447 lines
22 KiB
Python
447 lines
22 KiB
Python
#!/usr/bin/python
|
|
|
|
import sys
|
|
import os.path
|
|
import re
|
|
import time
|
|
import numpy as np
|
|
from scipy.stats import norm , gamma
|
|
from scipy import special
|
|
from scipy import signal
|
|
from scipy import ndimage
|
|
#from numba import njit, prange
|
|
|
|
######################################################################################################
|
|
######################################################################################################
|
|
######################################################################################################
|
|
############### POPC/POPG 95/5 mol/mol LUVs ###############
|
|
############### Reconstitution buffer: TRIS 20 mM, EDTA 2 mM ###############
|
|
############### Buffer used for PLUV exp. in DESY in 2017: ###############
|
|
######################################################################################################
|
|
######################################################################################################
|
|
######################################################################################################
|
|
|
|
|
|
############### GLOBAL VARIABLES ###############
|
|
|
|
# POPG molar ratio
|
|
CONST_x_PG = 0.05
|
|
|
|
# ############## POPC and POPG ###############
|
|
# 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
|
|
# 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol
|
|
|
|
# number of chain groups
|
|
CONST_n_CH = 2
|
|
CONST_n_CH2 = 28
|
|
CONST_n_CH3 = 2
|
|
|
|
#X-ray scattering length chain groups (nm)
|
|
CONST_b_CH = 1.97256E-05 ;
|
|
CONST_b_CH2 = 2.25435E-05 ;
|
|
CONST_b_CH3 = 2.53615E-05 ;
|
|
|
|
### POPC
|
|
# Lipid-head volume
|
|
CONST_V_HL_PC = 0.331 # 0.320
|
|
# X-ray scattering length of head groups (nm)
|
|
CONST_b_PC = 2.73340E-04
|
|
CONST_b_CG = 1.88802E-04
|
|
CONST_b_PCN = 1.97256E-04
|
|
CONST_b_Chol = 7.60844E-05
|
|
# Lipid-volume temperature-dependencies a0 + a1*T (nm^3)
|
|
CONST_a0_V_POPC = 1.22810311835285
|
|
CONST_a1_V_POPC = 0.000934915795086395
|
|
|
|
### POPG
|
|
# Lipid-head volume
|
|
CONST_V_HL_PG = 0.289 ;
|
|
# X-ray Scattering length of head groups (nm)
|
|
CONST_b_PG = 2.47979E-04
|
|
CONST_b_PG1 = 1.32443E-04
|
|
CONST_b_PG2 = 1.15536E-04
|
|
|
|
# Lipid-volume temperature-dependencies a0 + a1*T (nm^3)
|
|
CONST_a0_V_POPG = 1.17881068602663
|
|
CONST_a1_V_POPG = 0.00108364914520327
|
|
|
|
|
|
############### Other variables ###############
|
|
### Water
|
|
# V_PW = 24.5e-3 #(nm^3) Perkins 2001 (Hydration shell in proteins)
|
|
# polynome coefficient for T-dependency of bulk-water-molecule volume (V_HW)
|
|
# Units in degree Celsius
|
|
CONST_p0_VW = 0.0299218
|
|
CONST_p1_VW = -2.25941e-06
|
|
CONST_p2_VW = 2.5675e-07
|
|
CONST_p3_VW = -1.69661e-09
|
|
