This commit is contained in:
dino.celebic 2025-11-25 19:21:38 +01:00
commit 36a12731ef
8 changed files with 185 additions and 6 deletions

57
ex4/code/task_a.py Normal file
View file

@ -0,0 +1,57 @@
import numpy as np
import matplotlib.pyplot as plt
# PDE:
# -u''(x) + a*u(x) = f(x) x in (0,1)
# u(0) = 0
# u'(1) = \alpha*(g_b - u(1))
# parameters
a = 1
f = 3
alpha = 1
gb = 1
n = 10 # elements
# mesh
m = n+1 # nodes
h = 1.0/n
x = np.linspace(0,1,m)
# local stiffness matrix
K_loc = np.zeros((2,2))
A = (1.0/h) * np.array([[ 1,-1], [-1, 1]])
B = (a*h/6) * np.array([[ 2, 1], [ 1, 2]])
K_loc = A+B
# Assembling
K = np.zeros((m,m))
F = np.zeros(m)
for i in range(n):
K[i:i+2,i:i+2] += K_loc
F[i:i+2] += np.full(2, f*h/2)
# Boundary conditions
# Dirichlet: u(0) = 0
K[0,:] = 0
K[0,0] = 1
F[0] = 0
# Neumann: u'(1) = \alpha*(g_b - u(1))
A[-1,-1] += alpha
F[-1] += alpha*gb
u = np.linalg.solve(K, F)
plt.plot(x, u, "-o", label="u_h")
plt.title(f"n = {n} | h = {h} | a = {a} | f(x) = {f} | alpha = {alpha} | gb = {gb}")
plt.xlabel("x")
plt.ylabel("u(x)")
plt.legend()
plt.grid(True)
print("K = ", K)
print("f = ", F)
print("u = ", u)
plt.tight_layout()
plt.savefig("../task_a.png", dpi=300)
plt.show()

61
ex4/code/task_b.py Normal file
View file

@ -0,0 +1,61 @@
import numpy as np
import matplotlib.pyplot as plt
# PDE:
# -(lambda(x)u'(x))' = 0 x in (0,1)
# u(0) = 0
# u(1) = 1
# lambda(x) = | 1 x in (0,1/sqrt(2))
# | 10 x in (1/sqrt(2),1)
# parameters
n = 2 # elements (must be even)
# mesh
m = n+1 # nodes
nh = int(n/2) # elements per subdomain
mh = nh+1 # nodes per subdomain
jump = 1/np.sqrt(2)
x1 = np.linspace(0,jump, mh)
x2 = np.linspace(jump, 1, mh)
x = np.concatenate((x1[:-1],x2))
h1 = jump/nh
h2 = (1-jump)/nh
# local stiffness matrix
K_loc1 = ( 1.0/h1) * np.array([[ 1,-1], [-1, 1]])
K_loc2 = (10.0/h2) * np.array([[ 1,-1], [-1, 1]])
# Assembling
K = np.zeros((m,m))
F = np.zeros(m)
for i in range(nh):
K[i:i+2,i:i+2] += K_loc1
for i in range(nh,n):
K[i:i+2,i:i+2] += K_loc2
# Boundary conditions
# Dirichlet: u(0) = 0
K[0,:] = 0
K[0,0] = 1
F[0] = 0
# Dirichlet: u(1) = 1
K[-1,:] = 0
K[-1,-1] = 1
F[-1] = 1
u = np.linalg.solve(K, F)
plt.plot(x, u, "-o", label="u_h")
plt.title(f"n = {n} (already exact)")
plt.xlabel("x")
plt.ylabel("u(x)")
plt.legend()
plt.grid(True)
print("K = ", K)
print("f = ", F)
print("u = ", u)
plt.tight_layout()
plt.savefig("../task_b.png", dpi=300)
plt.show()

61
ex4/code/task_c.py Normal file
View file

@ -0,0 +1,61 @@
import numpy as np
import matplotlib.pyplot as plt
# Peclet problem:
# -u''(x) + pu'(x) = 0 x in (0,1)
# u(0) = 0
# u(1) = 1
# parameters
p = 70
n_values = [10,20,30,40,70] # elements
# exact solution
x_exact = np.linspace(0,1,1000)
u_exact = (np.exp(p*x_exact)-1)/(np.exp(p)-1)
for n in n_values:
# mesh
m = n+1 # nodes
h = 1.0/n
x = np.linspace(0,1,m)
# local stiffness matrix
K_loc = np.zeros((2,2))
A = (1.0/h) * np.array([[ 1,-1], [-1, 1]])
B = (p/2) * np.array([[ -1, 1], [ -1, 1]])
K_loc = A+B
# Assembling
K = np.zeros((m,m))
F = np.zeros(m)
for i in range(n):
K[i:i+2,i:i+2] += K_loc
# Boundary conditions
# Dirichlet: u(0) = 0
K[0,:] = 0
K[0,0] = 1
F[0] = 0
# Dirichlet: u(1) = 1
K[-1,:] = 0
K[-1,-1] = 1
F[-1] = 1
u = np.linalg.solve(K, F)
plt.plot(x, u, "-o", markersize=2, label=f"n = {n}")
plt.plot(x_exact, u_exact, "black", label="exact")
plt.title(f"p = {p}")
plt.xlabel("x")
plt.ylabel("u(x)")
plt.legend()
plt.grid(True)
print("K = ", K)
print("f = ", F)
print("u = ", u)
plt.tight_layout()
plt.savefig("../task_c.png", dpi=300)
plt.show()