VU: Scientific Computing and FEM (4h)


Content: Parallel computing in the context of finite elements.

Lecturer
: Prof. Gundolf Haase, Heinrichstr. 36, Zi 506,

Implementation: in presence

Modus (Empfehlungen zu VU):

Week schedule

Thu , Oct 2
Hardware resources (login from outside KFU only via  VPN):
  • Mephisto at IMSC, or via jupyter-Server des IMWR.
  • Remote login to servers:
    • VPN to KFU is needed: install via VPN Service the software AnyConnect (configure as server: https://univpn.uni-graz.at;   login: KFU E-mail)
    • Linux: use ssh -X  143.50.47.xxx to connect to compute server
    • Windows: Install WinnSSHTerm with a guided installation of further packages (putty, winscp, X-Server)
Recall your C++:
Tue, Oct 7
Thu, Oct 9
Partial differential equations (PDEs): stationary, function spaces
  • modelling of heat conductivity
  • classical formulation; boundary conditions, function spaces C
  • strong formulation, interface conditions

bash:
make:
Tue, Oct 14
Thu, Oct 16
Partial differential equations (PDEs): stationary, function spaces:
  • distributions, weak derivative, Sobolev spaces (embedding)
  • weak formulation, variational formulation
  • approximation of solution by sum of basis functions

git: git-Gruppe
Tue, Oct 21
Thu, Oct 23
Discretization of domain:
  • elements, vertices
  • basis functions with local support: finite element approximation
  • Sobolov spaces
  • variational formulation, Galjorkin method
    Schellbach (1851, 2024)
  • discrete representation of the continuous PDE problem
  • sparse system of equations: stiffness matrix, load vector
  • higher order basis functions

Ex 1
Tue, Oct 28
Thu, Oct 30

Some more aspects
  • existence and uniqueness of solution; Lax-Milgram Lemma
  • compatibility in case of non-uniqueness
  • min-max principle
  • discrete representation of above continuous theorems

Ex 2
Tue, Nov 4
Thu, Nov 6

Algorithmic aspects of FEM
  • domain description
  • meshing
  • generation of stiffness matrix and right hand side (sparsity pattern!, reference element): Intro into Finite Elements:  pdf.
  • solving the (linear) system of equations
    • Iterative Methods: pdf
    • Geometrisches Multigrid:  pdf. [DHL §7, Vas §5]
    • Algebraic Multigrid: pdf.
  • Introduction into an FEM code

Parallelization concept and FEM
  • Introduction into hardware and parallel concepts:  pdf.
Tue, Nov 11
Thu, Nov 13

Parallelization concept and FEM
  • Parallel Finite Elements (OpenMP, MPI):  pdf.
  •  Commented code for OpenMP and for MPI.

Ex 3
Tue, Nov 18
Thu, Nov 20
Parallelization concept and FEM
  • GPU

TBA
Tue, Nov 25
Thu, Nov 27

Domain decomposition methods

Ex 4
Tue, Dec 2
Thu, Dec 4
Vorlesung

TBA
Tue, Dec 9
Thu, Dec 11
Vorlesung

Ex 5
Thu, Jan 8
Vorlesung

Ex 6
Tue, Jan 13
Thu, Jan 15
Vorlesung

TBA
Tue, Jan 20
Thu, Jan 22
Consultation

Consultation
Tue, Jan 27
Thu, Jan 29

Project presentations


Exercise sheets:

  1. task : PDF (Oct 22, 2025).
  2. task: PDF  (Oct 29, 2025),

Skriptum : xx


Literaturliste


Mitbeleger anderer Unis: Anleitung


Stand: Sept 02, 2025