2% flatpak run org.octave.Octave <filename>
4% octave --no-window-system --no-gui -qf <filename>
9%
g=[2 0 2 0 0 1 0; % #vertices,v_1x, v_2x, v_1y, v_2y, subdomain_left, subdomain_right
17% g=[2 0 1 0 0 1 0; % #vertices,v_1x, v_2x, v_1y, v_2y, subdomain_left, subdomain_right
23%
g=[2 0 1 0 0 1 0; % 1 #vertices,v_1x, v_2x, v_1y, v_2y, subdomain_left, subdomain_right
27% 2 1 2 0 0 2 0; % 2 #vertices,v_1x, v_2x, v_1y, v_2y, subdomain_left, subdomain_right
33g=[2 0 1 0 0 1 0; % 1 #vertices,v_1x, v_2x, v_1y, v_2y, subdomain_left, subdomain_right
37 2 1 2 0 0 2 0; % 2 #vertices,v_1x, v_2x, v_1y, v_2y, subdomain_left, subdomain_right
41% 2 0 1 1 1 3 1; % 3 #vertices,v_1x, v_2x, v_1y, v_2y, subdomain_left, subdomain_right
45% 2 1 2 1 1 4 2; % 4 #vertices,v_1x, v_2x, v_1y, v_2y, subdomain_left, subdomain_right
53[p,e,t] = initmesh(
g,
'hmax',1); % works correctly
54%
p(1,15) = 1.51; %% angle in trangle >
pi/2 ==> now the second refinement produces irregular meshes!
55%
p(1,15) = 1.7; %% angle in trangle >
pi/2 ==> now the second refinement produces irregular meshes!
63% [p,e,t] = initmesh(
g,
'hmax',0.5); % problems in solution after 2
refinements (peaks with
h=0.5, oscillations in (1,1)
for h=0.1
64% [
p,
e,
t] = initmesh(
g,
'hmax',0.1/4); % no problems in solution with 0 refinemnet steps
68% pdemesh(
p,
e,
t,
'NodeLabels',
'on')
72%
p = jigglemesh(
p,
e,
t,
'opt',
'minimum',
'iter',inf);
76%% Refine mesh, see comments in
"Generate mesh from geometry"
81 [p,e,t] = refinemesh(
g,
p,
e,
t);
82%
p = jigglemesh(
p,
e,
t,
'opt',
'minimum',
'iter',inf); % improve mesh
86% figure; pdemesh(
p,
e,
t,'NodeLabels','on')
94% edges
e: [7][nedges] boundary edges
95%
e([1,2],:) - start/
end vertex of edge
96%
e([3,4],:) - start/
end values
97%
e(5,:) - segment number
98%
e([6,7],:) - left/right subdomain
fprintf('Read file %s\n', fname) % Read mesh const ants nn
function ascii_write_mesh(xc, ia, e, basename) % % Saves the 2D triangular mesh in the minimal way(only coordinates
function vertex minimal boundary edge info in an ASCII file Matlab indexing is stored(starts with 1). % % The output file format is compatible with Mesh_2d_3_matlab nnode
function vertex connectivity
function ascii_write_subdomains(xc, ia, e, basename) % % Saves the 2D triangular mesh in the minimal way(only coordinates
problems in solution after refinements[p, e, t]
Generate mesh from geometry[p, e, t]