This commit is contained in:
Gaspard Jankowiak 2024-02-26 10:43:50 +01:00
commit f06696aff3
6 changed files with 2058 additions and 0 deletions

193
n2v.patched/engines/psi4.py Executable file
View file

@ -0,0 +1,193 @@
"""
Provides interface n2v interface to Psi4
"""
from .engine import Engine
import numpy as np
from opt_einsum import contract
try:
import psi4
psi4.set_options({"save_jk" : True})
has_psi4 = True
except ImportError:
has_psi4 = False
if has_psi4:
from ..grid import Psi4Grider
class Psi4Engine(Engine):
"""
Psi4 Engine Class
"""
def set_system(self, molecule, basis, ref='1', pbs='same', wfn=None):
"""
Initializes geometry and basis infromation
Parameters
----------
molecule: psi4.core.Molecule
Molecule of the system used
basis: str
Basis set of calculation
ref: int
Reference: Restricted -> 1
Unrestricted -> 2
pbs: str
Basis set of potential used
wfn : psi4.core.{RHF, UHF, RKS, UKS, Wavefunction, CCWavefuncion...}
Psi4 wavefunction object
"""
self.mol = molecule
#Assert units are in bohr
# units = self.mol.to_schema(dtype='psi4')['units']
# if units != "Bohr":
# raise ValueError("Units need to be set in Bohr")
self.basis_str = basis
self.ref = ref
self.pbs = pbs
self.pbs_str = basis if pbs == 'same' else pbs
self.nalpha = wfn.nalpha()
self.nbeta = wfn.nbeta()
self.wfn = wfn
def initialize(self):
"""
Initializes basic objects required for the Psi4Engine
"""
self.basis = psi4.core.BasisSet.build( self.mol, key='BASIS', target=self.basis_str)
self.pbs = psi4.core.BasisSet.build( self.mol, key='BASIS', target=self.pbs_str)
self.nbf = self.basis.nbf()
self.npbs = self.pbs.nbf()
self.mints = psi4.core.MintsHelper( self.basis )
self.jk = self.generate_jk()
self.grid = Psi4Grider(self.mol, self.basis, self.ref)
def get_T(self):
"""Kinetic Potential in ao basis"""
return np.array( self.mints.ao_kinetic() )
def get_Tpbas(self):
"""Kinetic Potential in pbs"""
return np.array( self.mints.ao_kinetic(self.pbs, self.pbs) )
def get_V(self):
"""External potential in ao basis"""
return np.array( self.mints.ao_potential() )
def get_A(self):
"""Inverse squared root of S matrix"""
A = self.mints.ao_overlap()
A.power( -0.5, 1e-16 )
return np.array( A )
def get_S(self):
"""Overlap matrix in AO basis"""
return np.array( self.mints.ao_overlap() )
def get_S3(self):
"""3 Orbitals Overlap matrix in AO basis"""
return np.array( self.mints.ao_3coverlap(self.basis,self.basis,self.pbs) )
def get_S4(self):
"""
Calculates four overlap integral with Density Fitting method.
S4_{ijkl} = \int dr \phi_i(r)*\phi_j(r)*\phi_k(r)*\phi_l(r)
Parameters
----------
wfn: psi4.core.Wavefunction
Wavefunction object of moleculep
Return
------
S4
"""
print(f"4-AO-Overlap tensor will take about {self.nbf **4 / 8 * 1e-9:f} GB.")
aux_basis = psi4.core.BasisSet.build(self.mol, "DF_BASIS_SCF", "", "JKFIT", self.basis_str)
S_Pmn = np.squeeze(self.mints.ao_3coverlap(aux_basis, self.basis, self.basis ))
S_PQ = np.array(self.mints.ao_overlap(aux_basis, aux_basis))
S_PQinv = np.linalg.pinv(S_PQ, rcond=1e-9)
S4 = contract('Pmn,PQ,Qrs->mnrs', S_Pmn, S_PQinv, S_Pmn)
return S4
def generate_jk(self, gen_K=False):
"""
Creates jk object for generation of Coulomb and Exchange matrices
1.0e9 B -> 1.0 GB
"""
jk = psi4.core.JK.build(self.basis)
memory = int(jk.memory_estimate() * 1.1)
jk.set_memory(int(memory))
# added by Ehsan
# .set_do_K(gen_K = False) determines if exchane matrices should be calculated or not
jk.set_do_K(gen_K)
jk.initialize()
#print("jk: ", jk)
return jk
def compute_hartree(self, Cocc_a, Cocc_b):
"""
Generates Coulomb and Exchange matrices from occupied orbitals
"""
Cocc_a = psi4.core.Matrix.from_array(Cocc_a)
Cocc_b = psi4.core.Matrix.from_array(Cocc_b)
self.jk.C_left_add(Cocc_a)
self.jk.C_left_add(Cocc_b)
self.jk.compute()
self.jk.C_clear()
J = (np.array(self.jk.J()[0]), np.array(self.jk.J()[1]))
return J
def hartree_NO(self, Dta):
"""
Computes Hartree potential in AO basis from Natural Orbitals
"""
if self.wfn is None:
raise ValueError('Please provide a wfn object to the Inverter, i.e., Inverter.eng = wfn')
if type(self.wfn) == psi4.core.CCWavefunction:
C_NO = psi4.core.Matrix(self.nbf, self.nbf)
eigs_NO = psi4.core.Vector(self.nbf)
self.wfn.Da().diagonalize( C_NO, eigs_NO, psi4.core.DiagonalizeOrder.Descending )
occ = np.sqrt( np.array(eigs_NO) )
new_CA = occ * np.array(C_NO)
assert np.allclose( new_CA @ new_CA.T, Dta )
if self.ref == 1:
new_CB = np.copy( new_CA )
else:
self.wfn.Db().diagonalize( C_NO, eigs_NO, psi4.core.DiagonalizeOrder.Descending )
occ_b = np.sqrt( np.array( eigs_NO ) )
new_CB = occ_b * np.array( C_NO )
J0 = self.compute_hartree(new_CA, new_CB)
return J0
def run_single_point(self, mol, basis, method):
"""
Run a standard energy calculation
"""
wfn_temp = psi4.energy(init+"/" + self.basis_str,
molecule=self.mol,
return_wfn=True)[1]
if self.ref == 1:
D = np.array(wfn_temp.Da()) + np.array(wfn_temp.Db())
C = np.array(wfn_temp.Ca())
e = np.array(wfn_temp.epsilon_a())
else:
D = np.stack( (np.array(wfn_temp.Da()), np.array(wfn_temp.Db())) )
C = np.stack( (np.array(wfn_temp.Ca()), np.array(wfn_temp.Cb())) )
e = np.stack( (np.array(wfn_temp.epsilon_a()), np.array(wfn_temp.epsilon_b())) )
return D, C, e

775
n2v.patched/grid/grider.py Executable file
View file

@ -0,0 +1,775 @@
"""
grider.py
Generates grid for plotting
"""
import numpy as np
import warnings
from opt_einsum import contract
import psi4
psi4.core.be_quiet()
try:
from pylibxc import LibXCFunctional as Functional
except:
pass
# from .cubeprop import Cubeprop
from .basis_set_artifact_correction import basis_set_correction, invert_kohn_sham_equations
class Grider():
def grid_to_blocks(self, grid, basis=None):
"""
Generate list of blocks to allocate given grid
Parameters
----------
grid: np.ndarray
Grid to be distributed into blocks
Size: (3, npoints) for homogeneous grid
(4, npoints) for inhomogenous grid to account for weights
basis: psi4.core.BasisSet; optional
The basis set. If not given, it will use target wfn.basisset().
Returns
-------
blocks: list
List with psi4.core.BlockOPoints
npoints: int
Total number of points (for one dimension)
points: psi4.core.{RKS, UKS}
Points function to set matrices.
