sheet 5
This commit is contained in:
parent
fea341782e
commit
4141f31f0c
5 changed files with 309 additions and 0 deletions
30
Sheet_5/bsp_5_3/Makefile
Normal file
30
Sheet_5/bsp_5_3/Makefile
Normal file
|
|
@ -0,0 +1,30 @@
|
|||
#
|
||||
# use GNU-Compiler tools
|
||||
COMPILER=GCC_
|
||||
# alternatively from the shell
|
||||
# export COMPILER=GCC_
|
||||
# or, alternatively from the shell
|
||||
# make COMPILER=GCC_
|
||||
|
||||
# use Intel compilers
|
||||
#COMPILER=ICC_
|
||||
|
||||
# use PGI compilers
|
||||
# COMPILER=PGI_
|
||||
|
||||
|
||||
SOURCES = main.cpp bsp_5_3_lib.cpp
|
||||
OBJECTS = $(SOURCES:.cpp=.o)
|
||||
|
||||
PROGRAM = main.${COMPILER}
|
||||
|
||||
# uncomment the next to lines for debugging and detailed performance analysis
|
||||
CXXFLAGS += -g
|
||||
LINKFLAGS += -g
|
||||
# do not use -pg with PGI compilers
|
||||
|
||||
ifndef COMPILER
|
||||
COMPILER=GCC_
|
||||
endif
|
||||
|
||||
include ../${COMPILER}default.mk
|
||||
101
Sheet_5/bsp_5_3/bsp_5_3_lib.cpp
Normal file
101
Sheet_5/bsp_5_3/bsp_5_3_lib.cpp
Normal file
|
|
@ -0,0 +1,101 @@
|
|||
#include "bsp_5_3_lib.h"
|
||||
#include "mayer_primes.h"
|
||||
#include "algorithm"
|
||||
#include <iostream>
|
||||
#ifdef _OPENMP
|
||||
#include <omp.h>
|
||||
#endif
|
||||
|
||||
using namespace std;
|
||||
|
||||
int single_goldbach(const int &k)
|
||||
{
|
||||
vector<int> primes = get_primes(k);
|
||||
int amount = 0;
|
||||
for(size_t it = 0; primes[it]<=k/2.0; ++it) //für Primzahl größer als k/2 haben wir bereits Zerlegung gezählt: 3+7 = 7+3
|
||||
{
|
||||
for(size_t j = it; j<primes.size(); ++j)
|
||||
{
|
||||
if(primes[it] + primes[j] == k)
|
||||
{
|
||||
amount += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return amount;
|
||||
}
|
||||
|
||||
|
||||
int single_goldbach_par(const int &k)
|
||||
{
|
||||
vector<int> primes = get_primes(k);
|
||||
int amount = 0;
|
||||
size_t it_max = 0;
|
||||
// to get a barrier for the loop; omp needs a fix upper bound
|
||||
while (it_max < primes.size() && primes[it_max] <= k/2)
|
||||
{
|
||||
++it_max;
|
||||
}
|
||||
|
||||
#pragma omp parallel for default(none) shared(primes, k, it_max) reduction(+:amount)
|
||||
for(size_t it = 0; it<it_max; ++it) //für Primzahl größer als k/2 haben wir bereits Zerlegung gezählt: 3+7 = 7+3
|
||||
{
|
||||
for(size_t j = it; j<primes.size(); ++j)
|
||||
{
|
||||
if(primes[it] + primes[j] == k)
|
||||
{
|
||||
amount += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return amount;
|
||||
}
|
||||
|
||||
|
||||
vector<int> count_goldbach(const int &n)
|
||||
{
|
||||
vector<int> count_vec((n-4)/2+1,0);
|
||||
vector<int> primes = get_primes(n);
|
||||
for(size_t k=0; k < primes.size() && primes[k]<=n/2; ++k)
|
||||
{
|
||||
for(size_t i=k; i<primes.size(); ++i)
|
||||
{
|
||||
int sum = primes[k] + primes[i];
|
||||
if(sum<=n)
|
||||
{
|
||||
count_vec[(sum-4)/2] += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return count_vec;
|
||||
}
|
||||
|
||||
|
||||
vector<int> count_goldbach_par(const int &n)
|
||||
{
|
||||
vector<int> count_vec((n-4)/2+1,0);
|
||||
vector<int> primes = get_primes(n);
|
||||
size_t it_max = 0;
|
||||
while (it_max < primes.size() && primes[it_max] <= n/2)
|
||||
{
|
||||
++it_max;
|
||||
}
|
||||
|
||||
#pragma omp parallel for schedule(dynamic) shared(primes, n, it_max) reduction(VecAdd:count_vec)
|
||||
for(size_t k=0; k<it_max; ++k)
|
||||
{
|
||||
for(size_t i=k; i<primes.size(); ++i)
|
||||
{
|
||||
int sum = primes[k] + primes[i];
|
||||
if(sum<=n)
|
||||
{
|
||||
count_vec[(sum-4)/2] += 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return count_vec;
|
||||
}
|
||||
59
Sheet_5/bsp_5_3/bsp_5_3_lib.h
Normal file
59
Sheet_5/bsp_5_3/bsp_5_3_lib.h
Normal file
|
|
