> begin
h = zeros(3, 6, 6)
h[1, 1, 2] = h[1, 2, 1] = -1 / _p[2]^2
h[1, 2, 2] = 2_p[1] / _p[2]^3
h
end
g = (_p; x = 0.0) -> gauss(p_aux(_p); x=x)
Jg = (_p; x = 0.0) -> J_gauss(p_aux(_p); x=x) * J_p_aux(_p)
Hg = (_p; x = 0.0) -> begin
p = p_aux(_p)
_J_gauss = vec(J_gauss(p; x=x))
_H_p = H_p_aux(_p)
_J_p = J_p_aux(_p)
r = _J_p' * H_gauss(p; x=x) * _J_p
r .+= TO.tensorcontract([2, 3], _J_gauss, [1], _H_p, [1, 2, 3])
r
end
_p = p_aux(p)
x = _p[2] + _p[2] * 2 * (rand() - 0.5)
@test TaylorTest.check(g, Jg, p; x=x)
@test TaylorTest.check(Jg, Hg, p; x=x)
end