fix gauss tests
This commit is contained in:
parent
cba0d34f99
commit
0b1a5ad3af
3 changed files with 40 additions and 33 deletions
18
test/erf.jl
18
test/erf.jl
|
@ -62,12 +62,12 @@ function compute_H_f2(p::Vector{Float64}; x::Float64=0.0)
|
||||||
return H_f2
|
return H_f2
|
||||||
end
|
end
|
||||||
|
|
||||||
@testset "Erf aux functions" begin
|
@testset "Erf auxiliary functions" begin
|
||||||
L = 10 * (rand() - 0.5)
|
L = 10 * (rand() - 0.5)
|
||||||
μ = 10 * (rand() - 0.5)
|
μ = 10 * (rand() - 0.5)
|
||||||
σ = 10rand()
|
σ = 10rand()
|
||||||
|
|
||||||
x = σ * (2 * rand() - 0.5) + μ
|
x = σ * (2 * rand() - 1) + μ
|
||||||
p = [L, μ, σ]
|
p = [L, μ, σ]
|
||||||
|
|
||||||
@test TaylorTest.check(compute_f1, compute_J_f1, p; x=x)
|
@test TaylorTest.check(compute_f1, compute_J_f1, p; x=x)
|
||||||
|
@ -98,7 +98,8 @@ end
|
||||||
|
|
||||||
J_f1 = compute_J_f1(p; x=x)
|
J_f1 = compute_J_f1(p; x=x)
|
||||||
J_f2 = compute_J_f2(p; x=x)
|
J_f2 = compute_J_f2(p; x=x)
|
||||||
return J_f1 .* gauss([sqrt(2), 0, 1]; x=f1) - J_f2 .* gauss([sqrt(2), 0, 1]; x=f2)
|
|
||||||
|
return J_f1 .* gauss([1, 0, 1 / sqrt(2)]; x=f1) - J_f2 .* gauss([1, 0, 1 / sqrt(2)]; x=f2)
|
||||||
end
|
end
|
||||||
|
|
||||||
function H_diff_of_erf(p::Vector{Float64}; x::Float64=0.0)
|
function H_diff_of_erf(p::Vector{Float64}; x::Float64=0.0)
|
||||||
|
@ -106,7 +107,7 @@ end
|
||||||
L, μ, σ = p
|
L, μ, σ = p
|
||||||
sq2σ = sqrt(2) * σ
|
sq2σ = sqrt(2) * σ
|
||||||
|
|
||||||
# d²/dξ² ( erf( f1(x) ) - erf( f2(x) ) )/2 = d²/dξ² f1(x) gauss([sqrt(2), 0, 1]; x=f1(x)) - d²/dξ² f2(x) gauss([sqrt(2), 0, 1]; x=f2(x))
|
# d²/dξ² ( erf( f1(x) ) - erf( f2(x) ) )/2 = d²/dξ² f1(x) gauss([1, 0, 1/sqrt(2)]; x=f1(x)) - d²/dξ² f2(x) gauss([1, 0, 1/sqrt(2)]; x=f2(x))
|
||||||
# + (d/dξ f1(x))^2 gauss([sqrt(2), 0, 1]; x=f1(x)) - d²/dξ² f2(x) gauss([sqrt(2), 0, 1]; x=f2(x))
|
# + (d/dξ f1(x))^2 gauss([sqrt(2), 0, 1]; x=f1(x)) - d²/dξ² f2(x) gauss([sqrt(2), 0, 1]; x=f2(x))
|
||||||
|
|
||||||
f1 = compute_f1(p; x=x)
|
f1 = compute_f1(p; x=x)
|
||||||
|
@ -118,9 +119,10 @@ end
|
||||||
H_f1 = compute_H_f1(p; x=x)
|
H_f1 = compute_H_f1(p; x=x)
|
||||||
H_f2 = compute_H_f2(p; x=x)
|
H_f2 = compute_H_f2(p; x=x)
|