"""
assert (grid.shape[0] == 3) or (grid.shape[0] == 4), """Grid does not have the correct dimensions. \n
Array must be of size (3, npoints) or (4, npoints)"""
if_w = grid.shape[0] == 4
if basis is None:
#basis = self.basis
#added by Ehsan
basis = psi4.core.BasisSet.build(self.molecule, "ORBITAL", self.basis)
epsilon = psi4.core.get_global_option("CUBIC_BASIS_TOLERANCE")
# added by Ehsan
#print("\nThis is the epsilon: ", float(epsilon))
# basis_set = psi4.core.BasisSet.build(self.molecule, "ORBITAL", basis)
extens = psi4.core.BasisExtents(basis, epsilon)
#extens = psi4.core.BasisExtents(psi4.core.BasisExtents.basis(), 0.004)
max_points = psi4.core.get_global_option("DFT_BLOCK_MAX_POINTS")
npoints = grid.shape[1]
nblocks = int(np.floor(npoints/max_points))
blocks = []
max_functions = 0
#Run through full blocks
idx = 0
for nb in range(nblocks):
x = psi4.core.Vector.from_array(grid[0][idx : idx + max_points])
y = psi4.core.Vector.from_array(grid[1][idx : idx + max_points])
z = psi4.core.Vector.from_array(grid[2][idx : idx + max_points])
if if_w:
w = psi4.core.Vector.from_array(grid[3][idx : idx + max_points])
else:
w = psi4.core.Vector.from_array(np.zeros(max_points)) # When w is not necessary and not given
blocks.append(psi4.core.BlockOPoints(x, y, z, w, extens))
idx += max_points
max_functions = max_functions if max_functions > len(blocks[-1].functions_local_to_global()) \
else len(blocks[-1].functions_local_to_global())
#Run through remaining points
if idx < npoints:
x = psi4.core.Vector.from_array(grid[0][idx:])
y = psi4.core.Vector.from_array(grid[1][idx:])
z = psi4.core.Vector.from_array(grid[2][idx:])
if if_w:
w = psi4.core.Vector.from_array(grid[3][idx:])
else:
w = psi4.core.Vector.from_array(np.zeros_like(grid[2][idx:])) # When w is not necessary and not given
blocks.append(psi4.core.BlockOPoints(x, y, z, w, extens))
max_functions = max_functions if max_functions > len(blocks[-1].functions_local_to_global()) \
else len(blocks[-1].functions_local_to_global())
zero_matrix = psi4.core.Matrix(basis.nbf(), basis.nbf())
if self.ref == 1:
point_func = psi4.core.RKSFunctions(basis, max_points, max_functions)
point_func.set_pointers(zero_matrix)
else:
point_func = psi4.core.UKSFunctions(basis, max_points, max_functions)
point_func.set_pointers(zero_matrix, zero_matrix)
return blocks, npoints, point_func
def generate_grids(self, x, y, z):
"""
Genrates Mesh from 3 separate linear spaces and flatten,
needed for cubic grid.
Parameters
----------
grid: tuple of three np.ndarray
(x, y, z)
Returns
-------
grid: np.ndarray
shape (3, len(x)*len(y)*len(z)).
"""
# x,y,z, = grid
shape = (len(x), len(y), len(z))
X,Y,Z = np.meshgrid(x, y, z, indexing='ij')
X = X.reshape((X.shape[0] * X.shape[1] * X.shape[2], 1))
Y = Y.reshape((Y.shape[0] * Y.shape[1] * Y.shape[2], 1))
Z = Z.reshape((Z.shape[0] * Z.shape[1] * Z.shape[2], 1))
grid = np.concatenate((X,Y,Z), axis=1).T
return grid, shape
def generate_dft_grid(self, Vpot):
"""
Extracts DFT spherical grid and weights from wfn object
Parameters
----------
Vpot: psi4.core.VBase
Vpot object with dft grid data
Returns
-------
dft_grid: list
Numpy arrays corresponding to x,y,z, and w.
Shape: (4, npoints)
"""
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
dft_grid = np.zeros((4, npoints))
offset = 0
for i_block in blocks:
b_points = i_block.npoints()
offset += b_points
dft_grid[0, offset - b_points : offset] = i_block.x().np
dft_grid[1, offset - b_points : offset] = i_block.y().np
dft_grid[2, offset - b_points : offset] = i_block.z().np
dft_grid[3, offset - b_points : offset] = i_block.w().np
return dft_grid
#Quantities on Grid
def on_grid_ao(self, coeff, grid=None, basis=None, Vpot=None):
"""
Generates a quantity on the grid given its ao representation.
*This is the most general function for basis to grid transformation.
Parameters
----------
coeff: np.ndarray
Vector/Matrix of quantity on ao basis. Shape: {(num_ao_basis, ), (num_ao_basis, num_ao_basis)}
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
basis: psi4.core.BasisSet, optional
The basis set. If not given it will use target wfn.basisset().
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
coeff_r: np.ndarray Shape: (npoints, )
Quantity expressed by the coefficient on the given grid
"""
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid, basis=basis)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
coeff_r = np.zeros((npoints))
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
lpos = np.array(i_block.functions_local_to_global())
if len(lpos)==0:
continue
phi = np.array(points_function.basis_values()["PHI"])[:b_points, :lpos.shape[0]]
if coeff.ndim == 1:
l_mat = coeff[(lpos[:])]
coeff_r[offset - b_points : offset] = contract('pm,m->p', phi, l_mat)
elif coeff.ndim == 2:
l_mat = coeff[(lpos[:, None], lpos)]
coeff_r[offset - b_points : offset] = contract('pm,mn,pn->p', phi, l_mat, phi)
return coeff_r
def on_grid_density(self, grid=None,
Da=None,
Db=None,
Vpot=None):
"""
Generates Density given grid
Parameters
----------
Da, Db: np.ndarray
Alpha, Beta densities. Shape: (num_ao_basis, num_ao_basis)
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
density: np.ndarray Shape: (ref, npoints)
Density on the given grid.
"""
if Da is None and Db is None:
Da = psi4.core.Matrix.from_array(self.Dt[0])
Db = psi4.core.Matrix.from_array(self.Dt[1])
else:
Da = psi4.core.Matrix.from_array(Da)
Db = psi4.core.Matrix.from_array(Db)
if self.ref == 2 and Db is None:
raise ValueError("Db is required for an unrestricted system")
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
if self.ref == 1:
points_function.set_pointers(Da)
rho_a = points_function.point_values()["RHO_A"]
density = np.zeros((npoints))
if self.ref == 2:
points_function.set_pointers(Da, Db)
rho_a = points_function.point_values()["RHO_A"]
rho_b = points_function.point_values()["RHO_B"]
density = np.zeros((npoints, self.ref))
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
if self.ref == 1:
density[offset - b_points : offset] = rho_a.np[ :b_points]
else:
density[offset - b_points : offset, 0] = rho_a.np[ :b_points]
density[offset - b_points : offset, 1] = rho_b.np[ :b_points]
return density
def on_grid_orbitals(self, Ca=None, Cb=None, grid=None, Vpot=None):
"""
Generates orbitals given grid
Parameters
----------
Ca, Cb: np.ndarray
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
orbitals: np.ndarray
Orbitals on the given grid of size .
Shape: (nbasis, npoints, ref)
"""
if Ca is None and Cb is None:
Ca = psi4.core.Matrix.from_array(self.Ca)
Cb = psi4.core.Matrix.from_array(self.Cb)
else:
Ca = psi4.core.Matrix.from_array(Ca)
Cb = psi4.core.Matrix.from_array(Cb)
if self.ref == 2 and Cb is None:
raise ValueError("Db is required for an unrestricted system")
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
if self.ref == 1:
orbitals_r = [np.zeros((npoints)) for i_orb in range(self.nbf)]
points_function.set_pointers(Ca)
Ca_np = Ca.np
if self.ref == 2:
orbitals_r = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
points_function.set_pointers(Ca, Cb)
Ca_np = Ca.np
Cb_np = Cb.np
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
lpos = np.array(i_block.functions_local_to_global())
if len(lpos)==0:
continue
phi = np.array(points_function.basis_values()["PHI"])[:b_points, :lpos.shape[0]]
for i_orb in range(self.nbf):
Ca_local = Ca_np[lpos, i_orb]
if self.ref == 1:
orbitals_r[i_orb][offset - b_points : offset] = contract('m, pm -> p', Ca_local, phi)
else:
Cb_local = Cb_np[lpos, i_orb]
orbitals_r[i_orb][offset - b_points : offset,0] = contract('m, pm -> p', Ca_local, phi)
orbitals_r[i_orb][offset - b_points : offset,1] = contract('m, pm -> p', Cb_local, phi)
return orbitals_r
def on_grid_esp(self, Da=None, Db=None, grid=None, Vpot=None, wfn=None):
"""
Generates EXTERNAL/ESP/HARTREE and Fermi Amaldi Potential on given grid
Parameters
----------
Da,Db: np.ndarray, opt, shape (nbf, nbf)
The electron density in the denominator of Hartee potential. If None, the original density matrix
will be used.
