scf_celebic/ex4/code/task_a.py
dino.celebic 36a12731ef ex4
2025-11-25 19:21:38 +01:00

57 lines
No EOL
1 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
# PDE:
# -u''(x) + a*u(x) = f(x) x in (0,1)
# u(0) = 0
# u'(1) = \alpha*(g_b - u(1))
# parameters
a = 1
f = 3
alpha = 1
gb = 1
n = 10 # elements
# mesh
m = n+1 # nodes
h = 1.0/n
x = np.linspace(0,1,m)
# local stiffness matrix
K_loc = np.zeros((2,2))
A = (1.0/h) * np.array([[ 1,-1], [-1, 1]])
B = (a*h/6) * np.array([[ 2, 1], [ 1, 2]])
K_loc = A+B
# Assembling
K = np.zeros((m,m))
F = np.zeros(m)
for i in range(n):
K[i:i+2,i:i+2] += K_loc
F[i:i+2] += np.full(2, f*h/2)
# Boundary conditions
# Dirichlet: u(0) = 0
K[0,:] = 0
K[0,0] = 1
F[0] = 0
# Neumann: u'(1) = \alpha*(g_b - u(1))
A[-1,-1] += alpha
F[-1] += alpha*gb
u = np.linalg.solve(K, F)
plt.plot(x, u, "-o", label="u_h")
plt.title(f"n = {n} | h = {h} | a = {a} | f(x) = {f} | alpha = {alpha} | gb = {gb}")
plt.xlabel("x")
plt.ylabel("u(x)")
plt.legend()
plt.grid(True)
print("K = ", K)
print("f = ", F)
print("u = ", u)
plt.tight_layout()
plt.savefig("../task_a.png", dpi=300)
plt.show()