TaylorTest/test/tensors.jl
2025-02-12 11:04:31 +01:00

86 lines
1.7 KiB
Julia

compute_f = x -> [x[1]^2; x[2]^2 + x[3]; -x[3]^2 + x[4] + x[5]^3]
compute_Jf = x -> [
2x[1] 0 0 0 0;
0 2x[2] 1 0 0;
0 0 -2x[3] 1 3*x[5]^2
]
function compute_Hf(x)
Hf = zeros(3, 5, 5)
Hf[1, 1, 1] = 2
Hf[2, 2, 2] = 2
Hf[3, 3, 3] = -2
Hf[3, 5, 5] = 6 * x[5]
return Hf
end
@testset "Tensors" begin
m, n = 3, 5
x = 2rand(n) .- 0.5
@test TaylorTest.check(compute_f, compute_Jf, x)
@test TaylorTest.check(compute_Jf, compute_Hf, x)
end
TP = TO.tensorproduct
function prod(A, B)
return TP([1, 2, 3], A, [1, 2], B, [3])
end
function revprod(A, B)
return TP([1, 3, 2], B, [3], A, [1, 2])
end
function symprod(A, B)
return prod(A, B) + revprod(A, B)
end
@testset "Product of scalar and vector functions" begin
v = x -> [exp(2 * x[1]), cos(x[1] * x[2]), 1.0]
Jv = x -> [
2*exp(2 * x[1]) 0;
-x[2]*sin(x[1] * x[2]) -x[1]*sin(x[1] * x[2]);
0 0
]
Hv = x -> begin
h = zeros(3, 2, 2)
h[1, :, :] = [
4*exp(2 * x[1]) 0;
0 0
]
h[2, :, :] = [
-x[2]^2*cos(x[1] * x[2]) -sin(x[1] * x[2])-x[1]*x[2]*cos(x[1] * x[2]);
-sin(x[1] * x[2])-x[1]*x[2]*cos(x[1] * x[2]) -x[1]^2*cos(x[1] * x[2])
]
h
end
φ = x -> x[1] * x[2]^2
∇φ = x -> [x[2]^2; 2x[1] * x[2]]
= x -> [
0 2x[2];
2x[2] 2*x[1]
]
f = x -> v(x) * φ(x)
Jf = x -> φ(x) * Jv(x) + v(x) * ∇φ(x)'
Hf = x -> φ(x) * Hv(x) + symprod(Jv(x), ∇φ(x)) + TP(v(x), [1], (x), [2, 3])
x = 2rand(2) .- 0.5
@test TaylorTest.check(v, Jv, x)
@test TaylorTest.check(Jv, Hv, x)
@test TaylorTest.check(φ, ∇φ, x)
@test TaylorTest.check(∇φ, , x)
@test TaylorTest.check(f, Jf, x)
@test TaylorTest.check(Jf, Hf, x)
end