||||||
|
|
||||||
return (H_f1 .* gauss([sqrt(2), 0, 1]; x=f1) - H_f2 .* gauss([sqrt(2), 0, 1]; x=f2)
|
g_f1 = gauss([1, 0, 1 / sqrt(2)]; x=f1)
|
||||||
-
|
g_f2 = gauss([1, 0, 1 / sqrt(2)]; x=f2)
|
||||||
J_f1' * J_f1 .* f1 .* gauss([2 * sqrt(2), 0, 1]; x=f1) + J_f2' * J_f2 .* f2 .* gauss([2 * sqrt(2), 0, 1]; x=f2))
|
|
||||||
|
return H_f1 .* g_f1 - H_f2 .* g_f2 - 2J_f1' * J_f1 .* f1 .* g_f1 + 2J_f2' * J_f2 .* f2 .* g_f2
|
||||||
end
|
end
|
||||||
|
|
||||||
L = 10 * (rand() - 0.5)
|
L = 10 * (rand() - 0.5)
|
||||||
|
@ -130,6 +132,8 @@ end
|
||||||
x = σ * (2 * rand() - 0.5) + μ
|
x = σ * (2 * rand() - 0.5) + μ
|
||||||
p = [L, μ, σ]
|
p = [L, μ, σ]
|
||||||
|
|
||||||
|
@show diff_of_erf(p; x=x)
|
||||||
|
|
||||||
@test TaylorTest.check(diff_of_erf, J_diff_of_erf, p; x=x)
|
@test TaylorTest.check(diff_of_erf, J_diff_of_erf, p; x=x)
|
||||||
@test TaylorTest.check(J_diff_of_erf, H_diff_of_erf, p, [2, 3]; x=x)
|
@test TaylorTest.check(J_diff_of_erf, H_diff_of_erf, p, [2, 3]; x=x)
|
||||||
end
|
end
|
||||||
|
|
|
@ -1,32 +1,39 @@
|
||||||
function J_gauss(p::Vector{Float64}; x::Float64=0.0)
|
function gauss(p::Vector{Float64}; x::Float64=0.0)
|
||||||
λ, μ, σ = p
|
λ, μ, σ = p
|
||||||
c = [1 / λ (2 * (x - μ) / σ^2) (-1 + 2 * ((x - μ) / σ)^2) / σ]
|
return λ / sqrt(2π * σ^2) * exp(-(x - μ)^2/2σ^2)
|
||||||
return c .* gauss(p; x=x)
|
end
|
||||||
end
|
|
||||||
|
|
||||||
function H_gauss(p::Vector{Float64}; x::Float64=0.0)
|
function J_gauss(p::Vector{Float64}; x::Float64=0.0)
|
||||||
λ, μ, σ = p
|
λ, μ, σ = p
|
||||||
c = zeros(3, 3)
|
c = [(1/λ) ((x - μ) / σ^2) ((x - μ)^2 - σ^2)/σ^3]
|
||||||
|
return c .* gauss(p; x=x)
|
||||||
|
end
|
||||||
|
|
||||||
# c[1,1] = 0
|
function H_gauss(p::Vector{Float64}; x::Float64=0.0)
|
||||||
c[1, 2] = c[2, 1] = (2x) / (λ * σ^2) - (2 * μ) / (λ * σ^2)
|
λ, μ, σ = p
|
||||||
c[1, 3] = c[3, 1] = (2 * (x - μ)^2 - σ^2) / (λ * σ^3)
|
c = zeros(3, 3)
|
||||||
|
|
||||||
c[2, 2] = (4 * (x - μ)^2 - 2 * σ^2) / σ^4
|
# c[1,1] = 0
|
||||||
c[2, 3] = c[3, 2] = (2λ * (x - μ) * (2μ^2 - 3σ^2 + 2x^2 - 4μ * x)) / (λ * σ^5)
|
c[1, 2] = c[2, 1] = (x-μ) / (λ * σ^2)
|
||||||
|
c[1, 3] = c[3, 1] = -((μ + σ - x)*(-μ + σ + x))/(λ*σ^3)
|
||||||
|
