246 lines
5.8 KiB
C++
246 lines
5.8 KiB
C++
#include "benchmarks.h"
|
|
#include "vdop.h"
|
|
#include <iostream>
|
|
#include <vector>
|
|
#include <cmath>
|
|
#include <cassert> // assert()
|
|
|
|
|
|
#ifdef __INTEL_CLANG_COMPILER
|
|
#pragma message(" ########## Use of MKL ###############")
|
|
#include <mkl.h>
|
|
#else
|
|
#pragma message(" ########## Use of CBLAS ###############")
|
|
|
|
#include <cblas.h> // cBLAS Library
|
|
#include <lapacke.h> // Lapack
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// (A) Inner product of two vectors (from skalar_stl)
|
|
double scalar(vector<double> const &x, vector<double> const &y)
|
|
{
|
|
assert(x.size() == y.size());
|
|
size_t const N = x.size();
|
|
double sum = 0.0;
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
sum += x[i] * y[i];
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
// (A) 5.(b) Kahan scalar product
|
|
double Kahan_skalar(vector<double> const &x, vector<double> const &y)
|
|
{
|
|
double sum = 0.0;
|
|
double c = 0.0;
|
|
size_t n = x.size();
|
|
for (size_t i = 0; i < n; ++i)
|
|
{
|
|
double z = x[i]*y[i] - c; // c is the part that got lost in the last iteration
|
|
double t = sum + z; // when adding sum + z, the lower digits are lost if sum is large
|
|
c = (t - sum) - z; // now we recover the lower digits to add in the next iteration
|
|
sum = t;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
// (A) 6. cBLAS scalar product
|
|
double scalar_cBLAS(vector<double> const &x, vector<double> const &y)
|
|
{
|
|
return cblas_ddot(x.size(), x.data(), 1, y.data(), 1); // x.data() = &x[0]
|
|
}
|
|
|
|
|
|
// (B) Matrix-vector product (from intro_vector_densematrix)
|
|
vector<double> MatVec(vector<double> const &A, vector<double> const &x)
|
|
{
|
|
size_t const nelem = A.size();
|
|
size_t const N = x.size();
|
|
assert(nelem % N == 0); // make sure multiplication is possible
|
|
size_t const M = nelem/N;
|
|
|
|
|
|
vector<double> b(M);
|
|
|
|
for (size_t i = 0; i < M; ++i)
|
|
{
|
|
double tmp = 0.0;
|
|
for (size_t j = 0; j < N; ++j)
|
|
tmp += A[N*i + j] * x[j];
|
|
b[i] = tmp;
|
|
}
|
|
|
|
return b;
|
|
}
|
|
|
|
// (B) cBLAS Matrix-vector product
|
|
vector<double> MatVec_cBLAS(vector<double> const &A, vector<double> const &x)
|
|
{
|
|
size_t const nelem = A.size();
|
|
size_t const N = x.size();
|
|
assert(nelem % N == 0); // make sure multiplication is possible
|
|
size_t const M = nelem/N;
|
|
|
|
|
|
vector<double> b(M);
|
|
|
|
cblas_dgemv(CblasRowMajor, CblasNoTrans, M, N, 1.0, A.data(), N, x.data(), 1, 0.0, b.data(), 1);
|
|
|
|
return b;
|
|
}
|
|
|
|
|
|
// (C) Matrix-matrix product
|
|
vector<double> MatMat(vector<double> const &A, vector<double> const &B, size_t const &L)
|
|
{
|
|
size_t const nelem_A = A.size();
|
|
size_t const nelem_B = B.size();
|
|
|
|
assert(nelem_A % L == 0 && nelem_B % L == 0);
|
|
|
|
size_t const M = nelem_A/L;
|
|
size_t const N = nelem_B/L;
|
|
|
|
|
|