CONST_p4_VW = 6.52029e-12
|
|
# polynome coefficient for T-dependency of bulk-water molar concentration (Cw)
|
|
#Units in degree Celsius
|
|
CONST_p0_Cw = 55.5052
|
|
CONST_p1_Cw = 0.00131894
|
|
CONST_p2_Cw = -0.000334396
|
|
CONST_p3_Cw = 9.10861e-07
|
|
|
|
CONST_b_HW = 2.8179E-05
|
|
CONST_d_shl = 0.31 # (nm) Perkins 2001 (Hydration shell in proteins)
|
|
|
|
# Composition of the Reconstitution buffer (M)
|
|
CONST_ctris = 0.02
|
|
CONST_cEDTA = 0.002
|
|
|
|
### Extra molecules
|
|
|
|
# TRIS buffer
|
|
CONST_b_tris = 1.860E-04
|
|
CONST_V_tris = 0.15147 # (nm^3)
|
|
# EDTA
|
|
CONST_b_EDTA = 4.340E-04 ;
|
|
CONST_V_EDTA = 0.56430 # (nm^3)
|
|
|
|
|
|
##################################################################################################################
|
|
##################################################################################################################
|
|
|
|
#########################################################
|
|
#@njit(parallel=True)
|
|
def PDF_normal(x, mu, sig) :
|
|
return np.exp(-(x-mu)**2 / (2*sig**2) ) /( sig*np.sqrt(2*np.pi))
|
|
|
|
#########################################################
|
|
#@njit(parallel=True)
|
|
def PDF_lognormal(x, mu_x, sig_x) :
|
|
# https://en.wikipedia.org/wiki/Log-normal_distribution
|
|
mu = np.log(mu_x**2 / np.sqrt(mu_x**2 + sig_x**2))
|
|
sig = np.sqrt(np.log(1 + sig_x**2 / mu_x**2))
|
|
return np.exp(-(np.log(x)-mu)**2 / (2*sig**2) ) /( x*sig*np.sqrt(2*np.pi))
|
|
|
|
#########################################################
|
|
def lipid_volume(T) :
|
|
return (1-CONST_x_PG) * (CONST_a0_V_POPC +T * CONST_a1_V_POPC) + CONST_x_PG * (CONST_a0_V_POPG + T * CONST_a1_V_POPG)
|
|
|
|
#########################################################
|
|
def water_volume(T) :
|
|
return CONST_p0_VW + CONST_p1_VW*T + CONST_p2_VW*T**2 + CONST_p3_VW*T**3 + CONST_p4_VW*T**4
|
|
|
|
#########################################################
|
|
#@njit(parallel=True)
|
|
def FTreal_erf(q, mu, d, sig) :
|
|
""" FTreal_erf(q, mu, d, sig) """
|
|
return np.where(q==0, 1, np.sin(q*d/2.)/(q*d/2.) * np.exp(-(q*sig)**2/2.) * np.cos(q*mu) )
|
|
|
|
#########################################################
|
|
#@njit(parallel=True)
|
|
def FTreal_gauss(q, mu, sig) :
|
|
""" FTreal_gauss(q, mu, sig) """
|
|
return np.exp(-(q*sig)**2/2.) * np.cos(q*mu)
|
|
|
|
#########################################################
|
|
def Slab(x, mu, L, sig) :
|
|
return 0.5 * ( special.erf( (x - (mu-L/2.))/(np.sqrt(2)*sig) ) - special.erf( (x - (mu+L/2))/(np.sqrt(2)*sig) ) )
|
|
|
|
#########################################################
|
|
def Gauss( x, V, mu, sig, A_L ) :
|
|
return V * PDF_normal(x, mu, sig) / A_L
|
|
|
|
#################################### j0^2 MOMENTS (SCHULZ PDF) #########################################
|
|