|
||||||
c[3, 3] = (2 * (σ^4 - 5σ^2 * (x - μ)^2 + 2 * (x - μ)^4)) / σ^6
|
c[2, 2] = ((x - μ)^2 - σ^2) / σ^4
|
||||||
return c .* gauss(p; x=x)
|
c[2, 3] = c[3, 2] = -((μ - x)*((μ - x)^2 - 3σ^2))/σ^5
|
||||||
end
|
|
||||||
|
c[3, 3] = (-5*σ^2*(μ - x)^2 + (μ - x)^4 + 2*σ^4)/σ^6
|
||||||
|
return c .* gauss(p; x=x)
|
||||||
|
end
|
||||||
|
|
||||||
@testset "Gauss function" begin
|
@testset "Gauss function" begin
|
||||||
λ = 10 * (rand() - 0.5)
|
λ = 10 * rand()
|
||||||
μ = 10 * (rand() - 0.5)
|
μ = 10 * (rand() - 0.5)
|
||||||
σ = 10rand()
|
σ = 10rand()
|
||||||
|
|
||||||
x = σ * (2 * rand() - 0.5) + μ
|
|
||||||
p = [λ, μ, σ]
|
p = [λ, μ, σ]
|
||||||
|
|
||||||
|
x = σ * (2 * rand() - 1) + μ
|
||||||
|
|
||||||
|
@assert abs(gauss(p; x=x)) > 1e-7 "gauss(p; x=x) is too small: $(gauss(p; x=x))"
|
||||||
|
|
||||||
@test TaylorTest.check(gauss, J_gauss, p; x=x)
|
@test TaylorTest.check(gauss, J_gauss, p; x=x)
|
||||||
@test TaylorTest.check(J_gauss, H_gauss, p; x=x)
|
@test TaylorTest.check(J_gauss, H_gauss, p; x=x)
|
||||||
end
|
end
|
||||||
|
@ -39,8 +46,8 @@ end
|
||||||
p_aux = _p -> [_p[1]/_p[2], _p[3] + _p[4] + 2_p[5], _p[6]]
|
p_aux = _p -> [_p[1]/_p[2], _p[3] + _p[4] + 2_p[5], _p[6]]
|
||||||
|
|
||||||
J_p_aux = _p -> [1/_p[2] -_p[1]/_p[2]^2 0 0 0 0;
|
J_p_aux = _p -> [1/_p[2] -_p[1]/_p[2]^2 0 0 0 0;
|
||||||
0 0 1 1 2 0;
|
0 0 1 1 2 0;
|
||||||
0 0 0 0 0 1]
|
0 0 0 0 0 1]
|
||||||
|
|
||||||
g = (_p; x=x) -> gauss(p_aux(_p); x=x)
|
g = (_p; x=x) -> gauss(p_aux(_p); x=x)
|
||||||
Jg = (_p; x=x) -> J_gauss(p_aux(_p); x=x) * J_p_aux(p)
|
Jg = (_p; x=x) -> J_gauss(p_aux(_p); x=x) * J_p_aux(p)
|
||||||
|
|
|
@ -3,11 +3,7 @@ import Test: @test, @testset
|
||||||
import TaylorTest
|
import TaylorTest
|
||||||
|
|
||||||
import SpecialFunctions: erf
|
import SpecialFunctions: erf
|
||||||
|
import TensorOperations as TO
|
||||||
function gauss(p::Vector{Float64}; x::Float64=0.0)
|
|
||||||
λ, μ, σ = p
|
|
||||||
return λ / sqrt(2π * σ^2) * exp(-((x - μ) / σ)^2)
|
|
||||||
end
|
|
||||||
|
|
||||||
include("trig_functions.jl")
|
include("trig_functions.jl")
|
||||||
include("gauss.jl")
|
include("gauss.jl")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue