typst-exam/template/exam.typ

85 lines
1.9 KiB
Typst

#import "@local/exam:0.2.0": exam, exercise, exercise-items, mtext, horiz-only
// General configuration
#show: exam.with(
title: "Exam",
course-title: [Abstract Binary Computation & Elegant Finite Graphs],
// Top left header
institution: [Super University],
// Top right header
course-short-title: "ABC & EFG",
date: "1. January 1970",
// Exam details, appears below the title
course-code: "π",
duration-minutes: "90",
// Configure personal information fields
ask-trainer-name: false,
ask-group: true,
ask-student-number: false,
// Configure language, either "de" or "en"
language: "en",
// custom instructions
// instructions: none,
// change font-size
// font-size: 12pt,
// custom paper size
// paper-size: "a4",
// custom numbering of exercises
// exercise-numbering: "1",
)
// First exercise
#exercise("Relations and their properties", 2)
Consider the relation $R subset NN^2$, defined as follows:
$ (x, y) in R #h(0.5cm) <==> #h(0.5cm) x + y #mtext[is odd]. $
Is $R$ reflexive? transitive? symmetric? antisymmetric?
// Second exercise
#exercise("Properties of functions", 3)
Let $f : (0, +infinity) (0, +infinity)$ with $f (x) = e^(-x)$.
// Several sub-questions
#exercise-items((
(1, [Is $f$ injective?]), // The first argument is the number
// of points the item is worth
(1, [Is $f$ surjective?]),
(2, [Is $f$ bijective?]),
))
// Third exercise
#exercise("Logical operators", 3.14)
Consider the following truthtable:
#align(center, table(
stroke: horiz-only(0.5pt),
columns: (auto, auto, auto),
align: center,
[$A$], [$B$], [$A or B$],
[1], [1], [1],
[1], [0], [1],
[0], [1], [1],
[0], [0], [1],
))
// More sub-questions
// override-points to false, so that the exercise total points are not recomputed.
#exercise-items(override-points: false, numbering: "i)", (
(1, [Is the truthtable correct?]),
(1, [If not, fix it.]),
))