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
vext, hartree, esp, v_fa: np.ndarray
External, Hartree, ESP, and Fermi Amaldi potential on the given grid
Shape: (npoints, )
"""
if wfn is None:
wfn = self.wfn
if Da is not None or Db is not None:
Da_temp = np.copy(self.wfn.Da().np)
Db_temp = np.copy(self.wfn.Db().np)
if Da is not None:
wfn.Da().np[:] = Da
if Db is not None:
wfn.Db().np[:] = Db
nthreads = psi4.get_num_threads()
psi4.set_num_threads(1)
if grid is not None:
if type(grid) is np.ndarray:
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
#Initialize Arrays
vext = np.zeros(npoints)
esp = np.zeros(npoints)
#Get Atomic Information
mol_dict = self.mol.to_schema(dtype='psi4')
natoms = len(mol_dict["elem"])
indx = [i for i in range(natoms) if self.mol.charge(i) != 0.0]
natoms = len(indx)
#Atomic numbers and Atomic positions
zs = [mol_dict["elez"][i] for i in indx]
rs = [self.mol.geometry().np[i] for i in indx]
esp_wfn = psi4.core.ESPPropCalc(wfn)
#Loop Through blocks
offset = 0
with np.errstate(divide='ignore'):
for i_block in blocks:
b_points = i_block.npoints()
offset += b_points
x = i_block.x().np
y = i_block.y().np
z = i_block.z().np
#EXTERNAL
for atom in range(natoms):
r = np.sqrt((x-rs[atom][0])**2 + (y-rs[atom][1])**2 + (z-rs[atom][2])**2)
vext_temp = - 1.0 * zs[atom] / r
vext_temp[np.isinf(vext_temp)] = 0.0
vext[offset - b_points : offset] += vext_temp
#ESP
xyz = np.concatenate((x[:,None],y[:,None],z[:,None]), axis=1)
grid_block = psi4.core.Matrix.from_array(xyz)
esp[offset - b_points : offset] = esp_wfn.compute_esp_over_grid_in_memory(grid_block).np
#Hartree
hartree = - 1.0 * (vext + esp)
v_fa = (1 - 1.0 / (self.nalpha + self.nbeta)) * hartree
if Da is not None:
wfn.Da().np[:] = Da_temp
if Db is not None:
wfn.Db().np[:] = Db_temp
psi4.set_num_threads(nthreads)
return vext, hartree, v_fa, esp
def on_grid_vxc(self, func_id=1, grid=None, Da=None, Db=None,
Vpot=None):
"""
Generates Vxc given grid
Parameters
----------
Da, Db: np.ndarray
Alpha, Beta densities. Shape: (num_ao_basis, num_ao_basis)
func_id: int
Functional ID associated with Density Functional Approximationl.
Full list of functionals: https://www.tddft.org/programs/libxc/functionals/
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
VXC: np.ndarray
Exchange correlation potential on the given grid
Shape: (npoints, )
"""
local_functionals = [1,546,549,532,692,641,552,287,307,578,5,24,4,579,308,289,551,
22,23,14,11,574,573,554,5900,12,13,25,9,10,27,3,684,683,17,7,
28,29,30,31,8,317,2,6,536,537,538,318,577,259,547,548,20,599,43,
51,580,50,550
]
if func_id not in local_functionals:
raise ValueError("Only LDA fucntionals are supported on the grid")
if Da is None:
Da = self.Dt[0]
if Db is None:
Db = self.Dt[0]
if grid is not None:
if type(grid) is np.ndarray:
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
density = self.on_grid_density(Da=Da, Db=Db, grid=grid)
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
density = self.on_grid_density(Da=Da, Db=Db, Vpot=Vpot)
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
vxc = np.zeros((npoints, self.ref))
ingredients = {}
offset = 0
for i_block in blocks:
b_points = i_block.npoints()
offset += b_points
if self.ref == 1:
ingredients["rho"] = density[offset - b_points : offset]
else:
ingredients["rho"] = density[offset - b_points : offset, :]
if self.ref == 1:
functional = Functional(func_id, 1)
else:
functional = Functional(func_id, 2)
xc_dictionary = functional.compute(ingredients)
vxc[offset - b_points : offset, :] = xc_dictionary['vrho']
return np.squeeze(vxc)
def on_grid_lap_phi(self,
Ca=None,
Cb=None,
grid=None,
Vpot=None):
"""
Generates laplacian of molecular orbitals
Parameters
----------
Ca, Cb: np.ndarray
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
lap_phi: List[np.ndarray]. Where array is of shape (npoints, ref)
Laplacian of molecular orbitals on the grid
"""
if Ca is None and Cb is None:
Ca = psi4.core.Matrix.from_array(self.Ca)
Cb = psi4.core.Matrix.from_array(self.Cb)
else:
Ca = psi4.core.Matrix.from_array(Ca)
Cb = psi4.core.Matrix.from_array(Cb)
if self.ref == 2 and Cb is None:
raise ValueError("Db is required for an unrestricted system")
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
points_function.set_ansatz(2)
if self.ref == 1:
points_function.set_pointers(Ca)
lap_phi = [np.zeros((npoints)) for i_orb in range(self.nbf)]
else:
points_function.set_pointers(Ca, Cb)
lap_phi = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
lpos = np.array(i_block.functions_local_to_global())
if len(lpos)==0:
continue
#Obtain subset of phi_@@ matrices
lx = np.array(points_function.basis_values()["PHI_XX"])[:b_points, :lpos.shape[0]]
ly = np.array(points_function.basis_values()["PHI_YY"])[:b_points, :lpos.shape[0]]
lz = np.array(points_function.basis_values()["PHI_ZZ"])[:b_points, :lpos.shape[0]]
for i_orb in range(self.nbf):
Ca_local = Ca.np[lpos, i_orb][:,None]
if self.ref ==1:
lap_phi[i_orb][offset - b_points : offset] += ((lx + ly + lz) @ Ca_local)[:,0]
else:
Cb_local = Cb.np[lpos, i_orb][:,None]
lap_phi[i_orb][offset - b_points : offset, 0] += ((lx + ly + lz) @ Ca_local)[:,0]
lap_phi[i_orb][offset - b_points : offset, 1] += ((lx + ly + lz) @ Cb_local)[:,0]
return lap_phi
def on_grid_grad_phi(self,
Ca=None,
Cb=None,
grid=None,
Vpot=None):
"""
Generates laplacian of molecular orbitals
Parameters
----------
Ca, Cb: np.ndarray
Alpha, Beta Orbital Coefficient Matrix. Shape: (num_ao_basis, num_ao_basis)
grid: np.ndarray Shape: (3, npoints) or (4, npoints) or tuple for block_handler (return of grid_to_blocks)
grid where density will be computed.
Vpot: psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns
-------
grad_phi: List[np.ndarray]. Where array is of shape (npoints, ref)
Gradient of molecular orbitals on the grid
"""
if Ca is None and Cb is None:
Ca = psi4.core.Matrix.from_array(self.Ca)
Cb = psi4.core.Matrix.from_array(self.Cb)
else:
Ca = psi4.core.Matrix.from_array(Ca)
Cb = psi4.core.Matrix.from_array(Cb)
if self.ref == 2 and Cb is None:
raise ValueError("Db is required for an unrestricted system")
if grid is not None:
if type(grid) is np.ndarray:
if grid.shape[0] != 3 and grid.shape[0] != 4:
raise ValueError("The shape of grid should be (3, npoints) "
"or (4, npoints) but got (%i, %i)" % (grid.shape[0], grid.shape[1]))
blocks, npoints, points_function = self.grid_to_blocks(grid)
else:
blocks, npoints, points_function = grid
elif grid is None and Vpot is not None:
nblocks = Vpot.nblocks()
blocks = [Vpot.get_block(i) for i in range(nblocks)]
npoints = Vpot.grid().npoints()
points_function = Vpot.properties()[0]
else:
raise ValueError("A grid or a V_potential (DFT grid) must be given.")
