add lognormal
This commit is contained in:
parent
86ae4379cb
commit
483a1d6024
4 changed files with 171 additions and 2 deletions
|
@ -9,7 +9,7 @@ import math
|
||||||
sys.path.append("/mntdirect/_users/semeraro/python_tools")
|
sys.path.append("/mntdirect/_users/semeraro/python_tools")
|
||||||
import FormFactor
|
import FormFactor
|
||||||
#import PLUV_POPC_RecBuf
|
#import PLUV_POPC_RecBuf
|
||||||
from PLUV import SDP_base_POPC_RecBuf, SDP_POPC_RecBuf
|
from PLUV import SDP_base_POPC_RecBuf, SDP_POPC_RecBuf, SDP_POPC_RecBuf_LogNormal
|
||||||
|
|
||||||
###########################################################################################
|
###########################################################################################
|
||||||
###########################################################################################
|
###########################################################################################
|
||||||
|
@ -168,7 +168,9 @@ def ChooseFunction (function ):
|
||||||
elif function=="SDP_POPC_RecBuf":
|
elif function=="SDP_POPC_RecBuf":
|
||||||
#intensity = PLUV.SDP_POPC_RecBuf
|
#intensity = PLUV.SDP_POPC_RecBuf
|
||||||
intensity = SDP_POPC_RecBuf
|
intensity = SDP_POPC_RecBuf
|
||||||
|
elif function=="SDP_POPC_RecBuf_LogNormal":
|
||||||
|
#intensity = PLUV.SDP_POPC_RecBuf
|
||||||
|
intensity = SDP_POPC_RecBuf_LogNormal
|
||||||
elif function=="SDP_base_POPC_RecBuf":
|
elif function=="SDP_base_POPC_RecBuf":
|
||||||
intensity = SDP_base_POPC_RecBuf
|
intensity = SDP_base_POPC_RecBuf
|
||||||
|
|
||||||
|
|
|
@ -108,6 +108,14 @@ CONST_V_EDTA = 0.56430 # (nm^3)
|
||||||
def PDF_normal(x, mu, sig) :
|
def PDF_normal(x, mu, sig) :
|
||||||
return np.exp(-(x-mu)**2 / (2*sig**2) ) /( sig*np.sqrt(2*np.pi))
|
return np.exp(-(x-mu)**2 / (2*sig**2) ) /( sig*np.sqrt(2*np.pi))
|
||||||
|
|
||||||
|
#########################################################
|
||||||
|
#@njit(parallel=True)
|
||||||
|
def PDF_lognormal(x, mu_x, sig_x) :
|
||||||
|
# https://en.wikipedia.org/wiki/Log-normal_distribution
|
||||||
|
mu = np.log(mu_x**2 / np.sqrt(mu_x**2 + sig_x**2))
|
||||||
|
sig = np.sqrt(np.log(1 + sig_x**2 / mu_x**2))
|
||||||
|
return np.exp(-(np.log(x)-mu)**2 / (2*sig**2) ) /( x*sig*np.sqrt(2*np.pi))
|
||||||
|
|
||||||
#########################################################
|
#########################################################
|
||||||
def lipid_volume(T) :
|
def lipid_volume(T) :
|
||||||
return (1-CONST_x_PG) * (CONST_a0_V_POPC +T * CONST_a1_V_POPC) + CONST_x_PG * (CONST_a0_V_POPG + T * CONST_a1_V_POPG)
|
return (1-CONST_x_PG) * (CONST_a0_V_POPC +T * CONST_a1_V_POPC) + CONST_x_PG * (CONST_a0_V_POPG + T * CONST_a1_V_POPG)
|
||||||
|
@ -397,4 +405,139 @@ class SDP_POPC_RecBuf:
|
||||||
##################################################################################################################