vector<double> C(M*N);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < M; ++i)
|
|
{
|
|
for (size_t j = 0; j < N; ++j)
|
|
{
|
|
double C_temp = 0;
|
|
for (size_t k = 0; k < L; ++k)
|
|
{
|
|
C_temp += A[L*i + k]*B[N*k + j];
|
|
}
|
|
C[N*i + j] = C_temp;
|
|
}
|
|
}
|
|
|
|
return C;
|
|
}
|
|
|
|
// (C) cBLAS matrix-matrix product
|
|
vector<double> MatMat_cBLAS(vector<double> const &A, vector<double> const &B, size_t const &L)
|
|
{
|
|
size_t const nelem_A = A.size();
|
|
size_t const nelem_B = B.size();
|
|
|
|
assert(nelem_A % L == 0 && nelem_B % L == 0);
|
|
|
|
size_t const M = nelem_A/L;
|
|
size_t const N = nelem_B/L;
|
|
|
|
|
|
vector<double> C(M*N);
|
|
|
|
cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, M, N, L, 1.0, A.data(), L, B.data(), N, 0.0, C.data(), N);
|
|
|
|
return C;
|
|
}
|
|
|
|
|
|
// (D) Evaluation of a polynomial function
|
|
vector<double> poly(vector<double> const &a, vector<double> const &x)
|
|
{
|
|
size_t const N = x.size();
|
|
size_t const p = a.size() - 1;
|
|
vector<double> y(N, 0);
|
|
|
|
for (size_t i = 0; i < N; ++i)
|
|
{
|
|
double x_temp = x[i];
|
|
double y_temp = 0;
|
|
for (size_t k = 0; k < p + 1; ++k)
|
|
{
|
|
y_temp += x_temp*y_temp + a[p - k];
|
|
}
|
|
y[i] = y_temp;
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
|
|
// (E) Solves linear system of equations
|
|
void JacobiSolve(CRS_Matrix const &SK, vector<double> const &f, vector<double> &u)
|
|
{
|
|
const double omega = 1.0;
|
|
const int maxiter = 1000;
|
|
const double tol = 1e-5, // tolerance
|
|
tol2 = tol * tol; // tolerance^2
|
|
|
|
int nrows = SK.Nrows(); // number of rows == number of columns
|
|
assert( nrows == static_cast<int>(f.size()) && f.size() == u.size() );
|
|
|
|
cout << endl << " Start Jacobi solver for " << nrows << " d.o.f.s" << endl;
|
|
// Choose initial guess
|
|
for (int k = 0; k < nrows; ++k)
|
|
{
|
|
u[k] = 0.0; // u := 0
|
|
}
|
|
|
|
vector<double> dd(nrows); // matrix diagonal
|
|
vector<double> r(nrows); // residual
|
|
vector<double> w(nrows); // correction
|
|
|
|
SK.GetDiag(dd); // dd := diag(K)
|
|
////DebugVector(dd);{int ijk; cin >> ijk;}
|
|
|
|
// Initial sweep
|
|
SK.Defect(r, f, u); // r := f - K*u
|
|
|
|
vddiv(w, r, dd); // w := D^{-1}*r
|
|
double sigma0 = dscapr(w, r); // s0 := <w,r>
|
|
|
|
// Iteration sweeps
|
|
int iter = 0;
|
|
double sigma = sigma0;
|
|
while ( sigma > tol2 * sigma0 && maxiter > iter)
|
|
{
|
|
++iter;
|
|
vdaxpy(u, u, omega, w ); // u := u + om*w
|
|
SK.Defect(r, f, u); // r := f - K*u
|
|
vddiv(w, r, dd); // w := D^{-1}*r
|
|
sigma = dscapr(w, r); // s0 := <w,r>
|
|
// cout << "Iteration " << iter << " : " << sqrt(sigma/sigma0) << endl;
|
|
}
|
|
cout << "aver. Jacobi rate : " << exp(log(sqrt(sigma / sigma0)) / iter) << " (" << iter << " iter)" << endl;
|
|
cout << "final error: " << sqrt(sigma / sigma0) << " (rel) " << sqrt(sigma) << " (abs)\n";
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|