tsa_saxs/Minimization/Fit_TSA_mp.py

209 lines
6.1 KiB
Python
Raw Normal View History

2024-02-23 14:46:25 +01:00
#!/usr/bin/python
import sys
import os.path
import time
import numpy as np
import os
import glob
import multiprocessing
localtime = time.asctime( time.localtime(time.time()) )
print(localtime)
sys.path.append("/home/semeraro/Programming/PythonStuff/python_tools")
from Tools import Reading
from Tools import ReadData
from Tools import PlotData
import FitTools
import TSA_algorithm
############################################################
############################################################
############################################################
def X2function(Q,IDATA,I,ERR,N):
'X^2 calculation'
X2 = np.sum( ( ( IDATA-I ) / ERR )**2 )
return X2/(Q.shape[0]-(N-1))
############################################################
t0=time.time()
############################################################ Read Options & Parameters
############### Read File & Options
print("\n-- Reading File:")
read_par = Reading(sys.argv)
iters = int(sys.argv[2])
print("\n-- Reading Options")
options = read_par.Options()
############### Read Function
"-- Reading Function"
(function, pltOptions) = FitTools.ChooseFunction( options['function'] )
############### Read Parameters
print("\n-- Reading Parameters\n")
(NAME, PAR, FIX, PRIOR, L_LIM, H_LIM) = read_par.Parameters()
############################################################ Read & Select Data
(Q, IDATA ,ERR) = ReadData( options['datafile'] ).SelectColumns( options['qmin'],
options['qmax'],
options['bing'],
options['err_mul'] )
############################################################ Fit Routine
t0=time.time()
collection = []
collection_X2 = []
if options['plot']==0:
if __name__ == "__main__":
# Define the inputs for the function
inputs = [(Q, IDATA, ERR, PAR, FIX, PRIOR, L_LIM, H_LIM, function, options['temp'], options['folder'])]
# Create a pool of processes with the number of processors
num_processors = int(multiprocessing.cpu_count()*0.75)
pool = multiprocessing.Pool(processes=num_processors)
# Map the calculate function to the inputs
results = pool.map(TSA_algorithm.SimAnnealing, inputs * iters)
# Close the pool to free up resources
pool.close()
pool.join()
# Print the results
for result in results:
collection.append(result[0])
collection_X2.append(result[1])
#os.rename("./"+options['folder']+"/Trace.dat", "./"+options['folder']+"/Trace_"+str(it)+".dat")
t1=time.time()-t0
(minutes,seconds,cents) = FitTools.TimeCount(t1)
print ( "%2d:%2d.%2d" %(minutes,seconds,cents) )
(minutes,seconds,cents) = FitTools.TimeCount(t1/iters)
print ( "%2d:%2d.%2d per iteration" %(minutes,seconds,cents) )
else:
intensity_init = function(np.array(Q),PAR)
I = intensity_init.intensity()
############################################################ Save Results & Plots
if options['plot']==0:
collection = np.array(collection).transpose()
collection_X2 = np.array(collection_X2)
mean = np.mean(collection,axis=1)
stde = np.std(collection,axis=1)
median = np.median(collection,axis=1)
Q1 = np.quantile(collection,0.25,axis=1)
Q3 = np.quantile(collection,0.75,axis=1)
outliers = []
intensity_init = function(np.array(Q),mean)
I = intensity_init.intensity()
N_free=collection.shape[0]
for p in range(collection.shape[0]) :
if FIX[p] =="f" : N_free-= 1
X2_mean = X2function(Q,IDATA,I,ERR,N_free)
print("\n----- Print statitics -----\n")
print("\n# Mean\t\tst.dev.\t\tX^2 from mean\t",X2_mean,"\n")
for p in range(collection.shape[0]) :
if FIX[p] !="f": print(NAME[p],"\t",mean[p],"\t",stde[p])
else : print(NAME[p],"\t",mean[p],"\t-")
print("\n# Median\t\tQ3\t\tQ1\n")
for p in range(collection.shape[0]) :
if FIX[p] !="f": print(NAME[p],"\t",median[p],"\t",Q3[p],"\t",Q1[p])
else : print(NAME[p],"\t",median[p],"\t-")
for p in range(collection.shape[0]) :
out = 0
for item in (collection[p]):
if item < (Q1[p]-1.5*(Q3[p]-Q1[p])) or item >( Q3[p]+1.5*(Q3[p]-Q1[p])) :
out = 1
outliers.append(out)
print("\n# Check\t\tz+/z'\t\tz-/z'\t\toutliers\n")
for p in range(collection.shape[0]) :
if FIX[p] !="f": print(NAME[p],"\t",(Q3[p]-mean[p])/stde[p]/0.67,"\t",(Q1[p]-mean[p])/stde[p]/0.67,"\t", outliers[p])
else : print(NAME[p],"\t-")
if iters < 10 :
bin_his = iters
elif iters >= 10 and iters < 60 :
bin_his = 10
elif iters >= 60 :
bin_his = int(iters/5)
full_pattern = os.path.join("./"+options['folder'], "Histogram_")
# Check if files exist
files_to_delete = glob.glob(full_pattern)
if files_to_delete:
# Files exist, delete them
for file in files_to_delete:
os.remove(file)
#print("Histrogram_* files updated")
for p in range(collection.shape[0]) :
if FIX[p] !="f":
hist = np.empty(bin_his,dtype=float)
bin_edges = np.empty(bin_his,dtype=float)
hist, bin_edges = np.histogram(collection[p], bins=bin_his, density=False)
bin_center = bin_edges[:hist.shape[0]]+(bin_edges[1]-bin_edges[0])/2
np.savetxt("./"+options['folder']+"/Histogram_"+NAME[p]+".dat", np.column_stack((bin_center,hist)))
np.savetxt("./"+options['folder']+"/Results_collection-X2.dat", collection_X2)
np.savetxt("./"+options['folder']+"/Results_collection.dat", collection.transpose())
X2_mean_to_print = np.empty(1,dtype=float)
X2_mean_to_print[0] = X2_mean
np.savetxt("./"+options['folder']+"/Results_mean-X2.dat", X2_mean_to_print)
np.savetxt("./"+options['folder']+"/Results_mean-values.dat", np.column_stack((mean,stde)) )
np.savetxt("./"+options['folder']+"/Results_IQR-values.dat", np.column_stack((median,Q1,Q3)) )
print("\n-- Save Results in ...")
if options['plot'] == 0:
FitTools.PrintResultsFile( options['title'], options['folder'],
options['datafile'], options['function'],
NAME, mean, FIX, X2_mean )
if options['plot'] == 1:
PAR_RES = PAR.copy()
plotObj = PlotData( options['title'],
options['folder'],
options['qmin'],
options['qmax'] )
if pltOptions['strucCtr'] == 0:
if pltOptions['porodCtr'] == 0:
plotObj.Form(Q, IDATA, ERR, I, mean, pltOptions)
if pltOptions['porodCtr'] == 1:
plotObj.Form_Porod(Q, IDATA, ERR, I, mean)
else:
plotObj.Structure(Q, IDATA, ERR, I, mean, pltOptions)