|
##################################################################################################################
|
||||||
##################################################################################################################
|
##################################################################################################################
|
||||||
|
|
||||||
|
class SDP_POPC_RecBuf_LogNormal:
|
||||||
|
|
||||||
|
##################
|
||||||
|
def __init__(self, q, PAR) :
|
||||||
|
self.q = q
|
||||||
|
[self.Norm, self.nv,
|
||||||
|
self.Rm, self.Z,
|
||||||
|
self.n_TR, self.d_TR, self.s_TR,
|
||||||
|
self.d_Chol, self.s_Chol, self.d_PCN, self.s_PCN, self.d_CG, self.s_CG,
|
||||||
|
self.A_L, self.s_D_C,
|
||||||
|
self.s_CH2, self.d_CH, self.s_CH, self.s_CH3,
|
||||||
|
self.r_PCN, self.r_CG, self.r12, self.r32,
|
||||||
|
self.T, self.V_BW,
|
||||||
|
self.Con] = PAR
|
||||||
|
|
||||||
|
# [Example 1], fixed parameters:
|
||||||
|
# Norm 1e5 # Normalization
|
||||||
|
# n_TR 0.0 # Tris fraction
|
||||||
|
# d_TR 1.0 # Tris width (nm)
|
||||||
|
# s_TR 0.29 # Tris position (nm)
|
||||||
|
# d_CH 0.90 # CH position (nm)
|
||||||
|
# s_CH 0.305 # CH width (nm)
|
||||||
|
# r12 0.81 # V_CH/V_CH2
|
||||||
|
# T 37 # Temperature (°C)
|
||||||
|
|
||||||
|
# [example 1] fixed
|
||||||
|
Cw = CONST_p0_Cw + CONST_p1_Cw*self.T + CONST_p2_Cw*self.T**2 + CONST_p3_Cw*self.T**3
|
||||||
|
xtris = CONST_ctris / Cw # mole fraction of free TRIS in bulk
|
||||||
|
xEDTA = CONST_cEDTA / Cw # mole fraction of free EDTA in bulk
|
||||||
|
|
||||||
|
# Volumes
|
||||||
|
# [example 1] fixed
|
||||||
|
self.V_L = lipid_volume(self.T)
|
||||||
|
V_HW = water_volume(self.T)
|
||||||
|
V_HC = self.V_L - ( (1-CONST_x_PG) * CONST_V_HL_PC + CONST_x_PG * CONST_V_HL_PG )
|
||||||
|
|
||||||
|
# Calculation of mean D_C
|
||||||
|
self.D_C = V_HC / self.A_L
|
||||||
|
|
||||||
|
# Quasi-molecular volumes
|
||||||
|
# [example 1] r12 fixed
|
||||||
|
V_CH2 = V_HC / ( CONST_n_CH2 + CONST_n_CH*self.r12 + CONST_n_CH3*self.r32 ) # Volume of CH2 groups
|
||||||
|
V_CH = V_CH2 * self.r12 # Volume of CH groups
|
||||||
|
V_CH3 = V_CH2 * self.r32 # Volume of CH3 groups
|
||||||
|
|
||||||
|
self.V_CG = CONST_V_HL_PC * self.r_CG # Volume of CG group
|
||||||
|
self.V_PCN = CONST_V_HL_PC * self.r_PCN # Volume of PCN group
|
||||||
|
self.V_Chol = CONST_V_HL_PC * (1-self.r_PCN-self.r_CG) # Volume of CholCH3 group
|
||||||
|
|
||||||
|
# CONST
|
||||||
|
CONST_V_PG1 = CONST_V_HL_PG * 0.16 # Kucerka 2012
|
||||||
|
CONST_V_PG2 = CONST_V_HL_PG * ( 1 - 0.51 - 0.16) # Kucerka 2012
|
||||||
|
|
||||||
|
############### X-ray scattering lengths (nm)
|
||||||
|
# [example 1] rho_sol fixed
|
||||||
|
rho_sol = ( CONST_b_HW + xtris*CONST_b_tris + xEDTA*CONST_b_EDTA ) / V_HW
|
||||||
|