#################################### (checked!) #########################################
|
|
|
|
#@njit(parallel=True)
|
|
def mu4(q, Z, a) :
|
|
return np.where(q==0, a**4*(Z+1)*(Z+2)*(Z+3)*(Z+3), a**2 * (Z+2)*(Z+1) * ( 1 - (1+4*q*q*a*a)**(-(Z+3)/2.) * np.cos((Z+3)*np.arctan(2*q*a)) ) / ( 2*q**2 ) )
|
|
|
|
##################################################################################################################
|
|
##################################################################################################################
|
|
|
|
################################ SYMMETRIC VESICLE FOR X-RAY SLDs #########################################
|
|
|
|
######################################## SDP MODELLING #########################################
|
|
#################################### SEPARATED FORM FACTOR #########################################
|
|
|
|
##################################################################################################################
|
|
##################################################################################################################
|
|
|
|
#########################################################
|
|
######### Symmetric POPC bilayer ########################
|
|
######### liposomes and proteoliposomes #################
|
|
#########################################################
|
|
|
|
class SDP_POPC_RecBuf:
|
|
|
|
##################
|
|
def __init__(self, q, PAR) :
|
|
self.q = q
|
|
[self.Norm, self.nv,
|
|
self.Rm, self.Z,
|
|
self.n_TR, self.d_TR, self.s_TR,
|
|
self.d_Chol, self.s_Chol, self.d_PCN, self.s_PCN, self.d_CG, self.s_CG,
|
|
self.A_L, self.s_D_C,
|
|
self.s_CH2, self.d_CH, self.s_CH, self.s_CH3,
|
|
self.r_PCN, self.r_CG, self.r12, self.r32,
|
|
self.T, self.V_BW,
|
|
self.Con] = PAR
|
|
|
|
# [Example 1], fixed parameters:
|
|
# Norm 1e5 # Normalization
|
|
# n_TR 0.0 # Tris fraction
|
|
# d_TR 1.0 # Tris width (nm)
|
|
# s_TR 0.29 # Tris position (nm)
|
|
# d_CH 0.90 # CH position (nm)
|
|
# s_CH 0.305 # CH width (nm)
|
|
# r12 0.81 # V_CH/V_CH2
|
|
# T 37 # Temperature (°C)
|
|
|
|
# [example 1] fixed
|
|
Cw = CONST_p0_Cw + CONST_p1_Cw*self.T + CONST_p2_Cw*self.T**2 + CONST_p3_Cw*self.T**3
|
|
xtris = CONST_ctris / Cw # mole fraction of free TRIS in bulk
|
|
xEDTA = CONST_cEDTA / Cw # mole fraction of free EDTA in bulk
|
|
|
|
# Volumes
|
|
# [example 1] fixed
|
|
self.V_L = lipid_volume(self.T)
|
|
V_HW = water_volume(self.T)
|
|
V_HC = self.V_L - ( (1-CONST_x_PG) * CONST_V_HL_PC + CONST_x_PG * CONST_V_HL_PG )
|
|
|
|
# Calculation of mean D_C
|
|
self.D_C = V_HC / self.A_L
|
|
|
|
# Quasi-molecular volumes
|
|
# [example 1] r12 fixed
|
|
V_CH2 = V_HC / ( CONST_n_CH2 + CONST_n_CH*self.r12 + CONST_n_CH3*self.r32 ) # Volume of CH2 groups
|
|
V_CH = V_CH2 * self.r12 # Volume of CH groups
|
|
V_CH3 = V_CH2 * self.r32 # Volume of CH3 groups
