123 lines
3.1 KiB
Python
123 lines
3.1 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
import sys
|
|
import os
|
|
|
|
labels = [
|
|
"Norm (Normalization)",
|
|
"nv (Vesicle concencentration x10^6 (nm^-3))",
|
|
"Rm (Radius of the vesicle (nm))",
|
|
"Z (Radius polydispersity)",
|
|
"n_TR (Tris fraction )",
|
|
"d_TR (Tris width (nm))",
|
|
"s_TR (Tris position (nm))",
|
|
"d_Chol (CholCH3 position (nm))",
|
|
"s_Chol (CholCH3 width (nm))",
|
|
"d_PCN (PCN position (nm))",
|
|
"s_PCN (PCN width (nm))",
|
|
"d_CG (CG position (nm))",
|
|
"s_CG (CG width (nm))",
|
|
"A_L (Area per lipid (nm²))",
|
|
"s_D_C (HC excess std (nm))",
|
|
"s_CH2 (HC smearing (nm))",
|
|
"d_CH (CH position (nm))",
|
|
"s_CH (CH width (nm))",
|
|
"s_CH3 (CH3 width (nm))",
|
|
"r_PCN (V_PCN/V_HL)",
|
|
"r_CG (V_GG/V_HL)",
|
|
"r12 (V_CH/V_CH2)",
|
|
"r32 (V_CH3/V_CH2)",
|
|
"T (Temperature (°C) )",
|
|
"V_BW (Bound-water volume (nm³))",
|
|
"Con (Constant (nm⁻¹))"
|
|
]
|
|
|
|
|
|
def print_x2_stats(dir, threshold=1.0):
|
|
stats = get_x2_stats(dir, threshold=threshold)
|
|
thres_str = str(int(100*threshold))
|
|
|
|
if threshold < 1:
|
|
print(" x2 (best %s%%)" % thres_str)
|
|
else:
|
|
print(" x2 ")
|
|
|
|
print(" min: %f" % stats["min"])
|
|
print(" max: %f" % stats["max"])
|
|
print("mean: %f" % stats["mean"])
|
|
print(" std: %f" % stats["std"])
|
|
|
|
def std_vs_threshold(dir, obs):
|
|
x2 = np.genfromtxt(os.path.join(dir, "Results_collection-X2.dat"))
|
|
if obs == "x2":
|
|
d = x2
|
|
suptitle= "x2"
|
|
else:
|
|
d = np.genfromtxt(os.path.join(dir, "Results_collection.dat"))[:,obs]
|
|
suptitle = labels[obs]
|
|
|
|
x2_min = x2.min()
|
|
x2_p2p = x2.max() - x2.min()
|
|
|
|
d_first_decile = d[x2 < x2_min + 0.1*x2_p2p]
|
|
|
|
thres = np.linspace(0.01, 1, 100)
|
|
|
|
std = np.zeros_like(thres)
|
|
card = np.zeros_like(thres)
|
|
|
|
for (i,t) in enumerate(thres):
|
|
d_filtered = d[x2 < x2_min + t*x2_p2p]
|
|
std[i] = d_filtered.std()
|
|
card[i] = len(d_filtered)
|
|
|
|
fig, axes = plt.subplots(1, 2)
|
|
|
|
plt.suptitle(suptitle)
|
|
|
|
ax1 = axes[0]
|
|
ax3 = axes[1]
|
|
|
|
ax1.set_xlabel("threshold")
|
|
ax1.set_ylabel("stddev", color="blue")
|
|
ax1.tick_params(axis='y', labelcolor="blue")
|
|
|
|
ax2 = ax1.twinx()
|
|
ax2.set_ylabel("cardinality", color="red")
|
|
ax2.tick_params(axis='y', labelcolor="red")
|
|
|
|
ax3.set_ylabel("all samples", color="blue")
|
|
ax3.tick_params(axis='y', labelcolor="blue")
|
|
|
|
ax4 = ax3.twinx()
|
|
ax4.set_ylabel("1st decile", color="red")
|
|
ax4.tick_params(axis='y', labelcolor="red")
|
|
|
|
ax1.plot(thres, std, color="blue")
|
|
ax2.semilogy(thres, card, color="red")
|
|
ax3.hist(d, color="blue")
|
|
ax4.hist(d_first_decile, color="red")
|
|
plt.show()
|
|
|
|
def get_x2_stats(dir, threshold=1.0):
|
|
x2 = np.genfromtxt(os.path.join(dir, "Results_collection-X2.dat"))
|
|
|
|
p2p = x2.max() - x2.min()
|
|
x2_filtered = x2[x2 < (x2.min() + threshold * p2p)]
|
|
|
|
stats = {
|
|
"min" : x2_filtered.min(),
|
|
"max" : x2_filtered.max(),
|
|
"mean" : x2_filtered.mean(),
|
|
"std" : x2_filtered.std()
|
|
}
|
|
|
|
return stats
|
|
|
|
if __name__ == "__main__":
|
|
if len(sys.argv) > 1 and os.path.isdir(sys.argv[1]):
|
|
dir = sys.argv[1]
|
|
else:
|
|
dir = "POPC-test"
|
|
|
|
print_x2_stats(dir)
|