drho_Chol = ( (1-CONST_x_PG)*CONST_b_Chol/self.V_Chol + CONST_x_PG*CONST_b_PG2/CONST_V_PG2 ) - rho_sol
|
||||||
|
drho_PCN = ( (1-CONST_x_PG)*CONST_b_PCN/self.V_PCN + CONST_x_PG*CONST_b_PG1/CONST_V_PG1 ) - rho_sol
|
||||||
|
drho_CG = CONST_b_CG / self.V_CG - rho_sol
|
||||||
|
drho_TR = CONST_b_tris/ CONST_V_tris - rho_sol
|
||||||
|
drho_CH = CONST_b_CH / V_CH - rho_sol
|
||||||
|
drho_CH2 = CONST_b_CH2 / V_CH2 - rho_sol
|
||||||
|
drho_CH3 = CONST_b_CH3 / V_CH3 - rho_sol
|
||||||
|
drho_HW = CONST_b_HW / self.V_BW - rho_sol
|
||||||
|
|
||||||
|
############### D_C polydispersity
|
||||||
|
N = 21
|
||||||
|
HC_array = np.linspace(self.D_C-3*self.s_D_C, self.D_C+3*self.s_D_C, N)
|
||||||
|
LogNormal = PDF_lognormal(HC_array, self.D_C, self.s_D_C)
|
||||||
|
|
||||||
|
############### calculating scattering amplitude -----------------------------------------------
|
||||||
|
self.Am = np.zeros([HC_array.shape[0],self.q.shape[0]],dtype=float)
|
||||||
|
c_CH = np.zeros(HC_array.shape[0],dtype=float)
|
||||||
|
c_CH3 = np.zeros(HC_array.shape[0],dtype=float)
|
||||||
|
|
||||||
|
############### c-prefactors
|
||||||
|
c_Chol = ( (1-CONST_x_PG)*self.V_Chol + CONST_x_PG*CONST_V_PG2 ) / self.A_L
|
||||||
|
c_PCN = ( (1-CONST_x_PG)*self.V_PCN + CONST_x_PG*CONST_V_PG1 ) / self.A_L
|
||||||
|
c_CG = self.V_CG / self.A_L
|
||||||
|
c_TR = CONST_V_tris*self.n_TR / self.A_L
|
||||||
|
|
||||||
|
for hc in range(HC_array.shape[0]):
|
||||||
|
c_CH[hc] = V_CH * CONST_n_CH / (V_HC / HC_array[hc] )
|
||||||
|
c_CH3[hc] = V_CH3 * CONST_n_CH3 / (V_HC / HC_array[hc] )
|
||||||
|
|
||||||
|
for hc in range(HC_array.shape[0]):
|
||||||
|
|
||||||
|
# Adding hydrocarbon-chain envelope
|
||||||
|
self.Am[hc] += 2 * drho_CH2 *HC_array[hc] * FTreal_erf(self.q, 0, 2*HC_array[hc], self.s_CH2)
|
||||||
|
# Adding CH and CH3 groups
|
||||||
|
self.Am[hc] += 2 * (drho_CH - drho_CH2) * c_CH[hc] * FTreal_gauss(self.q, self.d_CH, self.s_CH)
|
||||||
|
self.Am[hc] += 2 * (drho_CH3 - drho_CH2) * c_CH3[hc] * FTreal_gauss(self.q, 0, self.s_CH3)
|
||||||
|
|
||||||
|
# Adding hydration-water envelope
|
||||||
|
self.Am[hc] += 4 * drho_HW * ( self.d_CG + self.d_PCN + self.d_Chol + CONST_d_shl) * FTreal_erf(self.q, (HC_array[hc]+(self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl)/2.), (self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl), self.s_CH2)
|
||||||
|
# Adding CG, PCN and CholCH3 groups
|
||||||
|
self.Am[hc] += 2 * (drho_TR - drho_HW) * c_TR * FTreal_gauss(self.q, (HC_array[hc]+self.d_TR/2.), self.s_TR)
|
||||||
|
self.Am[hc] += 2 * (drho_CG - drho_HW) * c_CG * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG/2.), self.s_CG)
|
||||||
|
self.Am[hc] += 2 * (drho_PCN - drho_HW) * c_PCN * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG+self.d_PCN/2.), self.s_PCN)
|
||||||
|
self.Am[hc] += 2 * (drho_Chol - drho_HW) * c_Chol * FTreal_gauss(self.q, (HC_array[hc]+self.d_CG+self.d_PCN+self.d_Chol/2.), self.s_Chol)
