This commit is contained in:
Gaspard Jankowiak 2023-04-24 11:16:02 +02:00
commit 80a8975c97
8 changed files with 85 additions and 45 deletions

View file

@ -5,17 +5,13 @@ lang: en
---
{% assign authors = site.data.authors %}
<p id="info"><a href="/images/portrait_large.jpg"><img alt="src" src="/images/portrait.png" id="portrait"></a><span>
Currently, I am a postdoc at the <a href="https://uni.kn/">University of Constance</a>, where I am working with <a href="{{authors['rr'].home}}">{{authors['rr'].fullname}}</a>. I previously worked on designing and analyzing models in the context of crowd motion and cell biology, including membranes of crawling lymphocytes.
<p id="info"><a href="/images/portrait_large.jpg"><img alt="src" src="/images/portrait.png" id="portrait"></a><span id="resume">
Currently, I am a postdoc at the <a href="https://uni.kn/">University of Constance</a> in the group of <a href="{{authors['os'].home}}">{{authors['os'].fullname}}</a>.
I work on designing and analyzing models in the context of crowd motion and cell biology, including membranes of crawling lymphocytes.
In the case I study more specifically, this leads to gradient-flows which govern the evolution of rheologically nonhomogeneous curves on the plane.
More generally, I am also interested in analysis of non linear PDEs, of drift-diffusion type in particular, just like the Keller and Segel model for chemotaxis.
This also leads me to study some related functional inequalities.</span></p>
# PhD thesis
Asymptotic study of non linear diffusion type PDEs and related functional inequalities ([TEL](https://tel.archives-ouvertes.fr/tel-01067226))
Supervisor: <a href="{{authors['jd'].home}}">{{authors['jd'].fullname}}</a>. Written within <a href="http://www.ceremade.dauphine.fr/">Ceremade</a>, and defended on June 23, 2014.
# Research
* Modelling: biological membranes and crowd motion
* Asymptotic behaviour for non linear diffusion
@ -56,6 +52,12 @@ Supervisor: <a href="{{authors['jd'].home}}">{{authors['jd'].fullname}}</a>. Wri
Applieds PDEs for Life Sciences &ndash; Barcelona
([pdf](/files/research/posters/2012/2012_barcelona.pdf)|[source](/files/research/posters/2012/2012_barcelona.tar.gz))
# PhD thesis
Asymptotic study of non linear diffusion type PDEs and related functional inequalities ([TEL](https://tel.archives-ouvertes.fr/tel-01067226))
Supervisor: <a href="{{authors['jd'].home}}">{{authors['jd'].fullname}}</a>. Written within <a href="http://www.ceremade.dauphine.fr/">Ceremade</a>, and defended on June 23, 2014.
# Contact
Gaspard Jankowiak
**@** <span>gaspard</span><span></span>@<span>math.janko.fr</span>

View file

@ -7,49 +7,65 @@ fr_url: /enseignement/
---
{::options parse_block_html="true" /}
# Constance (in German)
# Constance
# Winter semester 2022
## Summer semester 2023
## PDE III: Regularity Theory, The Theorem of De Giorgi, Nash and Moser
- [ILIAS](https://ilias.uni-konstanz.de/goto_ILIASKONSTANZ_crs_1491669.html)
- [Lecture notes](https://gaspard.janko.fr/s/enseignement/konstanz/SoSe2023/PDE3/PDE3-DeGiorgiNashMoser.pdf), in progress (also available on ILIAS)
- Time: Wednesdays at 15:15, Room D436
## Seminar: Keller-Segel Models: Long-time Behaviour
- [ILIAS](https://ilias.uni-konstanz.de/goto_ILIASKONSTANZ_crs_1559853.html)
- Time: Fridays at 10:00, Room D436
## Past semesters (in German)
<details>
<summary markdown="span">Winter semester 2022</summary>
For details, see [the page in german](/de#wintersemester2022)
- Differential geometry III
- PDE II
# Past semesters
</details>
<details>
<summary markdown="span">Summer semester 2022</summary>
# Summer semester 2022
- Geometric analysis seminar
- Differential geometry II
- Functional analysis II
For details, see [the page in german](/de#sommersemester2022)
- Geometric analysis seminar (Gage and Hamilton, *The Heat Equation Shrinking Convex Plane Curves*)
- Differential geometry II (exercice classes)
- Functional analysis II (exercise classes)
</details>
<details>
<summary markdown="span">Winter semester 2021</summary>
For details, see [the page in german](/de#wintersemester2021)
# Winter semester 2021
- ODEs with geometric applications
- Theory of PDEs
- ODEs with geometric applications (exercise classes)
- Theory of PDEs (exercise classes)
</details>
# Paris-Dauphine (MIDO) (in French)
# Paris-Dauphine (in French)
## 2013-2014
### Numerical optimization
### Numerical optimization (exercise classes)
[Webpage](https://www.ceremade.dauphine.fr/~amic/enseignement/OptiNum2014/) for the practical, managed by Amic Frouvelle.
## 2012-2013
### Linear algebra
### Linear algebra (exercise classes)
* [Best of partiel 2012](/files/al3/bop-2012.pdf)
### Numerical optimization
### Numerical optimization (exercise classes)
* [Exercise sheet No.1](/files/opt/2013/TD1-2013.pdf): Finite differences, optimization in 1D.
* Solution: [right FD](/files/opt/2013/diff_fin_droite.m) and [centered FD](/files/opt/2013/diff_fin_centre.m)
* Exercise sheet No.2: [sheet](/files/opt/2013/TD2-2013.pdf),
@ -57,14 +73,14 @@ fr_url: /enseignement/
* Practical No.2 bis: [archive](/files/opt/2013/tp2bis.tar.gz), [sheet](/files/opt/2013/TP2bis-2013.pdf): Signal separation
* Exercise sheet No.3: [sheet](/files/opt/2013/TD3-2013.pdf): _Inpainting_
* Practical No.3: [sheet](/files/opt/2013/TP3-2013.pdf), [archive](/files/opt/2013/tp3.tar.gz)
* Practicalolution](/files/opt/2013/CC1_correction.pdf) to the exam from 6th march 2013
* [Solution](/files/opt/2013/CC1_correction.pdf) to the exam from 6th march 2013
## 2011-2012
### Linear algebra
### Linear algebra (exercise classes)
* [Sheet No.2 ex. 20](/files/al3/exo20.pdf) Projection on the spaces of scalar and diagonal matrices.
### Numerical optimization
### Numerical optimization (exercise classes)
* [Solution](/files/opt/2012/corrige_cc.pdf) to the exam from 15th march 2012
* [Exercise sheet No.1](/files/opt/2012/td1.pdf): Differential calculus: reminder
* [Exercise sheet No.2](/files/opt/2012/tp22012.pdf): Portfolio optimization
@ -72,6 +88,6 @@ fr_url: /enseignement/
## 2010-2011
### Linear algebra
### Linear algebra (exercise classes)
* [Extra exercise sheet](/files/al3/al3_supp.pdf) EV products, interpolation, equivalence of norms,
induced norm, matrix-norm, orthogonal polynomials, Fredholm alternative, projectors, least-squares.