|
|
|
|
self.V_CG = CONST_V_HL_PC * self.r_CG # Volume of CG group
|
|
self.V_PCN = CONST_V_HL_PC * self.r_PCN # Volume of PCN group
|
|
self.V_Chol = CONST_V_HL_PC * (1-self.r_PCN-self.r_CG) # Volume of CholCH3 group
|
|
|
|
# CONST
|
|
CONST_V_PG1 = CONST_V_HL_PG * 0.16 # Kucerka 2012
|
|
CONST_V_PG2 = CONST_V_HL_PG * ( 1 - 0.51 - 0.16) # Kucerka 2012
|
|
|
|
############### X-ray scattering lengths (nm)
|
|
# [example 1] rho_sol fixed
|
|
rho_sol = ( CONST_b_HW + xtris*CONST_b_tris + xEDTA*CONST_b_EDTA ) / V_HW
|
|
drho_Chol = ( (1-CONST_x_PG)*CONST_b_Chol/self.V_Chol + CONST_x_PG*CONST_b_PG2/CONST_V_PG2 ) - rho_sol
|
|
drho_PCN = ( (1-CONST_x_PG)*CONST_b_PCN/self.V_PCN + CONST_x_PG*CONST_b_PG1/CONST_V_PG1 ) - rho_sol
|
|
drho_CG = CONST_b_CG / self.V_CG - rho_sol
|
|
drho_TR = CONST_b_tris/ CONST_V_tris - rho_sol
|
|
drho_CH = CONST_b_CH / V_CH - rho_sol
|
|
drho_CH2 = CONST_b_CH2 / V_CH2 - rho_sol
|
|
drho_CH3 = CONST_b_CH3 / V_CH3 - rho_sol
|
|
drho_HW = CONST_b_HW / self.V_BW - rho_sol
|
|
|
|
############### D_C polydispersity
|
|
# Number of integration points
|
|
N = 201
|
|
|
|
# Parameter dependent integration bounds
|
|
# HC_min, HC_max = self.D_C-3*self.s_D_C, self.D_C+3*self.s_D_C
|
|
#
|
|
# Hardcoded integration bounds for POPC, fixed T = 37, A_L in [0.598, 0.719]
|
|
HC_min, HC_max = V_HC/0.719-0.5, V_HC/0.589+0.5
|
|
# Minimum and maximum samples (offset by 1/2 of the integration step w.r.t integration bounds for the midpoint rule)
|
|
integration_step = (HC_max - HC_min) / N
|
|
HC_first, HC_last = HC_min + 0.5*integration_step, HC_max - 0.5*integration_step
|
|
|
|
HC_array = np.linspace(HC_first, HC_last, N)
|
|
Normal = PDF_normal(HC_array, self.D_C, self.s_D_C)
|
|
|
|
############### calculating scattering amplitude -----------------------------------------------
|
|
self.Am = np.zeros([N,self.q.shape[0]],dtype=float)
|
|
c_CH = np.zeros(N,dtype=float)
|
|
c_CH3 = np.zeros(N,dtype=float)
|
|
|
|
############### c-prefactors
|
|
c_Chol = ( (1-CONST_x_PG)*self.V_Chol + CONST_x_PG*CONST_V_PG2 ) / self.A_L
|
|
c_PCN = ( (1-CONST_x_PG)*self.V_PCN + CONST_x_PG*CONST_V_PG1 ) / self.A_L
|
|
c_CG = self.V_CG / self.A_L
|
|
c_TR = CONST_V_tris*self.n_TR / self.A_L
|
|
|
|
for hc in range(N):
|
|
c_CH[hc] = V_CH * CONST_n_CH / (V_HC / HC_array[hc] )
|
|
c_CH3[hc] = V_CH3 * CONST_n_CH3 / (V_HC / HC_array[hc] )
|
|
|
|
for hc in range(N):
|
|
|
|
# Adding hydrocarbon-chain envelope
|
|
self.Am[hc] += 2 * drho_CH2 *HC_array[hc] * FTreal_erf(self.q, 0, 2*HC_array[hc], self.s_CH2)
|
|
# Adding CH and CH3 groups
|
|
self.Am[hc] += 2 * (drho_CH - drho_CH2) * c_CH[hc] * FTreal_gauss(self.q, self.d_CH, self.s_CH)
|
|
self.Am[hc] += 2 * (drho_CH3 - drho_CH2) * c_CH3[hc] * FTreal_gauss(self.q, 0, self.s_CH3)
|
|
|
|
# Adding hydration-water envelope
|
|
