Michael Kniely
Preprints
[11] | K. Hopf, M. Kniely, A. Mielke On the equilibrium solutions in a model for electro-energy-reaction-diffusion systems, Preprint, 2024. arXiv:2405.17289 |
Journal Articles
[10] | P. Bella, M. Kniely, Regularity of random elliptic operators with degenerate coefficients and applications to stochastic homogenization, Stochastics and Partial Differential Equations. Analysis and Computations 12(4):2246–2288, 2024. doi:10.1007/s40072-023-00322-9 |
[9] | K. Fellner, J. Fischer, M. Kniely, B. Q. Tang, Global renormalised solutions and equilibration of reaction–diffusion systems with nonlinear diffusion, Journal of Nonlinear Science 33(4), Paper No. 66, 2023. doi:10.1007/s00332-023-09926-w |
[8] | J. Fischer, K. Hopf, M. Kniely, A. Mielke, Global existence analysis of energy-reaction-diffusion systems, SIAM Journal on Mathematical Analysis 54(1):220–267, 2022. doi:10.1137/20M1387237 |
[7] | K. Fellner, M. Kniely, Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and self-consistent potential, Mathematical Methods in the Applied Sciences 44(17):13040–13059, 2021. doi:10.1002/mma.7604 |
[6] | J. Fischer, M. Kniely, Variance reduction for effective energies of random lattices in the Thomas–Fermi–von Weizsäcker model, Nonlinearity 33:5733–5772, 2020. doi:10.1088/1361-6544/ab9728 |
[5] | K. Fellner, M. Kniely, Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model, Journal of Elliptic and Parabolic Equations 6:529–598, 2020. doi:10.1007/s41808-020-00068-8 |
[4] | G. Friesecke, M. Kniely, New optimal control problems in density functional theory motivated by photovoltaics, Multiscale Modeling and Simulation 17:926–947, 2019. doi:10.1137/18M1207272 |
[3] | K. Fellner, M. Kniely, On the entropy method and exponential convergence to equilibrium for a recombination–drift–diffusion system with self-consistent potential, Applied Mathematics Letters 79:196–204, 2018. doi:10.1016/j.aml.2017.12.017 |
[1] | M. Kniely, W. Ring, Riemannian methods for optimization in a shape space of triangular meshes, Inverse Problems in Science and Engineering 23:1011–1039, 2015. doi:10.1080/17415977.2014.980243 |
Proceedings
[2] | C. Gattringer, M. Kniely, Dual simulation of finite density lattice QED at large mass, Proceedings of the 32nd International Symposium on Lattice Field Theory — PoS(LATTICE 2014) 206, 2015. doi:10.22323/1.214.0206 |
Books
[B1] | M. Kniely, Loop and Surface Representations for Finite Density Lattice QED, AV Akademikerverlag, Saarbrücken, 2015. ISBN:978-3-639-84132-9 |
Theses
[T3] | M. Kniely; Supervisors: Univ.-Prof. Dr.techn. Klemens Fellner, Prof. Dr. Gero Friesecke Mathematical modeling and analysis of PDE-models for semiconductor devices, PhD Thesis, Institute of Mathematics and Scientific Computing, University of Graz, 2017. |
[T2] | M. Kniely; Supervisor: Univ.-Prof. Dr.rer.nat. Christof Gattringer Loop and surface representations for lattice QED and related systems, Master Thesis, Institute of Physics, University of Graz, 2014. |
[T1] | M. Kniely; Supervisor: Ao.Univ.-Prof. Dr.techn. Wolfgang Ring Riemannian methods for optimization in shape space, Master Thesis, Institute of Mathematics and Scientific Computing, University of Graz, 2012. |