points_function.set_ansatz(2)
if self.ref == 1:
points_function.set_pointers(Ca)
grad_phi = [np.zeros((npoints)) for i_orb in range(self.nbf)]
else:
points_function.set_pointers(Ca, Cb)
grad_phi = [np.zeros((npoints, 2)) for i_orb in range(self.nbf)]
offset = 0
for i_block in blocks:
points_function.compute_points(i_block)
b_points = i_block.npoints()
offset += b_points
lpos = np.array(i_block.functions_local_to_global())
if len(lpos)==0:
continue
#Obtain subset of phi_@ matrix
gx = np.array(points_function.basis_values()["PHI_X"])[:b_points, :lpos.shape[0]]
gy = np.array(points_function.basis_values()["PHI_Y"])[:b_points, :lpos.shape[0]]
gz = np.array(points_function.basis_values()["PHI_Z"])[:b_points, :lpos.shape[0]]
for i_orb in range(self.nbf):
Ca_local = Ca.np[lpos, i_orb][:,None]
if self.ref == 1:
grad_phi[i_orb][offset - b_points : offset] += ((gx + gy + gz) @ Ca_local)[:,0]
if self.ref == 2:
Cb_local = Cb.np[lpos, i_orb][:,None]
grad_phi[i_orb][offset - b_points : offset, 0] += ((gx + gy + gz) @ Ca_local)[:,0]
grad_phi[i_orb][offset - b_points : offset, 1] += ((gx + gy + gz) @ Cb_local)[:,0]
return grad_phi
def dft_grid_to_fock(self, value, Vpot):
"""For value on DFT spherical grid, Fock matrix is returned.
VFock_ij = \int dx \phi_i(x) \phi_j(x) value(x)
Parameters:
-----------
value: np.ndarray of shape (npoint, ).
Vpot:psi4.core.VBase
Vpotential object with info about grid.
Provides DFT spherical grid. Only comes to play if no grid is given.
Returns:
---------
VFock: np.ndarray of shape (nbasis, nbasis)
"""
VFock = np.zeros((self.nbf, self.nbf))
points_func = Vpot.properties()[0]
i = 0
# Loop over the blocks
for b in range(Vpot.nblocks()):
# Obtain block information
block = Vpot.get_block(b)
points_func.compute_points(block)
npoints = block.npoints()
lpos = np.array(block.functions_local_to_global())
if len(lpos) == 0:
i += npoints
continue
# Obtain the grid weight
w = np.array(block.w())
# Compute phi!
phi = np.array(points_func.basis_values()["PHI"])[:npoints, :lpos.shape[0]]
Vtmp = np.einsum('pb,p,p,pa->ab', phi, value[i:i+npoints], w, phi, optimize=True)
# Add the temporary back to the larger array by indexing, ensure it is symmetric
VFock[(lpos[:, None], lpos)] += 0.5 * (Vtmp + Vtmp.T)
i += npoints
assert i == value.shape[0], "Did not run through all the points. %i %i" %(i, value.shape[0])
return VFock
#Miscellaneous
def get_basis_set_correction(self, grid):
return basis_set_correction(self, grid)

542
n2v.patched/inverter.py Executable file
View file

@ -0,0 +1,542 @@
"""
Inverter.py
"""
from warnings import warn
from dataclasses import dataclass
import numpy as np
from opt_einsum import contract
from .methods.zmp import ZMP
from .methods.wuyang import WuYang
from .methods.pdeco import PDECO
from .methods.oucarter import OC
from .methods.mrks import MRKS
from .methods.direct import Direct
#Grider was imported by Ehsan
from .grid.grider import Grider
@dataclass
class V:
"""Stores Potentials on AO"""
T : np.ndarray
class E:
"""Stores Energies"""
# Grider was added by Ehsan
class Inverter(Direct, ZMP, WuYang, PDECO, OC, MRKS, Grider):
"""
Attributes:
----------
mol : Engine.molecule
Molecule class of engine used
basis : Engine.basis
Basis class of engine used
basis_str : str
Basis set
nbf : int
Number of basis functions for main calculation
nalpha : int
Number of alpha electrons
nbeta : int
Number of beta electrons
ref : {1,2}
Reference calculation
1 -> Restricted
2 -> Unrestricted
Dt : List
List of np.ndarray for target density matrices (on AO).
ct : List
List of np.ndarray for input occupied orbitals. This might not be correct for post-HartreeFock methods.
pbs_str: string
name of Potential basis set
pbs : Engine.basis
Basis class for Potential basis set of the engine used.
npbs : int
the length of pbs
v_pbs : np.ndarray shape (npbs, ) for ref==1 and (2*npbs, ) for ref==2.
potential vector on the Potential Baiss Set.
If the potential is not represented on the basis set, this should
remain 0. It will be initialized to a 0 array. One can set this
value for initial guesses before Wu-Yang method (WY) or PDE-Constrained
Optimization method (PDE-CO). For example, if PDE-CO is ran after
a WY calculation, the initial for PDE-CO will be the result of WY
if v_pbs is not zeroed.
S2 : np.ndarray
The ao overlap matrix (i.e. S matrix)
S3 : np.ndarray
The three ao overlap matrix (ao, ao, pbs)
S4 : np.ndarray
The four ao overlap matrix, the size should be (ao, ao, ao, ao)
jk : Engine.jk
Engine jk object.
T : np.ndarray
kinetic matrix on ao
V : np.ndarray
external potential matrix on ao
T_pbs: np.ndarray
kinetic matrix on pbs. Useful for regularization.
guide_potential_components: list of string
guide potential components name
va, vb: np.ndarray of shape (nbasis, nbasis)
guide potential Fock matrix.
"""
def __init__( self, engine='psi4' ):
engine = 'psi4'
self.eng_str = engine.lower()
if engine.lower() == 'psi4':
from .engines import Psi4Engine
self.eng = Psi4Engine()
elif engine.lower() == 'pyscf':
from .engines import PySCFEngine
self.eng = PySCFEngine()
else:
raise ValueError("Engine name is incorrect. The availiable engines are: {psi4, pyscf}")
def __repr__( self ):
return "n2v.Inverter"
def set_system( self, molecule, basis, ref=1, pbs='same' , **kwargs):
"""
Stores relevant information and intitializes Engine
Parameters
----------
molecule: Engine.molecule
Molecule object of selected engine
basis: str
Basis set of the main calculation
ref: int
reference for system. Restricted -> 1
Unrestricted -> 2
pbs: str, default='same'
Basis set for the potential
**kwargs:
Optional Parameters for different Engiens
Psi4 Engine:
wfn : psi4.core.{RHF, UHF, RKS, UKS, Wavefunction, CCWavefuncion...}
Psi4 wavefunction object
PySCF Engine:
None
"""
# Communicate TO engine
self.eng.set_system(molecule, basis, ref, pbs, **kwargs)
self.ref = ref
#added by Ehsan
self.basis = basis
#added by Ehsan
self.molecule = molecule
self.nalpha = self.eng.nalpha
self.nbeta = self.eng.nbeta
# Initialize ecompasses everything the engine builds with basis set
self.eng.initialize()
self.set_basis_matrices()
# Receive FROM engine
self.nbf = self.eng.nbf
self.npbs = self.eng.npbs
self.v_pbs = np.zeros( (self.npbs) ) if self.ref == 1 \
else np.zeros( 2 * self.npbs )
@classmethod
def from_wfn( self, wfn, pbs='same' ):
"""
Generates Inverter directly from wavefunction.
Parameters
----------
wfn: Psi4.Core.{RHF, RKS, ROHF, CCWavefunction, UHF, UKS, CUHF}
Wavefunction Object
Returns
-------
inv: n2v.Inverter
Inverter Object.
"""
from .engines import Psi4Engine
inv = self( engine='psi4' )
inv.eng = Psi4Engine()
ref = 1 if wfn.to_file()['boolean']['same_a_b_dens'] else 2
inv.set_system( wfn.molecule(), wfn.basisset().name(), pbs=pbs, ref=ref, wfn=wfn )
# done by Ehsan
#inv.Dt = [ np.array(wfn.Da()), np.array(wfn.Db()) ]
self.Dt = [ np.array(wfn.Da()), np.array(wfn.Db()) ]
# done by Ehsan
#inv.ct = [ np.array(wfn.Ca_subset("AO", "OCC")), np.array(wfn.Cb_subset("AO", "OCC")) ]
# ct contains matrices of occupied orbitals alpah and betta (n x m)
self.ct = [ np.array(wfn.Ca_subset("AO", "OCC")), np.array(wfn.Cb_subset("AO", "OCC")) ]
inv.et = [ np.array(wfn.epsilon_a_subset("AO", "OCC")), np.array(wfn.epsilon_b_subset("AO", "OCC")) ]
inv.eng_str = 'psi4'
inv.eng.wfn = wfn
return inv
def set_basis_matrices( self ):
"""
Generate basis dependant matrices
"""
self.T = self.eng.get_T()
self.V = self.eng.get_V()
self.A = self.eng.get_A()
self.S2 = self.eng.get_S()
self.S3 = self.eng.get_S3()
if self.eng.pbs_str != 'same':
self.T_pbs = self.eng.get_Tpbas()
self.S4 = None
def compute_hartree( self, Cocc_a, Cocc_b ):
"""
Computes Hartree Potential on AO basis set.
