SciFEM_Schratter/ex6/ex_6A.py
2026-01-04 20:15:55 +01:00

139 lines
2.9 KiB
Python

import numpy as np
import scipy.integrate as integrate
import matplotlib.pyplot as plt
import adaptivity_schemes
np.set_printoptions(precision=2)
def Solve_6A(mesh, p):
N = len(mesh) - 1 # number of elements
f = lambda x : 2*p**3*x/((p**2*x**2 + 1)**2)
g_b = p/(p**2 + 1)
A = np.zeros((N + 1, N + 1))
f_vec = np.zeros(N + 1)
for i in range(1, N + 1):
h = mesh[i] - mesh[i - 1]
a_11 = 1./h
a_12 = -1./h
a_21 = -1./h
a_22 = 1./h
A[i - 1, i - 1] += a_11
A[i - 1, i] += a_12
A[i, i - 1] += a_21
A[i, i] += a_22
phi_lower = lambda x : (mesh[i] - x)/h
f_vec[i-1] += integrate.quad(lambda x : f(x)*phi_lower(x), mesh[i - 1], mesh[i])[0]
phi_upper = lambda x : (x - mesh[i - 1])/h
f_vec[i] += integrate.quad(lambda x : f(x)*phi_upper(x), mesh[i - 1], mesh[i])[0]
# take Neumann data into account
A[N, N] += 0
f_vec[N] += g_b
# take Dirichlet data into account
u_g = np.zeros(N + 1)
u_g[0] = -np.arctan(p)
#print("u_g =\n", u_g)
# remove first row of A
A_g = A[1:N+1, :]
#print("A_g =\n", A_g)
# remove first row of f_vec
f_g = f_vec[1:N+1]
# assemble RHS with dirichlet data
f_g -= A_g.dot(u_g)
#print("f_g =\n", f_g)
# matrix for the inner nodes (excluding nodes with dirichlet bcs)
A_0 = A[1:N+1, 1:N+1]
#print(A_0)
# solve for u_0 (free dofs)
u_0 = np.linalg.solve(A_0, f_g)
# assemble "u = u_0 + u_g"
u = np.concatenate([[u_g[0]], u_0])
return u
p = 100
########## h-adaptivity ##########
N = 5 # number of elements
mesh = np.linspace(-1, 1, N + 1)
u = Solve_6A(mesh, p)
plt.plot(mesh, u, '-o')
plt.grid()
plt.xlabel('x')
plt.ylabel('u_h(x)')
plt.title("h-adaptivity")
N_vec = ["0 refinements, " + str(N) + " elements"]
refinements = 4 # number of refinements
for i in range(refinements):
mesh = adaptivity_schemes.adapt_h(mesh, u, 0.7)
u = Solve_6A(mesh, p)
plt.plot(mesh, u, '-o')
N_vec.append(str(i + 1) + " refinements, " + str(len(mesh) - 1) + " elements")
# plot exact solution
x = np.linspace(-1, 1, 50)
plt.plot(x, np.arctan(p*x))
N_vec.append("exact")
plt.legend(N_vec)
plt.show()
# ########## r-adaptivity ##########
N = 5
mesh = np.linspace(-1, 1, N + 1)
u = Solve_6A(mesh, p)
plt.plot(mesh, u, '-o')
title = "r-adaptivity with " + str(N) + " elements"
plt.title(title)
adaptations_vec = ["0 adaptations"]
adaptations = 5 # number of iterations
for i in range(adaptations):
mesh = adaptivity_schemes.adapt_r(mesh, u)
u = Solve_6A(mesh, p)
plt.plot(mesh, u, '-o')
adaptations_vec.append(str(i + 1) + " adaptations")
# plot exact solution
x = np.linspace(-1, 1, 50)
plt.plot(x, np.arctan(p*x))
adaptations_vec.append("exact")
plt.legend(adaptations_vec)
plt.xlabel('x')
plt.ylabel('u_h(x)')
plt.grid()
plt.show()