fix gauss tests

This commit is contained in:
Gaspard Jankowiak 2025-02-11 13:42:14 +01:00
commit 0b1a5ad3af
3 changed files with 40 additions and 33 deletions

View file

@ -62,12 +62,12 @@ function compute_H_f2(p::Vector{Float64}; x::Float64=0.0)
return H_f2
end
@testset "Erf aux functions" begin
@testset "Erf auxiliary functions" begin
L = 10 * (rand() - 0.5)
μ = 10 * (rand() - 0.5)
σ = 10rand()
x = σ * (2 * rand() - 0.5) + μ
x = σ * (2 * rand() - 1) + μ
p = [L, μ, σ]
@test TaylorTest.check(compute_f1, compute_J_f1, p; x=x)
@ -98,7 +98,8 @@ end
J_f1 = compute_J_f1(p; x=x)
J_f2 = compute_J_f2(p; x=x)
return J_f1 .* gauss([sqrt(2), 0, 1]; x=f1) - J_f2 .* gauss([sqrt(2), 0, 1]; x=f2)
return J_f1 .* gauss([1, 0, 1 / sqrt(2)]; x=f1) - J_f2 .* gauss([1, 0, 1 / sqrt(2)]; x=f2)
end
function H_diff_of_erf(p::Vector{Float64}; x::Float64=0.0)
@ -106,7 +107,7 @@ end
L, μ, σ = p
sq2σ = sqrt(2) * σ
# d²/dξ² ( erf( f1(x) ) - erf( f2(x) ) )/2 = d²/dξ² f1(x) gauss([sqrt(2), 0, 1]; x=f1(x)) - d²/dξ² f2(x) gauss([sqrt(2), 0, 1]; x=f2(x))
# d²/dξ² ( erf( f1(x) ) - erf( f2(x) ) )/2 = d²/dξ² f1(x) gauss([1, 0, 1/sqrt(2)]; x=f1(x)) - d²/dξ² f2(x) gauss([1, 0, 1/sqrt(2)]; x=f2(x))
# + (d/dξ f1(x))^2 gauss([sqrt(2), 0, 1]; x=f1(x)) - d²/dξ² f2(x) gauss([sqrt(2), 0, 1]; x=f2(x))
f1 = compute_f1(p; x=x)
@ -118,9 +119,10 @@ end
H_f1 = compute_H_f1(p; x=x)
H_f2 = compute_H_f2(p; x=x)
return (H_f1 .* gauss([sqrt(2), 0, 1]; x=f1) - H_f2 .* gauss([sqrt(2), 0, 1]; x=f2)
-
J_f1' * J_f1 .* f1 .* gauss([2 * sqrt(2), 0, 1]; x=f1) + J_f2' * J_f2 .* f2 .* gauss([2 * sqrt(2), 0, 1]; x=f2))
g_f1 = gauss([1, 0, 1 / sqrt(2)]; x=f1)
g_f2 = gauss([1, 0, 1 / sqrt(2)]; x=f2)
return H_f1 .* g_f1 - H_f2 .* g_f2 - 2J_f1' * J_f1 .* f1 .* g_f1 + 2J_f2' * J_f2 .* f2 .* g_f2
end
L = 10 * (rand() - 0.5)
@ -130,6 +132,8 @@ end
x = σ * (2 * rand() - 0.5) + μ
p = [L, μ, σ]
@show diff_of_erf(p; x=x)
@test TaylorTest.check(diff_of_erf, J_diff_of_erf, p; x=x)
@test TaylorTest.check(J_diff_of_erf, H_diff_of_erf, p, [2, 3]; x=x)
end

View file

@ -1,32 +1,39 @@
function J_gauss(p::Vector{Float64}; x::Float64=0.0)
function gauss(p::Vector{Float64}; x::Float64=0.0)
λ, μ, σ = p
c = [1 / λ (2 * (x - μ) / σ^2) (-1 + 2 * ((x - μ) / σ)^2) / σ]
return c .* gauss(p; x=x)
end
return λ / sqrt(2π * σ^2) * exp(-(x - μ)^2/2σ^2)
end
function H_gauss(p::Vector{Float64}; x::Float64=0.0)
function J_gauss(p::Vector{Float64}; x::Float64=0.0)
λ, μ, σ = p
c = [(1/λ) ((x - μ) / σ^2) ((x - μ)^2 - σ^2)/σ^3]
return c .* gauss(p; x=x)
end
function H_gauss(p::Vector{Float64}; x::Float64=0.0)
λ, μ, σ = p
c = zeros(3, 3)
# c[1,1] = 0
c[1, 2] = c[2, 1] = (2x) / (λ * σ^2) - (2 * μ) / (λ * σ^2)
c[1, 3] = c[3, 1] = (2 * (x - μ)^2 - σ^2) / (λ * σ^3)
c[1, 2] = c[2, 1] = (x-μ) / (λ * σ^2)
c[1, 3] = c[3, 1] = -((μ + σ - x)*(-μ + σ + x))/(λ*σ^3)
c[2, 2] = (4 * (x - μ)^2 - 2 * σ^2) / σ^4
c[2, 3] = c[3, 2] = (2λ * (x - μ) * (2μ^2 - 3σ^2 + 2x^2 - 4μ * x)) / (λ * σ^5)
c[2, 2] = ((x - μ)^2 - σ^2) / σ^4
c[2, 3] = c[3, 2] = -((μ - x)*((μ - x)^2 - 3σ^2))/σ^5
c[3, 3] = (2 * (σ^4 - 5σ^2 * (x - μ)^2 + 2 * (x - μ)^4)) / σ^6
c[3, 3] = (-5*σ^2*(μ - x)^2 + (μ - x)^4 + 2*σ^4)/σ^6
return c .* gauss(p; x=x)
end
end
@testset "Gauss function" begin
λ = 10 * (rand() - 0.5)
λ = 10 * rand()
μ = 10 * (rand() - 0.5)
σ = 10rand()
x = σ * (2 * rand() - 0.5) + μ
p = [λ, μ, σ]
x = σ * (2 * rand() - 1) + μ
@assert abs(gauss(p; x=x)) > 1e-7 "gauss(p; x=x) is too small: $(gauss(p; x=x))"
@test TaylorTest.check(gauss, J_gauss, p; x=x)
@test TaylorTest.check(J_gauss, H_gauss, p; x=x)
end

View file

@ -3,11 +3,7 @@ import Test: @test, @testset
import TaylorTest
import SpecialFunctions: erf
function gauss(p::Vector{Float64}; x::Float64=0.0)
λ, μ, σ = p
return λ / sqrt(2π * σ^2) * exp(-((x - μ) / σ)^2)
end
import TensorOperations as TO
include("trig_functions.jl")
include("gauss.jl")