Excercises_GeorgMandl/Sheet_4/Ex_4_B.m
2025-11-25 20:56:31 +01:00

32 lines
747 B
Matlab

% Sheet 4 / Task B
ne = 50; % number of elements
nodes = linspace(0,1,ne+1);
K = zeros(ne+1,ne+1); % global stiffness matrix
f = zeros(ne+1,1); % load vector
lambda = @(x) (x<1/sqrt(2))*1 + (x>=1/sqrt(2))*10;
for e = 1:ne
xleft = nodes(e);
xright = nodes(e+1);
Ke = ne^2*[integral(lambda,xleft,xright), -integral(lambda,xleft,xright);
-integral(lambda,xleft,xright), integral(lambda,xleft,xright)];
K(e:e+1, e:e+1) = K(e:e+1, e:e+1) + Ke;
end
% disp(K)
% adaption for dirichlet boundary
K(1,1) = K(1,1)*(1 + 1e6);
f(end) = K(end,end)*1e6;
K(end,end) = K(end,end)*(1 + 1e6);
u = K\f;
plot(nodes,u)
title('approximation of solution u');
xlabel('x values');
ylabel('u_h');