VU: Scientific Computing and FEM (4h)


Content: Parallel computing in the context of finite elements.

Lecturer
: Prof. Gundolf Haase, Heinrichstr. 36, Zi 506,

Implementation: in presence

Modus (Empfehlungen zu VU):

Week schedule

Thu , Oct 2
Hardware resources (login from outside KFU only via  VPN):
  • Mephisto at IMSC, or via jupyter-Server des IMWR.
  • Remote login to servers:
    • VPN to KFU is needed: install via VPN Service the software AnyConnect (configure as server: https://univpn.uni-graz.at;   login: KFU E-mail)
    • Linux: use ssh -X  143.50.47.xxx to connect to compute server
    • Windows: Install WinnSSHTerm with a guided installation of further packages (putty, winscp, X-Server)
Recall your C++:
Tue, Oct 7
Thu, Oct 9
Partial differential equations (PDEs): stationary, function spaces (notes)
  • modelling of heat conductivity [JL, §2]
  • classical formulation; boundary conditions, function spaces C
  • strong formulation, interface conditions
  • special modelling: long/thin domains, symmetry, rotational symmetry

bash:
make:
Tue, Oct 14
Thu, Oct 16
Partial differential equations (PDEs): stationary, function spaces (notes):
  • integral formulation (Gauß-Ostrogradski), differential formulation
  • distributions, weak derivative, Sobolev spaces (embedding) [JL, §3.1]
  • weak formulation, variational formulation
  • approximation of solution by sum of basis functions

git: IMSC, Gruppe, LV.
Tue, Oct 21
Thu, Oct 23
Discretization of domain (notes):
  • elements, vertices
  • basis functions with local support: finite element approximation
  • Sobolev spaces
  • variational formulation, Galjorkin method
    Schellbach (1851, 2024)
  • discrete representation of the continuous PDE problem
  • sparse system of equations: stiffness matrix, load vector
  • higher order basis functions

Ex 1
Tue, Oct 28
Thu, Oct 30

Some more aspects (notes, notes):
  • existence and uniqueness of solution; Lax-Milgram Lemma
  • compatibility in case of non-uniqueness
  • min-max principle (german, english)
  • discrete representation of above continuous theorems

Ex 2
Tue, Nov 4
Thu, Nov 6

Algorithmic aspects of FEM (notes)
  • domain description
  • meshing (quality)
  • generation of stiffness matrix and right hand side (sparsity pattern!, reference element): Intro into Finite Elements:  pdf.

Parallelization concept and FEM
  • Introduction into hardware and parallel concepts:  pdf (shared memory).
  • solving the (linear) system of equations
    • Iterative Methods: pdf
    • Geometrisches Multigrid:  pdf. [DHL §7, Vas §5]
    • Algebraic Multigrid: pdf.
Tue, Nov 11
Thu, Nov 13

Parallelization concept and FEM
  • Introduction into an FEM code
  • Parallel Finite Elements (OpenMP, MPI):  pdf.
  • Commented code for OpenMP and for MPI.

Ex 3
Tue, Nov 18
Thu, Nov 20
Tuesday, Nov 18: no lecture

Thursday, Nov. 20: no lecture
Tue, Nov 25
Thu, Nov 27

Parallelization concept and FEM: GPU

Ex 4
Tue, Dec 2
Thu, Dec 4
Solving the system of (linear) equations
  • Geometrisches Multigrid:  pdf. [DHL §7, Vas §5]
  • Algebraic Multigrid: pdf.
  • Improved parallelization: pdf, pdf.
  • Non-linear problem: pdf
  • Short summary on technical parallelization: pdf

Thursday, Dec 4: no lecture
Tue, Dec 9
Thu, Dec 11
Domain decomposition methods

Ex 5 (shm)
Thu, Jan 8
Lecture
Ex 7 (MPI)
Tue, Jan 13
Thu, Jan 15
Lecture
TBA
Tue, Jan 20
Thu, Jan 22
Consultation

Consultation
Tue, Jan 27
Thu, Jan 29

Project presentations


Exercise sheets:

  1. task: PDF (Oct 22, 2025).
  2. task: PDF (Oct 22, 2025),
  3. task: PDF (Nov 11, 2025),
  4. task: PDF (Nov 25, 2025),
  5. task: PDF (Dec 2, 2025),
  6. task: PDF (Jan 13, 2026),
  7. task: PDF (Jan 6, 2026),

Skriptum : xx


Literaturliste


Mitbeleger anderer Unis: Anleitung


Stand: Dec 9, 2025