This commit is contained in:
Georg Thomas Mandl 2025-12-10 17:13:12 +01:00
commit 4141f31f0c
5 changed files with 309 additions and 0 deletions

30
Sheet_5/bsp_5_3/Makefile Normal file
View file

@ -0,0 +1,30 @@
#
# use GNU-Compiler tools
COMPILER=GCC_
# alternatively from the shell
# export COMPILER=GCC_
# or, alternatively from the shell
# make COMPILER=GCC_
# use Intel compilers
#COMPILER=ICC_
# use PGI compilers
# COMPILER=PGI_
SOURCES = main.cpp bsp_5_3_lib.cpp
OBJECTS = $(SOURCES:.cpp=.o)
PROGRAM = main.${COMPILER}
# uncomment the next to lines for debugging and detailed performance analysis
CXXFLAGS += -g
LINKFLAGS += -g
# do not use -pg with PGI compilers
ifndef COMPILER
COMPILER=GCC_
endif
include ../${COMPILER}default.mk

View file

@ -0,0 +1,101 @@
#include "bsp_5_3_lib.h"
#include "mayer_primes.h"
#include "algorithm"
#include <iostream>
#ifdef _OPENMP
#include <omp.h>
#endif
using namespace std;
int single_goldbach(const int &k)
{
vector<int> primes = get_primes(k);
int amount = 0;
for(size_t it = 0; primes[it]<=k/2.0; ++it) //für Primzahl größer als k/2 haben wir bereits Zerlegung gezählt: 3+7 = 7+3
{
for(size_t j = it; j<primes.size(); ++j)
{
if(primes[it] + primes[j] == k)
{
amount += 1;
}
}
}
return amount;
}
int single_goldbach_par(const int &k)
{
vector<int> primes = get_primes(k);
int amount = 0;
size_t it_max = 0;
// to get a barrier for the loop; omp needs a fix upper bound
while (it_max < primes.size() && primes[it_max] <= k/2)
{
++it_max;
}
#pragma omp parallel for default(none) shared(primes, k, it_max) reduction(+:amount)
for(size_t it = 0; it<it_max; ++it) //für Primzahl größer als k/2 haben wir bereits Zerlegung gezählt: 3+7 = 7+3
{
for(size_t j = it; j<primes.size(); ++j)
{
if(primes[it] + primes[j] == k)
{
amount += 1;
}
}
}
return amount;
}
vector<int> count_goldbach(const int &n)
{
vector<int> count_vec((n-4)/2+1,0);
vector<int> primes = get_primes(n);
for(size_t k=0; k < primes.size() && primes[k]<=n/2; ++k)
{
for(size_t i=k; i<primes.size(); ++i)
{
int sum = primes[k] + primes[i];
if(sum<=n)
{
count_vec[(sum-4)/2] += 1;
}
}
}
return count_vec;
}
vector<int> count_goldbach_par(const int &n)
{
vector<int> count_vec((n-4)/2+1,0);
vector<int> primes = get_primes(n);
size_t it_max = 0;
while (it_max < primes.size() && primes[it_max] <= n/2)
{
++it_max;
}
#pragma omp parallel for schedule(dynamic) shared(primes, n, it_max) reduction(VecAdd:count_vec)
for(size_t k=0; k<it_max; ++k)
{
for(size_t i=k; i<primes.size(); ++i)
{
int sum = primes[k] + primes[i];
if(sum<=n)
{
count_vec[(sum-4)/2] += 1;
}
}
}
return count_vec;
}

View file

@ -0,0 +1,59 @@
#pragma once
#include <cassert>
#include <omp.h>
#include <vector>
/** \brief Zaehlt fuer eine gegebene Zahl @k die Anzahl der moeglichen Zerlegungen als Summe zweier Primzahlen
*
* \param[in] k fuer diese Zahl wird die Anzahl der Zerlegungen berechnet
* \return Anzahl der Zerlegungen
*
*/
int single_goldbach(const int &k);
/** \brief Zaehlt fuer eine gegebene Zahl @k die Anzahl der moeglichen Zerlegungen als Summe zweier Primzahlen [parallel]
*
* \param[in] k fuer diese Zahl wird die Anzahl der Zerlegungen berechnet
* \return Anzahl der Zerlegungen
*
*/
int single_goldbach_par(const int &k);
/** \brief Zaehlt die Anzahl der Dekomposition für alle geraden Zahlen in [4,n]
*
* \param[in] n obere Intervallgrenze (in diesem Bereich werden die Dekompositionen berechnet
* \return Vektor mit den Anzahl der Dekompositionen (ad Adressierung: x[0] = (n=4), x[1] = (n=6), x[2] = (n=8), Umrechnung *2 + 4
*
*/
std::vector<int> count_goldbach(const int &n);
/** \brief Zaehlt die Anzahl der Dekomposition für alle geraden Zahlen in [4,n] - [parallel]
*
* \param[in] n obere Intervallgrenze (in diesem Bereich werden die Dekompositionen berechnet
* \return Vektor mit den Anzahl der Dekompositionen (ad Adressierung: x[0] = (n=4), x[1] = (n=6), x[2] = (n=8), Umrechnung *2 + 4
*
*/
std::vector<int> count_goldbach_par(const int &n);
/** Vector @p b adds its elements to vector @p a .
@param[in] a vector
@param[in] b vector
@return a+=b componentwise
*/
template<class T>
std::vector<T> &operator+=(std::vector<T> &a, std::vector<T> const &b)
{
assert(a.size()==b.size());
for (size_t k = 0; k < a.size(); ++k) {
a[k] += b[k];
}
return a;
}
#pragma omp declare reduction(VecAdd : std::vector<int> : omp_out += omp_in) \
initializer (omp_priv=omp_orig)

46
Sheet_5/bsp_5_3/main.cpp Normal file
View file

@ -0,0 +1,46 @@
#include "bsp_5_3_lib.h"
#include "mayer_primes.h"
#include <iostream>
#include <algorithm>
#include <chrono>
// BSP 5_3 Goldbach conjunction
using namespace std;
int main()
{
omp_set_num_threads(8);
cout << "\nChecking for correct result\n";
cout << "694 has " << single_goldbach_par(694) << " decompositions" << endl;
// Auswertung für n=100000 bzw herausfinden der Zahl, welche die meisten Dekompositionen hat
vector<int> v = count_goldbach_par(1e5);
auto ip = max_element(v.begin(), v.end());
cout << "number in [4,1e5] with most decompositions: " << distance(v.begin(), ip)*2+4 << " has " << *ip << " decompositions" << endl;
cout << "\nTiming for parallel" << endl;
vector<int> nvec{static_cast<int>(1e4), static_cast<int>(1e5), static_cast<int>(4*1e5), static_cast<int>(1e6), static_cast<int>(2*1e6)}; // Vektor für n
for(size_t k=0; k<nvec.size(); ++k)
{
auto timestart = omp_get_wtime();
vector<int> vall = count_goldbach_par(nvec[k]);
auto time = omp_get_wtime() - timestart;
cout << "n = " << nvec[k] << "\ttime in s: " << time << endl;
}
cout << "\nTiming for serial" << endl;
for(size_t k=0; k<nvec.size(); ++k)
{
auto timestart = omp_get_wtime();
vector<int> vall = count_goldbach(nvec[k]);
auto time = omp_get_wtime() - timestart;
cout << "n = " << nvec[k] << "\ttime in s: " << time << endl;
}
// for large n the parallel version is slower than the sequential
// the reason is the reduction(VecAdd) which is slow especially for large vectors
// cout << single_goldbach(694) << endl;
// cout << count_goldbach(10000)[690/2] << endl;
return 0;
}

View file

@ -0,0 +1,73 @@
#pragma once
#include <cstring> //memset
#include <vector>
//using namespace std;
/** \brief Determines all prime numbers in interval [2, @p max].
*
* The sieve of Eratosthenes is used.
*
* The implementation originates from <a href="http://code.activestate.com/recipes/576559-fast-prime-generator/">Florian Mayer</a>.
*
* \param[in] max end of interval for the prime number search.
* \return vector of prime numbers @f$2,3,5, ..., p<=max @f$.
*
* \copyright
* Copyright (c) 2008 Florian Mayer (adapted by Gundolf Haase 2018)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
template <class T>
std::vector<T> get_primes(T max)
{
std::vector<T> primes;
char *sieve;
sieve = new char[max / 8 + 1];
// Fill sieve with 1
memset(sieve, 0xFF, (max / 8 + 1) * sizeof(char));
for (T x = 2; x <= max; x++)
{
if (sieve[x / 8] & (0x01 << (x % 8))) {
primes.push_back(x);
// Is prime. Mark multiplicates.
for (T j = 2 * x; j <= max; j += x)
{
sieve[j / 8] &= ~(0x01 << (j % 8));
}
}
}
delete[] sieve;
return primes;
}
//---------------------------------------------------------------
//int main() // by Florian Mayer
//{g++ -O3 -std=c++14 -fopenmp main.cpp && ./a.out
// vector<unsigned long> primes;
// primes = get_primes(10000000);
// // return 0;
// // Print out result.
// vector<unsigned long>::iterator it;
// for(it=primes.begin(); it < primes.end(); it++)
// cout << *it << " ";
//
// cout << endl;
// return 0;
//}