Michael Kniely

Preprints

[11]   K. Hopf, M. Kniely, A. Mielke
On the equilibrium solutions in a model for electro-energy-reaction-diffusion systems,
Preprint, 2024.
arXiv:2405.17289

Journal Articles

[10]   P. Bella, M. Kniely,
Regularity of random elliptic operators with degenerate coefficients and applications to stochastic homogenization,
Stochastics and Partial Differential Equations. Analysis and Computations 12(4):2246–2288, 2024.
doi:10.1007/s40072-023-00322-9
[9]   K. Fellner, J. Fischer, M. Kniely, B. Q. Tang,
Global renormalised solutions and equilibration of reaction–diffusion systems with nonlinear diffusion,
Journal of Nonlinear Science 33(4), Paper No. 66, 2023.
doi:10.1007/s00332-023-09926-w
[8]   J. Fischer, K. Hopf, M. Kniely, A. Mielke,
Global existence analysis of energy-reaction-diffusion systems,
SIAM Journal on Mathematical Analysis 54(1):220–267, 2022.
doi:10.1137/20M1387237
[7]   K. Fellner, M. Kniely,
Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and self-consistent potential,
Mathematical Methods in the Applied Sciences 44(17):13040–13059, 2021.
doi:10.1002/mma.7604
[6]   J. Fischer, M. Kniely,
Variance reduction for effective energies of random lattices in the Thomas–Fermi–von Weizsäcker model,
Nonlinearity 33:5733–5772, 2020.
doi:10.1088/1361-6544/ab9728
[5]   K. Fellner, M. Kniely,
Uniform convergence to equilibrium for a family of drift–diffusion models with trap-assisted recombination and the limiting Shockley–Read–Hall model,
Journal of Elliptic and Parabolic Equations 6:529–598, 2020.
doi:10.1007/s41808-020-00068-8
[4]   G. Friesecke, M. Kniely,
New optimal control problems in density functional theory motivated by photovoltaics,
Multiscale Modeling and Simulation 17:926–947, 2019.
doi:10.1137/18M1207272
[3]   K. Fellner, M. Kniely,
On the entropy method and exponential convergence to equilibrium for a recombination–drift–diffusion system with self-consistent potential,
Applied Mathematics Letters 79:196–204, 2018.
doi:10.1016/j.aml.2017.12.017
[1]   M. Kniely, W. Ring,
Riemannian methods for optimization in a shape space of triangular meshes,
Inverse Problems in Science and Engineering 23:1011–1039, 2015.
doi:10.1080/17415977.2014.980243

Proceedings

[2]   C. Gattringer, M. Kniely,
Dual simulation of finite density lattice QED at large mass,
Proceedings of the 32nd International Symposium on Lattice Field Theory — PoS(LATTICE 2014) 206, 2015.
doi:10.22323/1.214.0206

Books

[B1]   M. Kniely,
Loop and Surface Representations for Finite Density Lattice QED,
AV Akademikerverlag, Saarbrücken, 2015.
ISBN:978-3-639-84132-9

Theses

[T3]   M. Kniely; Supervisors: Univ.-Prof. Dr.techn. Klemens Fellner, Prof. Dr. Gero Friesecke
Mathematical modeling and analysis of PDE-models for semiconductor devices,
PhD Thesis, Institute of Mathematics and Scientific Computing, University of Graz, 2017.
[T2]   M. Kniely; Supervisor: Univ.-Prof. Dr.rer.nat. Christof Gattringer
Loop and surface representations for lattice QED and related systems,
Master Thesis, Institute of Physics, University of Graz, 2014.
[T1]   M. Kniely; Supervisor: Ao.Univ.-Prof. Dr.techn. Wolfgang Ring
Riemannian methods for optimization in shape space,
Master Thesis, Institute of Mathematics and Scientific Computing, University of Graz, 2012.