|
||||||
|
|
||||||
|
############### Ensemble average
|
||||||
|
self.I = np.zeros(self.q.shape[0], dtype=float)
|
||||||
|
|
||||||
|
for hc in range(HC_array.shape[0]):
|
||||||
|
if hc==0 or hc==N-1 : self.I+= self.Am[hc]**2 * LogNormal[hc] / 2
|
||||||
|
else : self.I+= self.Am[hc]**2 * LogNormal[hc]
|
||||||
|
|
||||||
|
self.I*= 6*self.s_D_C/(N-1)
|
||||||
|
|
||||||
|
##################
|
||||||
|
def intensity(self):
|
||||||
|
alp = self.Rm/(self.Z+1)
|
||||||
|
return ( self.Norm * self.nv*1e-6 ) * self.I * ( 16*np.pi**2*mu4(self.q,self.Z,alp) ) + self.Con*( 0.99*(1./(1+np.exp(-8*(self.q-1.)))) + 0.01 )
|
||||||
|
|
||||||
|
##################
|
||||||
|
def negative_water(self):
|
||||||
|
|
||||||
|
self.check = 0
|
||||||
|
z_array = np.linspace(0.,4.,81)
|
||||||
|
|
||||||
|
CG = Gauss(z_array, self.V_CG, self.D_C+self.d_CG/2., self.s_CG, self.A_L)
|
||||||
|
PCN = Gauss(z_array, self.V_PCN, self.D_C+self.d_CG+self.d_PCN/2., self.s_PCN, self.A_L)
|
||||||
|
Chol = Gauss(z_array, self.V_Chol, self.D_C+self.d_CG+self.d_PCN+self.d_Chol/2., self.s_Chol, self.A_L)
|
||||||
|
TRIS = Gauss(z_array, self.n_TR*CONST_V_tris, self.D_C+self.d_TR/2., self.s_TR, self.A_L)
|
||||||
|
BW = Slab(z_array, self.D_C+(self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl)/2., self.d_CG+self.d_PCN+self.d_Chol+CONST_d_shl, self.s_CH2) - CG - PCN - Chol - TRIS
|
||||||
|
|
||||||
|
for i in(BW) :
|
||||||
|
if i <-0.001 : self.check+= 1
|
||||||
|
|
||||||
|
return self.check
|
||||||
|
|
||||||
|
##################################################################################################################
|
||||||
|
##################################################################################################################
|
||||||
|
|
||||||
# vim ts=4,sts=4,sw=4
|
# vim ts=4,sts=4,sw=4
|
||||||
|
|
23
plotting/plot_error.py
Normal file
23
plotting/plot_error.py
Normal file
|
@ -0,0 +1,23 @@
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import sys
|
||||||
|
import os
|
||||||
|
|
||||||
|
def plot_error(dir):
|
||||||
|
# q | I_data | err | I_fit
|
||||||
|
data = np.genfromtxt(os.path.join(dir, "POPC-test.fit"))
|
||||||
|
|
||||||
|
plt.loglog(data[:,0], data[:, 1], ".", label="I_data")
|
||||||
|
plt.loglog(data[:,0], data[:, 3], label="I_fit")
|
||||||
|
|
||||||
|
plt.legend()
|
||||||
|
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
if len(sys.argv) > 1 and os.path.isdir(sys.argv[1]):
|
||||||
|
dir = sys.argv[1]
|
||||||
|
else:
|
||||||
|
dir = "POPC-test"
|
||||||
|
|
||||||
|
plot_error(dir)
|
|
@ -121,3 +121,4 @@ if __name__ == "__main__":
|
||||||
dir = "POPC-test"
|
dir = "POPC-test"
|
||||||
|
|
||||||
print_x2_stats(dir)
|
print_x2_stats(dir)
|
||||||
|
std_vs_threshold(dir, 13)
|
||||||
|
|
Loading…
Reference in a new issue