self.Am[hc] += 4 * drho_HW * ( self.d_CG + self.d_PCN + self.d_Chol + CONST_d_shl) * FTreal_erf(self.q, (HC_array[hc]+(self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl)/2.), (self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl), self.s_CH2)
|
|
# Adding CG, PCN and CholCH3 groups
|
|
self.Am[hc] += 2 * (drho_TR - drho_HW) * c_TR * FTreal_gauss(self.q, (HC_array[hc]+self.d_TR/2.), self.s_TR)
|
|
self.Am[hc] += 2 * (drho_CG - drho_HW) * c_CG * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG/2.), self.s_CG)
|
|
self.Am[hc] += 2 * (drho_PCN - drho_HW) * c_PCN * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG+self.d_PCN/2.), self.s_PCN)
|
|
self.Am[hc] += 2 * (drho_Chol - drho_HW) * c_Chol * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG+self.d_PCN+self.d_Chol/2.), self.s_Chol)
|
|
|
|
############### Ensemble average
|
|
# multiply each columns of Am by Normal and sum along the columns,
|
|
# then multiply by integration step
|
|
self.I = np.einsum('ij,i->j', self.Am**2, Normal) * integration_step
|
|
|
|
##################
|
|
def intensity(self):
|
|
alp = self.Rm/(self.Z+1)
|
|
return ( self.Norm * self.nv*1e-6 ) * self.I * ( 16*np.pi**2*mu4(self.q,self.Z,alp) ) + self.Con*( 0.99*(1./(1+np.exp(-8*(self.q-1.)))) + 0.01 )
|
|
|
|
##################
|
|
def negative_water(self):
|
|
|
|
self.check = 0
|
|
z_array = np.linspace(0.,4.,81)
|
|
|
|
CG = Gauss(z_array, self.V_CG, self.D_C+self.d_CG/2., self.s_CG, self.A_L)
|
|
PCN = Gauss(z_array, self.V_PCN, self.D_C+self.d_CG+self.d_PCN/2., self.s_PCN, self.A_L)
|
|
Chol = Gauss(z_array, self.V_Chol, self.D_C+self.d_CG+self.d_PCN+self.d_Chol/2., self.s_Chol, self.A_L)
|
|
TRIS = Gauss(z_array, self.n_TR*CONST_V_tris, self.D_C+self.d_TR/2., self.s_TR, self.A_L)
|
|
BW = Slab(z_array, self.D_C+(self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl)/2., self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl, self.s_CH2) - CG - PCN - Chol - TRIS
|
|
|
|
for i in(BW) :
|
|
if i <-0.001 : self.check+= 1
|
|
|
|
return self.check
|
|
|
|
##################################################################################################################
|
|
##################################################################################################################
|
|
|
|
class SDP_POPC_RecBuf_LogNormal:
|
|
|
|
##################
|
|
def __init__(self, q, PAR) :
|
|
self.q = q
|
|
[self.Norm, self.nv,
|
|
self.Rm, self.Z,
|
|
self.n_TR, self.d_TR, self.s_TR,
|
|
self.d_Chol, self.s_Chol, self.d_PCN, self.s_PCN, self.d_CG, self.s_CG,
|
|
self.A_L, self.s_D_C,
|
|
self.s_CH2, self.d_CH, self.s_CH, self.s_CH3,
|
|
self.r_PCN, self.r_CG, self.r12, self.r32,
|
|
self.T, self.V_BW,
|
|
self.Con] = PAR
|
|
|
|
# [Example 1], fixed parameters:
|
|
# Norm 1e5 # Normalization
|
|
# n_TR 0.0 # Tris fraction
|
|
# d_TR 1.0 # Tris width (nm)
|
|