Parameters
----------
Cocc_a, Cocc_b: np.ndarray (nbf, nbf)
Occupied orbitals in ao basis
Returns
-------
J: List of np.ndarray
Hartree potential due to density from Cocc_a and Cocc_b
"""
return self.eng.compute_hartree(Cocc_a, Cocc_b )
def diagonalize( self, matrix, ndocc ):
"""
Diagonalizes Fock Matrix
Parameters
----------
marrix: np.ndarray
Matrix to be diagonalized
ndocc: int
Number of occupied orbitals
Returns
-------
C: np.ndarray
Orbital Matrix
Cocc: np.ndarray
Occupied Orbital Matrix
D: np.ndarray
Density Matrix
eigves: np.ndarray
Eigenvalues
"""
# np.linalg.eigh() gives eigenvalues and eigenvectors for a symmetric matrix of choice
Fp = self.A.dot(matrix).dot(self.A)
# eigvecs must be eigenvalues or energies here!
eigvecs, Cp = np.linalg.eigh(Fp)
C = self.A.dot(Cp)
Cocc = C[:, :ndocc]
# contract converts pi and qi to pq . here two matrices with n x m dimension
#are converted to one matrix with n x n shape,
#In fact it gives the product of Cocc matrix and its transpose matrix
D = contract('pi,qi->pq', Cocc, Cocc)
return C, Cocc, D, eigvecs
def diagonalize_with_potential_vFock(self, v=None):
"""
Diagonalize Fock matrix with additional external potential
Stores values in object.
Parameters
----------
v: np.ndarray
Additional external potential to be added to hamiltonian along with:
Kinetic_nm
External_nm
Guide_Potential_nm
"""
if v is None:
fock_a = self.V + self.T + self.va
else:
if self.ref == 1:
fock_a = self.V + self.T + self.va + v
else:
valpha, vbeta = v
fock_a = self.V + self.T + self.va + valpha
fock_b = self.V + self.T + self.vb + vbeta
self.Ca, self.Coca, self.Da, self.eigvecs_a = self.diagonalize( fock_a, self.nalpha )
if self.ref == 1:
self.Cb, self.Cocb, self.Db, self.eigvecs_b = self.Ca.copy(), self.Coca.copy(), self.Da.copy(), self.eigvecs_a.copy()
else:
self.Cb, self.Cocb, self.Db, self.eigvecs_b = self.diagonalize( fock_b, self.nbeta )
# Actual Methods
def generate_components(self, guide_components, **keywords):
"""
Generates exact potential components to be added to
the Hamiltonian to aide in the inversion procedure.
Parameters:
-----------
guide_potential_components: list
Components added as to guide inversion.
Can be chosen from ["hartree", "fermi_amandi", "svwn"]
"""
self.guide_components = guide_components
self.va = np.zeros( (self.nbf, self.nbf) )
self.vb = np.zeros( (self.nbf, self.nbf) )
self.J0 = self.compute_hartree(self.ct[0], self.ct[1])
N = self.nalpha + self.nbeta
if self.eng_str == 'psi4':
J0_NO = self.eng.hartree_NO(self.Dt[0])
self.J0 = J0_NO if J0_NO is not None else self.J0
if guide_components == 'none':
warn("No guide potential was provided. Convergence may not be achieved")
elif guide_components == 'hartree':
self.va += self.J0[0] + self.J0[1]
self.vb += self.J0[0] + self.J0[1]
elif guide_components == 'fermi_amaldi':
v_fa = (1-1/N) * (self.J0[0] + self.J0[1])
self.va += v_fa
self.vb += v_fa
else:
raise ValueError("Guide component not recognized")
def invert(self, method,
guide_components = 'hartree',
opt_max_iter = 50,
**keywords):
"""
Handler to all available inversion methods
Parameters
----------
method: str
Method used to invert density.
Can be chosen from {wuyang, zmp, mrks, oc}.
See documentation below for each method.
guide_components: list, opt
Components added as to guide inversion.
Can be chosen from {"fermi_amandi", "svwn"}
Default: ["fermi_amaldi"]
opt_max_iter: int, opt
Maximum number of iterations inside the chosen inversion.
Default: 50
direct
------
Direct inversion of a set of Kohn-Sham equations.
$$v_{xc}(r) = \frac{1}{n(r)} \sum_i^N [\phi_i^{*} (r) \nabla^2 \phi_i(r) + \varepsilon_i | \phi_i(r)|^2] $$
Parameters:
-----------
grid: np.ndarray, opt
Grid where result will be expressed in.
If not provided, dft grid will be used instead.
wuyang
------
the Wu-Yang method:
The Journal of chemical physics 118.6 (2003): 2498-2509.
Parameters:
----------
opt_max_iter: int
maximum iteration
opt_method: string, opt
Method for scipy optimizer
Currently only used by wuyang and pdeco method.
Defaul: 'trust-krylov'
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
reg : float, opt
Regularization constant for Wuyant Inversion.
Default: None -> No regularization is added.
Becomes attribute of inverter -> inverter.lambda_reg
tol: float
tol for scipy.optimize.minimize
gtol: float
gtol for scipy.optimize.minimize: the gradient norm for
convergence
opt: dict
options for scipy.optimize.minimize
Notice that opt has lower priorities than opt_max_iter and gtol.
return:
the result are stored in self.v_pbs
zmp
---
The Zhao-Morrison-Parr Method:
Phys. Rev. A 50, 2138
Parameters:
----------
lambda_list: list
List of Lamda parameters used as a coefficient for Hartree
difference in SCF cycle.
zmp_mixing: float, optional
mixing \in [0,1]. How much of the new potential is added in.
For example, zmp_mixing = 0 means the traditional ZMP, i.e. all the potentials from previous
smaller lambda are ignored.
Zmp_mixing = 1 means that all the potentials of previous lambdas are accumulated, the larger lambda
potential are meant to fix the wrong/inaccurate region of the potential of the sum of the previous
potentials instead of providing an entire new potentials.
default: 1
opt_max_iter: float
Maximum number of iterations for scf cycle
opt_tol: float
Convergence criteria set for Density Difference and DIIS error.
return:
The result will be stored in self.proto_density_a and self.proto_density_b
For zmp_mixing==1, restricted (ref==1):
self.proto_density_a = \sum_i lambda_i * (Da_i - Dt[0]) - 1/N * (Dt[0])
self.proto_density_b = \sum_i lambda_i * (Db_i - Dt[1]) - 1/N * (Dt[1]);
unrestricted (ref==1):
self.proto_density_a = \sum_i lambda_i * (Da_i - Dt[0]) - 1/N * (Dt[0] + Dt[1])
self.proto_density_b = \sum_i lambda_i * (Db_i - Dt[1]) - 1/N * (Dt[0] + Dt[1]);
For restricted (ref==1):
vxc = \int dr' \frac{self.proto_density_a + self.proto_density_b}{|r-r'|}
= 2 * \int dr' \frac{self.proto_density_a}{|r-r'|};
for unrestricted (ref==2):
vxc_up = \int dr' \frac{self.proto_density_a}{|r-r'|}
vxc_down = \int dr' \frac{self.proto_density_b}{|r-r'|}.
To get potential on grid, one needs to do
vxc = self.on_grid_esp(Da=self.proto_density_a, Db=self.proto_density_b, grid=grid) for restricted;
vxc_up = self.on_grid_esp(Da=self.proto_density_a, Db=np.zeros_like(self.proto_density_a),
grid=grid) for unrestricted;
mRKS
----
the modified Ryabinkin-Kohut-Staroverov method:
Phys. Rev. Lett. 115, 083001
J. Chem. Phys. 146, 084103p
Parameters:
-----------
maxiter: int
same as opt_max_iter
vxc_grid: np.ndarray of shape (3, num_grid_points), opt
When this is given, the final result will be represented
v_tol: float, opt
convergence criteria for vxc Fock matrices.
default: 1e-4
D_tol: float, opt
convergence criteria for density matrices.
default: 1e-7
eig_tol: float, opt
convergence criteria for occupied eigenvalue spectrum.
default: 1e-4
frac_old: float, opt
Linear mixing parameter for current vxc and old vxc.
