SRS/optim_mixture.jl
2024-12-18 17:07:43 +01:00

259 lines
5.5 KiB
Julia

module OptimMixture
import DelimitedFiles as DF
import BenchmarkTools as BT
import UnicodePlots as UP
import LinearAlgebra:
const ENERGIES = [2803, 2811, 2819, 2826, 2834, 2842, 2850, 2858, 2866, 2874,
2882, 2890, 2897, 2905, 2913, 2921, 2929, 2937, 2945, 2953,
2961, 2969, 2977, 2985, 2993, 3001, 3009, 3018, 3026, 3034,
3042, 3050]
@kwdef struct Slab
energy::Int
data::Matrix{Int}
end
function load_slabs(width::Int=512, height::Int=512)
slabs = Slab[]()
i_min, i_max = typemax(Int), 0
for e in ENERGIES
slab = Slab(energy=e, data=DF.readdlm("test_sample/HeLa_F-SRS_512x512_2803cm-1.txt", ',', Int))
push!(slabs, slab)
i_min, i_max = min(i_min, minimum(slab.data)), max(i_max, maximum(slab.data))
return slabs, i_min, i_max
end
end
function Q_matrix_transpose(X::Matrix{Float64}, Y::Matrix{Float64}, N::Int)
return sum(abs2, Y - view(X, 1:N, :) * view(X, (N+1):size(X, 1), :)')
end
function Q_matrix_reshape(X::Matrix{Float64}, Y::Matrix{Float64}, N::Int)
N_plus_M, m = size(X)
return sum(abs2, Y - view(X, 1:N, :) * reshape(view(X, (N+1):N_plus_M, :), m, N_plus_M - N))
end
function E_loop(X::Matrix{Float64}, Y::Matrix{Float64})
s = 0
N, M = size(Y)
m = size(X, 2)
for i in 1:N
for j in N+1:N+M
x = 0
for k in 1:m
@inbounds x += X[i, k] * X[j, k]
end
@inbounds s += (x - Y[i, j-N])^2
end
end
return s
end
function Q_loop!(dst::Matrix{Float64}, X::Matrix{Float64}, N::Int)
N_plus_M, m = size(X)
for i in 1:N
for j in N+1:N_plus_M
x = 0
for k in 1:m
@inbounds x += X[i, k] * X[j, k]
end
@inbounds dst[i, j-N] = x
end
end
end
function DE_loop!(dst::Matrix{Float64}, X::Matrix{Float64}, Y::Matrix{Float64})
dst_W = zeros(size(Y))
DE_loop!(dst, dst_W, X, Y)
end
function dot_prod_dual_loop(W::Matrix{Float64}, X::Matrix{Float64}, V::Matrix{Float64})
_, m = size(X)
N, M = size(W)
s = 0
for k in 1:m
for i in 1:N
x = 0
for j in 1:M
@inbounds x += W[i, j] * X[N+j, k]
end
s += x * V[i, k]
end
for j in 1:M
x = 0
for i in 1:N
@inbounds x += W[i, j] * X[i, k]
end
s += x * V[N+j, k]
end
end
return s
end
function dot_prod_primal_loop(W::Matrix{Float64}, X::Matrix{Float64}, V::Matrix{Float64})
_, m = size(X)
N, M = size(W)
s = 0
for i in 1:N
for j in 1:M
x = 0
for k in 1:m
@inbounds x += X[i, k] * V[N+j, k] + X[N+j, k] * V[i, k]
end
s += x * W[i, j]
end
end
return s
end
function DE_loop!(dst::Matrix{Float64}, dst_W::Matrix{Float64}, X::Matrix{Float64}, Y::Matrix{Float64})
_, m = size(X)
N, M = size(Y)
# dst is the same size as X
# we need storage of size Y
Q_loop!(dst_W, X, N)
# compute W = Q(X) - Y
dst_W .-= Y
for k in 1:m
for i in 1:N
x = 0
for j in 1:M
@inbounds x += dst_W[i, j] * X[N+j, k]
end
@inbounds dst[i, k] = x
end
for j in 1:M
x = 0
for i in 1:N
@inbounds x += dst_W[i, j] * X[i, k]
end
@inbounds dst[N+j, k] = x
end
end
dst .*= 2
end
function DQ_V_loop!(dst::Matrix{Float64}, X::Matrix{Float64}, V::Matrix{Float64}, N::Int)
N_plus_M, m = size(X)
for i in 1:N
for j in N+1:N_plus_M
x = 0
for k in 1:m
@inbounds x += (V[i, k] * X[j, k] + X[i, k] * V[j, k])
end
@inbounds dst[i, j-N] = x
end
end
end
function Q_loop_transposed(X::Matrix{Float64}, Y::Matrix{Float64}, N::Int)
s = 0
m, N_plus_M = size(X)
for i in 1:N
for j in N+1:N_plus_M
x = 0
for k in 1:m
@inbounds x += X[k, i] * X[k, j]
end
@inbounds s += (Y[j-N, i] - x)^2
end
end
return s
end
function test_dot_prod(N::Int, M::Int, m::Int)
X = rand(N + M, m)
W = rand(N, M)
V = rand(N + M, m) .- 0.5
@show dot_prod_primal_loop(W, X, V)
@show dot_prod_dual_loop(W, X, V)
end
function test_DE(N::Int, M::Int, m::Int)
X = rand(N + M, m)
Y = rand(N, M)
V = rand(N + M, m) .- 0.5
EX = E_loop(X, Y)
grad_EX = zeros(size(X))
DE_loop!(grad_EX, X, Y)
eps = [10.0^k for k in 1:-1:-12]
errors = zeros(size(eps))
for i in eachindex(eps)
EX_V_true = E_loop(X + eps[i] * V, Y)
EX_V_approx = EX + eps[i] * sum(grad_EX .* V)
@show EX_V_true
@show EX_V_approx
errors[i] = abs(EX_V_true - EX_V_approx)
end
@show eps
@show errors
foo = UP.lineplot(eps, errors, xscale=:log10, yscale=:log10)
UP.lineplot!(foo, eps, eps)
println(foo)
end
function test_DQ(N::Int, M::Int, m::Int)
X = rand(N + M, m) * 255
V = rand(N + M, m)
QX = zeros(N, M)
Q_loop!(QX, X, N)
dst_true = zeros(N, M)
dst_approx = zeros(N, M)
eps = [10.0^k for k in 1:-1:-8]
errors = zeros(size(eps))
for i in eachindex(eps)
Q_loop!(dst_true, X + eps[i] * V, N)
DQ_V_loop!(dst_approx, X, eps[i] * V, N)
dst_approx .+= QX
errors[i] = sum(abs, dst_approx - dst_true)
end
@show eps
@show errors
println(UP.lineplot(eps, errors, xscale=:log10, yscale=:log10))
end
function test(N::Int, M::Int, m::Int)
Y = rand(N, M) * 255
X = rand(N + M, m) * 255
X_pre = copy(X)
X_pre[N+1:N+M] .= vec(X_pre[N+1:N+M]')
r_matrix = Q_matrix_transpose(X, Y, N)
r_loop = Q_loop(X, Y, N)
@show r_matrix, r_loop, abs(r_matrix - r_loop) / r_loop
end
end # module
# OptimMixture.test(512 * 512, 20, 2)
# OptimMixture.test_DQ(512 * 512, 20, 2)
OptimMixture.test_DE(512 * 512, 20, 2)
# OptimMixture.test_DE(20, 2, 2)
# OptimMixture.test_dot_prod(512^2, 20, 2)
# vim: ts=2:sw=2:sts=2