# s_TR 0.29 # Tris position (nm)
|
|
# d_CH 0.90 # CH position (nm)
|
|
# s_CH 0.305 # CH width (nm)
|
|
# r12 0.81 # V_CH/V_CH2
|
|
# T 37 # Temperature (°C)
|
|
|
|
# [example 1] fixed
|
|
Cw = CONST_p0_Cw + CONST_p1_Cw*self.T + CONST_p2_Cw*self.T**2 + CONST_p3_Cw*self.T**3
|
|
xtris = CONST_ctris / Cw # mole fraction of free TRIS in bulk
|
|
xEDTA = CONST_cEDTA / Cw # mole fraction of free EDTA in bulk
|
|
|
|
# Volumes
|
|
# [example 1] fixed
|
|
self.V_L = lipid_volume(self.T)
|
|
V_HW = water_volume(self.T)
|
|
V_HC = self.V_L - ( (1-CONST_x_PG) * CONST_V_HL_PC + CONST_x_PG * CONST_V_HL_PG )
|
|
|
|
# Calculation of mean D_C
|
|
self.D_C = V_HC / self.A_L
|
|
|
|
# Quasi-molecular volumes
|
|
# [example 1] r12 fixed
|
|
V_CH2 = V_HC / ( CONST_n_CH2 + CONST_n_CH*self.r12 + CONST_n_CH3*self.r32 ) # Volume of CH2 groups
|
|
V_CH = V_CH2 * self.r12 # Volume of CH groups
|
|
V_CH3 = V_CH2 * self.r32 # Volume of CH3 groups
|
|
|
|
self.V_CG = CONST_V_HL_PC * self.r_CG # Volume of CG group
|
|
self.V_PCN = CONST_V_HL_PC * self.r_PCN # Volume of PCN group
|
|
self.V_Chol = CONST_V_HL_PC * (1-self.r_PCN-self.r_CG) # Volume of CholCH3 group
|
|
|
|
# CONST
|
|
CONST_V_PG1 = CONST_V_HL_PG * 0.16 # Kucerka 2012
|
|
CONST_V_PG2 = CONST_V_HL_PG * ( 1 - 0.51 - 0.16) # Kucerka 2012
|
|
|
|
############### X-ray scattering lengths (nm)
|
|
# [example 1] rho_sol fixed
|
|
rho_sol = ( CONST_b_HW + xtris*CONST_b_tris + xEDTA*CONST_b_EDTA ) / V_HW
|
|
drho_Chol = ( (1-CONST_x_PG)*CONST_b_Chol/self.V_Chol + CONST_x_PG*CONST_b_PG2/CONST_V_PG2 ) - rho_sol
|
|
drho_PCN = ( (1-CONST_x_PG)*CONST_b_PCN/self.V_PCN + CONST_x_PG*CONST_b_PG1/CONST_V_PG1 ) - rho_sol
|
|
drho_CG = CONST_b_CG / self.V_CG - rho_sol
|
|
drho_TR = CONST_b_tris/ CONST_V_tris - rho_sol
|
|
drho_CH = CONST_b_CH / V_CH - rho_sol
|
|
drho_CH2 = CONST_b_CH2 / V_CH2 - rho_sol
|
|
drho_CH3 = CONST_b_CH3 / V_CH3 - rho_sol
|
|
drho_HW = CONST_b_HW / self.V_BW - rho_sol
|
|
|
|
############### D_C polydispersity
|
|
N = 200
|
|
HC_array = np.linspace(self.D_C-3*self.s_D_C, self.D_C+3*self.s_D_C, N)
|
|
LogNormal = PDF_lognormal(HC_array, self.D_C, self.s_D_C)
|
|
|
|
############### calculating scattering amplitude -----------------------------------------------
|
|
self.Am = np.zeros([HC_array.shape[0],self.q.shape[0]],dtype=float)
|
|
c_CH = np.zeros(HC_array.shape[0],dtype=float)
|
|
c_CH3 = np.zeros(HC_array.shape[0],dtype=float)
|
|
|
|
############### c-prefactors
|
|
c_Chol = ( (1-CONST_x_PG)*self.V_Chol + CONST_x_PG*CONST_V_PG2 ) / self.A_L
|
|
c_PCN = ( (1-CONST_x_PG)*self.V_PCN + CONST_x_PG*CONST_V_PG1 ) / self.A_L
|
|
c_CG = self.V_CG / self.A_L
|
|
c_TR = CONST_V_tris*self.n_TR / self.A_L
|
|
|
|
for hc in range(HC_array.shape[0]):
|
|
c_CH[hc] = V_CH * CONST_n_CH / (V_HC / HC_array[hc] )
|
|
c_CH3[hc] = V_CH3 * CONST_n_CH3 / (V_HC / HC_array[hc] )
|