If 0, no old vxc is mixed in.
Should be in [0,1)
default: 0.5.
init: string or psi4.core.Wavefunction, opt
Initial guess method.
default: "SCAN"
1) If None, input wfn info will be used as initial guess.
2) If "continue" is given, then it will not initialize
but use the densities and orbitals stored. Meaningly,
one can run a quick WY calculation as the initial
guess. This can also be used to user speficified
initial guess by setting Da, Coca, eigvec_a.
3) If it's not continue, it would be expecting a
method name string that works for psi4. A separate psi4 calculation
would be performed.
sing: tuple of float of length 4, opt.
Singularity parameter for _vxc_hole_quadrature()
default: (1e-5, 1e-4, 1e-5, 1e-4)
[0]: atol, [1]: atol1 for dft_spherical grid calculation.
[2]: atol, [3]: atol1 for vxc_grid calculation.
return:
The result will be stored in self.grid.vxc
oc
--
Ou-Carter method
J. Chem. Theory Comput. 2018, 14, 56805689
Parameters:
-----------
maxiter: int
same as opt_max_iter
vxc_grid: np.ndarray of shape (3, num_grid_points)
The final result will be represented on this grid
default: 1e-4
D_tol: float, opt
convergence criteria for density matrices.
default: 1e-7
eig_tol: float, opt
convergence criteria for occupied eigenvalue spectrum.
default: 1e-4
frac_old: float, opt
Linear mixing parameter for current vxc and old vxc.
If 0, no old vxc is mixed in.
Should be in [0,1)
default: 0.5.
init: string, opt
Initial guess method.
default: "SCAN"
1) If None, input wfn info will be used as initial guess.
2) If "continue" is given, then it will not initialize
but use the densities and orbitals stored. Meaningly,
one can run a quick WY calculation as the initial
guess. This can also be used to user speficified
initial guess by setting Da, Coca, eigvec_a.
3) If it's not continue, it would be expecting a
method name string that works for psi4. A separate psi4 calculation
would be performed.
wuyang
pdeco
-----
the PDE-Constrained Optimization method:
Int J Quantum Chem. 2018;118:e25425;
Nat Commun 10, 4497 (2019).
Parameters:
----------
opt_max_iter: int
maximum iteration
opt_method: string, opt
Method for scipy optimizer
Currently only used by wuyang and pdeco method.
Defaul: 'L-BFGS-B'
Options: ['L-BFGS-B', 'BFGS']
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
reg : float, opt
Regularization constant for Wuyant Inversion.
Default: None -> No regularization is added.
Becomes attribute of inverter -> inverter.lambda_reg
gtol: float
gtol for scipy.optimize.minimize: the gradient norm for
convergence
opt: dict
options for scipy.optimize.minimize
Notice that opt has lower priorities than opt_max_iter and gtol.
return:
the result are stored in self.v_pbs
"""
self.generate_components(guide_components)
if method.lower() == "direct":
return self.direct_inversion(**keywords)
elif method.lower() == "wuyang":
self.wuyang(opt_max_iter, **keywords)
elif method.lower() == "zmp":
self.zmp(opt_max_iter, **keywords)
elif method.lower() == "mrks":
if self.eng_str == 'pyscf':
raise ValueError("mRKS method not yet available with the PySCF engine. Try another method or another engine.")
return self.mRKS(opt_max_iter, **keywords)
elif method.lower() == 'oc':
if self.eng_str == 'pyscf':
raise ValueError("OuCarter method not yet available with the PySCF engine. Try another method or another engine.")
return self.oucarter(opt_max_iter, **keywords)
elif method.lower() == 'pdeco':
return self.pdeco(opt_max_iter, **keywords)
else:
raise ValueError(f"Inversion method not available. Methods available: {['wuyang', 'zmp', 'mrks', 'oc', 'pdeco']}")

394
n2v.patched/methods/zmp.py Executable file
View file

@ -0,0 +1,394 @@
"""
zmp.py
Functions associated with zmp inversion
"""
import psi4
psi4.core.be_quiet()
import numpy as np
from functools import reduce
eps = np.finfo(float).eps
#added by Ehsan
import matplotlib.pyplot as plt
class ZMP():
"""
ZMP Class
Performs ZMP optimization according to:
1) 'From electron densities to Kohn-Sham kinetic energies, orbital energies,
exchange-correlation potentials, and exchange-correlation energies' by
Zhao + Morrison + Parr.
https://doi.org/10.1103/PhysRevA.50.2138
"""
def zmp(self,
opt_max_iter=100,
opt_tol= psi4.core.get_option("SCF", "D_CONVERGENCE"),
lambda_list=[70],
zmp_mixing = 1,
print_scf = False,
):
"""
Performs ZMP optimization according to:
1) 'From electron densities to Kohn-Sham kinetic energies, orbital energies,
exchange-correlation potentials, and exchange-correlation energies' by
Zhao + Morrison + Parr.
https://doi.org/10.1103/PhysRevA.50.2138
Additional DIIS algorithms obtained from:
2) 'Psi4NumPy: An interactive quantum chemistry programming environment
for reference implementations and rapid development.' by
Daniel G.A. Smith and others.
https://doi.org/10.1021/acs.jctc.8b00286
Functionals that drive the SCF procedure are obtained from:
https://doi.org/10.1002/qua.26400
Parameters:
-----------
lambda_list: list
List of Lamda parameters used as a coefficient for Hartree
difference in SCF cycle.
zmp_mixing: float, optional
mixing \in [0,1]. How much of the new potential is added in.
For example, zmp_mixing = 0 means the traditional ZMP, i.e. all the potentials from previous
smaller lambda are ignored.
Zmp_mixing = 1 means that all the potentials of previous lambdas are accumulated, the larger lambda
potential are meant to fix the wrong/inaccurate region of the potential of the sum of the previous
potentials instead of providing an entire new potentials.
default: 1
opt_max_iter: float
Maximum number of iterations for scf cycle
opt_tol: float
Convergence criteria set for Density Difference and DIIS error.
return:
The result will be stored in self.proto_density_a and self.proto_density_b
For zmp_mixing==1, restricted (ref==1):
self.proto_density_a = \sum_i lambda_i * (Da_i - Dt[0]) - 1/N * (Dt[0])
self.proto_density_b = \sum_i lambda_i * (Db_i - Dt[1]) - 1/N * (Dt[1]);
unrestricted (ref==1):
self.proto_density_a = \sum_i lambda_i * (Da_i - Dt[0]) - 1/N * (Dt[0] + Dt[1])
self.proto_density_b = \sum_i lambda_i * (Db_i - Dt[1]) - 1/N * (Dt[0] + Dt[1]);
For restricted (ref==1):
vxc = \int dr' \frac{self.proto_density_a + self.proto_density_b}{|r-r'|}
= 2 * \int dr' \frac{self.proto_density_a}{|r-r'|};
for unrestricted (ref==2):
vxc_up = \int dr' \frac{self.proto_density_a}{|r-r'|}
vxc_down = \int dr' \frac{self.proto_density_b}{|r-r'|}.
To get potential on grid, one needs to do
vxc = self.on_grid_esp(Da=self.proto_density_a, Db=self.proto_density_b, grid=grid) for restricted;
vxc_up = self.on_grid_esp(Da=self.proto_density_a, Db=np.zeros_like(self.proto_density_a),
grid=grid) for unrestricted;
"""
self.diis_space = 100
self.mixing = zmp_mixing
print("\nRunning ZMP:")
self.zmp_scf(lambda_list, opt_max_iter, print_scf, D_conv=opt_tol)
def zmp_scf(self,
lambda_list,
maxiter,
print_scf,
D_conv):
"""
Performs scf cycle
Parameters:
zmp_functional: options the penalty term.
But others are not currently working except for Hartree penalty (original ZMP).
