-
© Copyright Franz Kappel, 2001
Web design by Alexei Kuntsevich
|
|
|
|
|
Selected Publications
Keyword(s): population models
- [1]
- H. T. Banks, L. W. Botsford,
F. Kappel, and C. Wang.
Modeling and estimation in size structured population models.
In T. G. Hallam, L. J. Gross, and S. A.
Levin, editors, Mathematical Ecology, pages
521–541, Singapoore, 1988. World Scientific Publ.
- [2]
- H. T. Banks and F. Kappel.
Transformation semigroups and L1-approximation
for size structured population models.
Semigroup Forum,
38:141–155, 1989.
- [3]
- H. T. Banks, L. W. Botsford,
F. Kappel, and C. Wang.
Estimation of parameters in age/size structured population models.
In M. Amouroux and A. El Jai, editors, Control
of Distributed Parameter Systems 1989, pages
383–388, ..., 1990.
- [4]
- H. T. Banks, L. W. Botsford,
and F. Kappel.
Estimation of growth and survival in size-structured cohort data: An
application to larval striped bass (morone saxatilis).
J. Math. Biology,
30:125–150, 1991.
- [5]
- H. T. Banks, F. Kappel, and
C. Wang.
Weak solutions and differentiability for size structured population
models.
In W. Desch, F. Kappel, and K. Kunisch,
editors, Estimation and Control of Distributed Parameter
Systems, volume 100 of ISNM (International
Series of Numerical Mathematics), pages 35–50,
Basel, 1991. Birkhäuser.
- [6]
- K. Ito, F. Kappel, and
G. Peichl.
A fully discretized approximation scheme for size structured population
models.
SIAM J. Numerical Analysis,
28:923–954, 1991.
-
- An efficient algorithm for computing
solutions to a class of models for size structured populations is
presented. Furthermore, some numerical examples are discussed.
- [7]
- F. Kappel and Kangpei Zhang.
Approximation of linear age-structured population models using Legendre
polynomials.
J. Math. Anal. Appl.,
180:518–549, 1993.
-
- We develop a numerical algorithm for
approximation of solutions for linear age–structured
population models. The construction is based on approximation of age
distributions by modified Legendre polynomials and uses the
Trotter-Kato theorem of semigroup theory for the corresponding abstract
Cauchy problem. Unbounded resp. nonintegrable mortality rates are
admissible.
- [8]
- F. Kappel.
Parameteridentification for state dependent delays originating from
threshold conditions.
In Proc. IEEE Mediterranean Symposium on New Directions in
Control Theory and Applications, June 21 - 23, 1993, Crete Chandris
Hotel, Maleme, Crete, Chania, 1993. Technical University
of Crete.
- [9]
- H. T. Banks, F. Kappel, and
C. Wang.
A semigroup formulation of a nonlinear size-structured distributed rate
population model.
In W. Desch, F. Kappel, and K. Kunisch,
editors, Control and Estimation of Distributed Parameter
Systems: Nonlinear Phenomena, volume 118 of ISNM
(International Series of Numerical Mathematics), pages
1–19, Basel, 1994. Birkhäuser.
|
|
|
|
|
|