|
|
|
for hc in range(HC_array.shape[0]):
|
|
|
|
# Adding hydrocarbon-chain envelope
|
|
self.Am[hc] += 2 * drho_CH2 *HC_array[hc] * FTreal_erf(self.q, 0, 2*HC_array[hc], self.s_CH2)
|
|
# Adding CH and CH3 groups
|
|
self.Am[hc] += 2 * (drho_CH - drho_CH2) * c_CH[hc] * FTreal_gauss(self.q, self.d_CH, self.s_CH)
|
|
self.Am[hc] += 2 * (drho_CH3 - drho_CH2) * c_CH3[hc] * FTreal_gauss(self.q, 0, self.s_CH3)
|
|
|
|
# Adding hydration-water envelope
|
|
self.Am[hc] += 4 * drho_HW * ( self.d_CG + self.d_PCN + self.d_Chol + CONST_d_shl) * FTreal_erf(self.q, (HC_array[hc]+(self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl)/2.), (self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl), self.s_CH2)
|
|
# Adding CG, PCN and CholCH3 groups
|
|
self.Am[hc] += 2 * (drho_TR - drho_HW) * c_TR * FTreal_gauss(self.q, (HC_array[hc]+self.d_TR/2.), self.s_TR)
|
|
self.Am[hc] += 2 * (drho_CG - drho_HW) * c_CG * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG/2.), self.s_CG)
|
|
self.Am[hc] += 2 * (drho_PCN - drho_HW) * c_PCN * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG+self.d_PCN/2.), self.s_PCN)
|
|
self.Am[hc] += 2 * (drho_Chol - drho_HW) * c_Chol * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG+self.d_PCN+self.d_Chol/2.), self.s_Chol)
|
|
|
|
############### Ensemble average
|
|
self.I = np.zeros(self.q.shape[0], dtype=float)
|
|
|
|
for hc in range(HC_array.shape[0]):
|
|
if hc==0 or hc==N-1 : self.I+= self.Am[hc]**2 * LogNormal[hc] / 2
|
|
else : self.I+= self.Am[hc]**2 * LogNormal[hc]
|
|
|
|
self.I*= 6*self.s_D_C/(N-1)
|
|
|
|
##################
|
|
def intensity(self):
|
|
alp = self.Rm/(self.Z+1)
|
|
return ( self.Norm * self.nv*1e-6 ) * self.I * ( 16*np.pi**2*mu4(self.q,self.Z,alp) ) + self.Con*( 0.99*(1./(1+np.exp(-8*(self.q-1.)))) + 0.01 )
|
|
|
|
##################
|
|
def negative_water(self):
|
|
|
|
self.check = 0
|
|
z_array = np.linspace(0.,4.,81)
|
|
|
|
CG = Gauss(z_array, self.V_CG, self.D_C+self.d_CG/2., self.s_CG, self.A_L)
|
|
PCN = Gauss(z_array, self.V_PCN, self.D_C+self.d_CG+self.d_PCN/2., self.s_PCN, self.A_L)
|
|
Chol = Gauss(z_array, self.V_Chol, self.D_C+self.d_CG+self.d_PCN+self.d_Chol/2., self.s_Chol, self.A_L)
|
|
TRIS = Gauss(z_array, self.n_TR*CONST_V_tris, self.D_C+self.d_TR/2., self.s_TR, self.A_L)
|
|
BW = Slab(z_array, self.D_C+(self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl)/2., self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl, self.s_CH2) - CG - PCN - Chol - TRIS
|
|
|
|
for i in(BW) :
|
|
if i <-0.001 : self.check+= 1
|
|
|
|
return self.check
|
|
|
|
##################################################################################################################
|
|
##################################################################################################################
|
|
|
|
# vim ts=4,sts=4,sw=4
|