----------
"""
# Target density on grid
if self.ref == 1:
# density() is a method in the class Psi4Grider() in module psi4grider.py (added by Ehsan)
D0 = self.eng.grid.density(Da=self.Dt[0])
else:
D0 = self.eng.grid.density(Da=self.Dt[0], Db=self.Dt[1])
# Initialize Stuff
vc_previous_a = np.zeros((self.nbf, self.nbf))
vc_previous_b = np.zeros((self.nbf, self.nbf))
self.Da = self.Dt[0]
self.Db = self.Dt[1]
Da = self.Dt[0]
Db = self.Dt[1]
Cocca = self.ct[0]
#print("Cocca: ", Cocca, type(Cocca))
Coccb = self.ct[1]
grid_diff_old = 1/np.finfo(float).eps
self.proto_density_a = np.zeros_like(Da)
self.proto_density_b = np.zeros_like(Db)
#-------------> Iterating over lambdas:
Ddif = []
L = []
for lam_i in lambda_list:
self.shift = 0.1 * lam_i
D_old = self.Dt[0]
# Trial & Residual Vector Lists
state_vectors_a, state_vectors_b = [], []
error_vectors_a, error_vectors_b = [], []
for SCF_ITER in range(1,maxiter):
#-------------> Generate Fock Matrix:
vc = self.generate_s_functional(lam_i,
Cocca, Coccb,
Da, Db)
#Equation 10 of Reference (1). Level shift.
Fa = self.T + self.V + self.va + vc[0] + vc_previous_a
Fa += (self.S2 - reduce(np.dot, (self.S2, Da, self.S2))) * self.shift
#added by Ehsan: a function (np.dot : dot product) applies on an iterable (self.S2, Da, self.S2) and gives one output (a new matrix)
if self.ref == 2:
Fb = self.T + self.V + self.vb + vc[1] + vc_previous_b
Fb += (self.S2 - reduce(np.dot, (self.S2, Db, self.S2))) * self.shift
#-------------> DIIS:
if SCF_ITER > 1:
#Construct the AO gradient
# r = (A(FDS - SDF)A)_mu_nu
# added by Ehsan (self.A: Inverse squared root of S matrix), grad_a is a matrix showing the gradients
grad_a = self.A.dot(Fa.dot(Da).dot(self.S2) - self.S2.dot(Da).dot(Fa)).dot(self.A)
grad_a[np.abs(grad_a) < eps] = 0.0
if SCF_ITER < self.diis_space:
state_vectors_a.append(Fa.copy())
error_vectors_a.append(grad_a.copy())
else:
state_vectors_a.append(Fa.copy())
error_vectors_a.append(grad_a.copy())
del state_vectors_a[0]
del error_vectors_a[0]
#Build inner product of error vectors
#dimension of the DIIS subspace = Bdim (by Ehsan)
Bdim = len(state_vectors_a)
# one column and one row are added to the matrix to be fiiled with -1 (this is part of the DIIS prodecure)
#np.empty: the elements of the array will initially contain whatever data was already in the memory allocated for the array
Ba = np.empty((Bdim + 1, Bdim + 1))
# sets the last row and the last column of the matrix Ba to -1
Ba[-1, :] = -1
Ba[:, -1] = -1
Ba[-1, -1] = 0
Bb = Ba.copy()
for i in range(len(state_vectors_a)):
for j in range(len(state_vectors_a)):
# Ba[i,j] will be a number made of the sum of inner products of corresponding elements in matrices
Ba[i,j] = np.einsum('ij,ij->', error_vectors_a[i], error_vectors_a[j])
#Build almost zeros matrix to generate inverse.
RHS = np.zeros(Bdim + 1)
RHS[-1] = -1
#Find coefficient matrix:
# x = np.linalg.solve(A, b) Solve the linear system A*x = b
Ca = np.linalg.solve(Ba, RHS.copy())
Ca[np.abs(Ca) < eps] = 0.0
#Generate new fock Matrix:
Fa = np.zeros_like(Fa)
# .shape[0] gives the number of rows in a 2D array
for i in range(Ca.shape[0] - 1):
Fa += Ca[i] * state_vectors_a[i]
#diis_error_a is the maximum error element in the last error vectors matrix
diis_error_a = np.max(np.abs(error_vectors_a[-1]))
if self.ref == 1:
Fb = Fa.copy()
diis_error = 2 * diis_error_a
else:
grad_b = self.A.dot(Fb.dot(Db).dot(self.S2) - self.S2.dot(Db).dot(Fb)).dot(self.A)
grad_b[np.abs(grad_b) < eps] = 0.0
if SCF_ITER < self.diis_space:
state_vectors_b.append(Fb.copy())
error_vectors_b.append(grad_b.copy())
else:
state_vectors_b.append(Fb.copy())
error_vectors_b.append(grad_b.copy())
del state_vectors_b[0]
del error_vectors_b[0]
for i in range(len(state_vectors_b)):
for j in range(len(state_vectors_b)):
Bb[i,j] = np.einsum('ij,ij->', error_vectors_b[i], error_vectors_b[j])
diis_error_b = np.max(np.abs(error_vectors_b[-1]))
diis_error = diis_error_a + diis_error_b
Cb = np.linalg.solve(Bb, RHS.copy())
Cb[np.abs(Cb) < eps] = 0.0
Fb = np.zeros_like(Fb)
for i in range(Cb.shape[0] - 1):
Fb += Cb[i] * state_vectors_b[i]
# for the first iteration the error is set to 1.0
else:
diis_error = 1.0
#-------------> Diagonalization | Check convergence:
# diagonalize() method has been defined in inventer.py . the inputs are fock matrix and number of occupied orbitals
# this is to find the new density matrix. Here the eigenfunction is solved to get eigenvalues and coefficients
Ca, Cocca, Da, eigs_a = self.diagonalize(Fa, self.nalpha)
# eigs_a is a one dimensioanl matrix (size = nbf) of eigenvalues or enrgies
if self.ref == 2:
Cb, Coccb, Db, eigs_b = self.diagonalize(Fb, self.nbeta)
else:
Cb, Coccb, Db, eigs_b = Ca.copy(), Cocca.copy(), Da.copy(), eigs_a.copy()
#difference of the new and old density matrices
ddm = D_old - Da
D_old = Da
# the maximum element in the differnce denstiy matrix is taken as the density error value
derror = np.max(np.abs(ddm))
if print_scf:
if np.mod(SCF_ITER,5) == 0.0:
print(f"Iteration: {SCF_ITER:3d} | Self Convergence Error: {derror:10.5e} | DIIS Error: {diis_error:10.5e}")
#DIIS error may improve as fast as the D_conv. Relax the criteria an order of magnitude.
if abs(derror) < D_conv and abs(diis_error) < D_conv*10:
# here SCF convergence is reached
break
if SCF_ITER == maxiter - 1:
raise ValueError("ZMP Error: Maximum Number of SCF cycles reached. Try different settings.")
if self.ref == 1:
# map the current density on grid with n points depending on the size of basis set
density_current = self.eng.grid.density(Da=Da)
else:
density_current_a = self.eng.grid.density(Da=Da, Db=Db)
#the difference between the current and exact density is evaluated on grid
grid_diff = np.max(np.abs(D0 - density_current))
if np.abs(grid_diff_old) < np.abs(grid_diff):
# This is a greedy algorithm: if the density error stopped improving for this lambda, we will stop here.
print(f"\nZMP halted at lambda={lam_i}. Density Error Stops Updating: old: {grid_diff_old}, current: {grid_diff}.")
