LisaPizzoExercises/Sheet6/Ex6C.m
2026-01-13 20:01:08 +01:00

43 lines
1.1 KiB
Matlab

clear; clc; close all;
p = 70;
%p=-70;
lambda = @(x) 1; %constant diffusion
f = @(x) 0; %homogeneous RHS
N = 30; % Initial mesh (uniform)
x = linspace(0,1,N)';
nIter = 8;
for it = 1:nIter
[K,F] = assemble_1D(x,lambda,f); %assemble
for i = 1:length(x)-1 %convection term added manually
h = x(i+1) - x(i);
Ke_conv = p/2 * [-1 1; -1 1];
K(i:i+1,i:i+1) = K(i:i+1,i:i+1) + Ke_conv;
end
K(1,:) = 0; K(1,1) = 1; F(1) = 0; % Dirichlet BC at x=0
K(end,:) = 0; K(end,end) = 1; F(end) = 1; % Dirichlet BC at x=1
u = K\F;
if it < nIter
Nn = length(x); %initialize indicator
eta = zeros(Nn,1);
for j = 2:Nn-1 %interior nodes only
ul = (u(j)-u(j-1))/(x(j)-x(j-1)); %left derivative
ur = (u(j+1)-u(j))/(x(j+1)-x(j)); %right derivative
%Jump in convection-diffusion flux
Jl = -ul + p*u(j);
Jr = -ur + p*u(j);
eta(j) = abs(Jr - Jl);
end
x = r_adapt(x, eta);
end
end
figure
plot(x,u,'-o','LineWidth',1.5)
xlabel('x'), ylabel('u')
title(['Ex6C, r-adaptivity, Péclet p = ',num2str(p)])
grid on