break
grid_diff_old = grid_diff
print(f"SCF Converged for lambda:{int(lam_i):5d}. Max density difference: {grid_diff}")
#added by Ehsan
Ddif.append(grid_diff)
L.append(lam_i)
# D0 is on grid. density_current is also on grid.
# Dt[Dta,Dtb] and Da or Db are just arrays or matrices
self.proto_density_a += lam_i * (Da - self.Dt[0]) * self.mixing
if self.ref == 2:
self.proto_density_b += lam_i * (Db - self.Dt[1]) * self.mixing
else:
self.proto_density_b = self.proto_density_a.copy()
vc_previous_a += vc[0] * self.mixing
if self.ref == 2:
#add a portion of previous vc to the new one
vc_previous_b += vc[1] * self.mixing
# this is the lambda that is already proven to be improving the density, i.e. the corresponding
# potential has updated to proto_density
successful_lam = lam_i
# The proto_density corresponds to successful_lam
successful_proto_density = [(Da - self.Dt[0]), (Db - self.Dt[1])]
# -------------> END Iterating over lambdas:
#added by Ehsan
plt.plot(L, Ddif)
plt.xlabel('Lambda')
plt.ylabel('Delta-Density')
plt.title(f"basis set: {self.basis}")
plt.savefig('Lam_D_' + self.basis+ '.pdf')
plt.close()
self.proto_density_a += successful_lam * successful_proto_density[0] * (1 - self.mixing)
if self.guide_components.lower() == "fermi_amaldi":
# for ref==1, vxc = \int dr (proto_density_a + proto_density_b)/|r-r'| - 1/N*vH
if self.ref == 1:
self.proto_density_a -= (1 / (self.nalpha + self.nbeta)) * (self.Dt[0])
# for ref==1, vxc = \int dr (proto_density_a)/|r-r'| - 1/N*vH
else:
self.proto_density_a -= (1 / (self.nalpha + self.nbeta)) * (self.Dt[0] + self.Dt[1])
self.Da = Da
self.Ca = Ca
self.Coca = Cocca
self.eigvecs_a = eigs_a
if self.ref == 2:
self.proto_density_b += successful_lam * successful_proto_density[1] * (1 - self.mixing)
if self.guide_components.lower() == "fermi_amaldi":
# for ref==1, vxc = \int dr (proto_density_a + proto_density_b)/|r-r'| - 1/N*vH
# an inner if caluse with an opposite condition!!!
if self.ref == 1:
self.proto_density_b -= (1 / (self.nalpha + self.nbeta)) * (self.Dt[1])
# for ref==1, vxc = \int dr (proto_density_a)/|r-r'| - 1/N*vH
else:
self.proto_density_b -= (1 / (self.nalpha + self.nbeta)) * (self.Dt[0] + self.Dt[1])
self.Db = Db
self.Cb = Cb
self.Cocb = Coccb
self.eigvecs_b = eigs_b
else:
self.proto_density_b = self.proto_density_a.copy()
self.Db = self.Da.copy()
self.Cb = self.Ca.copy()
self.Cocb = self.Coca.copy()
self.eigvecs_b = self.eigvecs_a.copy()
def generate_s_functional(self, lam, Cocca, Coccb, Da, Db):
"""
Generates S_n Functional as described in:
https://doi.org/10.1002/qua.26400
"""
# J is the Coulomb Matrix (note added by Ehsan)
J = self.eng.compute_hartree(Cocca, Coccb)
# J is computed from the occupied orbitals with the compoute_hartree() method in engine/psi4.py
# the matrix Cocc is typically an n×m matrix, where n is the total number of basis functions and m is the number of occupied orbitals.
# J[0] corresponds to the Coulomb Matrix based on alpha occupied orbitals (note added by Ehsan)
# Here density (D0) is not directly used!
#D0 = Cocc x Cocc*+, Cocc*+ is the conjugate transpose of the coefficient matrix of occupied orbitals
#Equation 7 of Reference (1), which gives Vc(r) for each lambda (original ZMP paper)
if self.ref == 1:
vc_a = 2 * lam * ( J[0] - self.J0[0] )
self.vca = J[0] - self.J0[0]
vc = [vc_a]
else:
vc_a = lam * ( J[0] - self.J0[0] )
vc_b = lam * ( J[1] - self.J0[1] )
vc = [vc_a, vc_b]
# in practice Vc(r) will be a matrix (nbf x nbf) obtained from the difference between two Coulomb matrices
return vc

48
start.py Normal file
View file

@ -0,0 +1,48 @@
import n2v
import psi4
H2O = psi4.geometry(
"""
0 1
O 0.000000 0.000000 0.000000
H 0.757459 0.586790 0.000000
H -0.757459 0.586790 0.000000
noreorient
nocom
units bohr
symmetry c1
""" )
#n2v is driven by psi4's reference option. Make sure you set it accordingly.
psi4.set_options({"reference" : "rhf"})
#Perform a calculation for a target density.
#Remember that for post scf calculations, Psi4 does not update the density.
#Thus make sure you obtain something like a dipole in order to do so.
e, wfn = psi4.properties("ccsd/cc-pvtz", return_wfn=True, properties=["dipole"], molecule=H2O)
#Define inverter objects for each molcule. Simply use the wnf object from psi4 as an argument.
ine = n2v.Inverter()
ine.set_system(H2O, "cc-pvtz",wfn=wfn)
ine.from_wfn(wfn)
# how to change the increase lambda
start = 1
stop = 1000
step = 2
lam_list = []
lam = start
for i in range(int(start), int(stop), int(step)):
lam_list.append(i)
# do zmp
ine.invert("zmp", guide_components='fermi_amaldi', opt_max_iter=2000, opt_tol=1e-7, zmp_mixing=0, print_scf=False,
lambda_list=lam_list)
print(ine)

106
zmp_xc.py Normal file
View file

@ -0,0 +1,106 @@
import os
import psi4
import matplotlib.pyplot as plt
import numpy as np
# import numpy_html
psi4.set_options({"save_jk" : True})
psi4.set_memory(int(2.50e9))
psi4.core.clean()
import n2v
import matplotlib as mpl
mpl.rcParams["font.size"] = 11
mpl.rcParams["font.family"] = "sans-serif"
mpl.rcParams["axes.edgecolor"] = "#eae8e9"
#Define Psi4 geometries. Symmetries need to be set to C1.
Ne = psi4.geometry(
"""
0 1
Ne 0.0 0.0 0.0
noreorient
nocom
units bohr
symmetry c1
""" )
#n2v is driven by psi4's reference option. Make sure you set it accordingly.
psi4.set_options({"reference" : "rhf"})
#Perform a calculation for a target density.
#Remember that for post scf calculations, Psi4 does not update the density.
#Thus make sure you obtain something like a dipole in order to do so.
e, wfn = psi4.properties("CCSD/aug-cc-pvtz", return_wfn=True, properties=["dipole"], molecule=Ne)
arrDa = wfn.Da().to_array()
arrDb = wfn.Db().to_array()
diff = arrDa - arrDb
sum_difference = sum(sum(row) for row in diff)
#Define inverter objects for each molcule. Simply use the wnf object from psi4 as an argument.
inv = n2v.Inverter('psi4')
inv.set_system(Ne, 'aug-cc-pvtz', wfn=wfn)
inv.Dt = [ np.array(wfn.Da()), np.array(wfn.Db()) ]
inv.ct = [ np.array(wfn.Ca_subset("AO", "OCC")), np.array(wfn.Cb_subset("AO", "OCC")) ]
inv.et = [ np.array(wfn.epsilon_a_subset("AO", "OCC")), np.array(wfn.epsilon_b_subset("AO", "OCC"))]
# Additionally one can simply initialize an Inverter using the wavefunction.
inv = n2v.Inverter.from_wfn(wfn)
# Let us define a plotting grid:
npoints=1001
x = np.linspace(-5,5,npoints)[:,None]
y = np.zeros_like(x)
z = y
grid = np.concatenate((x,y,z), axis=1).T
mix = [0.0, 0.1, 0.5, 1.0]
vxc_lab = ['Vxc_mix0', 'Vxc_mix0.5', 'Vxc_mix_1.0']
vxc_dic = {}
for m in mix:
inv.invert("zmp", opt_max_iter=200, opt_tol=1e-7, zmp_mixing=m,
lambda_list=np.linspace(10, 1000, 20), guide_components="fermi_amaldi")
inv.eigvecs_a[:inv.nalpha]
np.diag(inv.Da)[:inv.nalpha]
results = inv.eng.grid.esp(Da=inv.proto_density_a, Db=inv.proto_density_b, grid=grid, )
vxc_dic[m] = results[1]
for k,v in vxc_dic.items():
plt.plot(x, v, label="Vxc_mix_"+str(k))
plt.legend()
plt.xlim(-5,5)
fig, ax = plt.subplots()
ls = ["solid","--", "-.", "-."]
i = 0
for k,v in vxc_dic.items():
ax.plot(x, v, label="vxc_mix_"+str(k), ls=ls[i])
i += 1
ax.set_title("Neon Exchange Correlation Potenial")
ax.legend()
ax.set_xlim(1e-5,5)
ax.set_xscale("log")
#ax.set_title("Neon Exchange Correlation Potential")
#ax.legend()
#ax.set_xlim(-5,5)
pltname = '_Vxc_' + '.pdf'
plt.savefig(pltname)
plt.close()
plt.show()
plt.close()