@ -0,0 +1,59 @@
|
|||
#pragma once
|
||||
|
||||
#include <cassert>
|
||||
#include <omp.h>
|
||||
#include <vector>
|
||||
|
||||
/** \brief Zaehlt fuer eine gegebene Zahl @k die Anzahl der moeglichen Zerlegungen als Summe zweier Primzahlen
|
||||
*
|
||||
* \param[in] k fuer diese Zahl wird die Anzahl der Zerlegungen berechnet
|
||||
* \return Anzahl der Zerlegungen
|
||||
*
|
||||
*/
|
||||
int single_goldbach(const int &k);
|
||||
|
||||
|
||||
/** \brief Zaehlt fuer eine gegebene Zahl @k die Anzahl der moeglichen Zerlegungen als Summe zweier Primzahlen [parallel]
|
||||
*
|
||||
* \param[in] k fuer diese Zahl wird die Anzahl der Zerlegungen berechnet
|
||||
* \return Anzahl der Zerlegungen
|
||||
*
|
||||
*/
|
||||
int single_goldbach_par(const int &k);
|
||||
|
||||
|
||||
/** \brief Zaehlt die Anzahl der Dekomposition für alle geraden Zahlen in [4,n]
|
||||
*
|
||||
* \param[in] n obere Intervallgrenze (in diesem Bereich werden die Dekompositionen berechnet
|
||||
* \return Vektor mit den Anzahl der Dekompositionen (ad Adressierung: x[0] = (n=4), x[1] = (n=6), x[2] = (n=8), Umrechnung *2 + 4
|
||||
*
|
||||
*/
|
||||
std::vector<int> count_goldbach(const int &n);
|
||||
|
||||
|
||||
/** \brief Zaehlt die Anzahl der Dekomposition für alle geraden Zahlen in [4,n] - [parallel]
|
||||
*
|
||||
* \param[in] n obere Intervallgrenze (in diesem Bereich werden die Dekompositionen berechnet
|
||||
* \return Vektor mit den Anzahl der Dekompositionen (ad Adressierung: x[0] = (n=4), x[1] = (n=6), x[2] = (n=8), Umrechnung *2 + 4
|
||||
*
|
||||
*/
|
||||
std::vector<int> count_goldbach_par(const int &n);
|
||||
|
||||
|
||||
/** Vector @p b adds its elements to vector @p a .
|
||||
@param[in] a vector
|
||||
@param[in] b vector
|
||||
@return a+=b componentwise
|
||||
*/
|
||||
template<class T>
|
||||
std::vector<T> &operator+=(std::vector<T> &a, std::vector<T> const &b)
|
||||
{
|
||||
assert(a.size()==b.size());
|
||||
for (size_t k = 0; k < a.size(); ++k) {
|
||||
a[k] += b[k];
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
#pragma omp declare reduction(VecAdd : std::vector<int> : omp_out += omp_in) \
|
||||
initializer (omp_priv=omp_orig)
|
||||
46
Sheet_5/bsp_5_3/main.cpp
Normal file
46
Sheet_5/bsp_5_3/main.cpp
Normal file
|
|
@ -0,0 +1,46 @@
|
|||
#include "bsp_5_3_lib.h"
|
||||
#include "mayer_primes.h"
|
||||
#include <iostream>
|
||||
#include <algorithm>
|
||||
#include <chrono>
|
||||
// BSP 5_3 Goldbach conjunction
|
||||
using namespace std;
|
||||
|
||||
int main()
|
||||
{
|
||||
omp_set_num_threads(8);
|
||||
|
||||
cout << "\nChecking for correct result\n";
|
||||
cout << "694 has " << single_goldbach_par(694) << " decompositions" << endl;
|
||||
|
||||
// Auswertung für n=100000 bzw herausfinden der Zahl, welche die meisten Dekompositionen hat
|
||||
vector<int> v = count_goldbach_par(1e5);
|
||||
auto ip = max_element(v.begin(), v.end());
|
||||
cout << "number in [4,1e5] with most decompositions: " << distance(v.begin(), ip)*2+4 << " has " << *ip << " decompositions" << endl;
|
||||
|
||||
cout << "\nTiming for parallel" << endl;
|
||||
vector<int> nvec{static_cast<int>(1e4), static_cast<int>(1e5), static_cast<int>(4*1e5), static_cast<int>(1e6), static_cast<int>(2*1e6)}; // Vektor für n
|
||||
for(size_t k=0; k<nvec.size(); ++k)
|
||||
{
|
||||
auto timestart = omp_get_wtime();
|
||||
vector<int> vall = count_goldbach_par(nvec[k]);
|
||||
auto time = omp_get_wtime() - timestart;
|
||||
cout << "n = " << nvec[k] << "\ttime in s: " << time << endl;
|
||||
}
|
||||
|
||||
cout << "\nTiming for serial" << endl;
|
||||
for(size_t k=0; k<nvec.size(); ++k)
|
||||
{
|
||||
auto timestart = omp_get_wtime();
|
||||
vector<int> vall = count_goldbach(nvec[k]);
|
||||
auto time = omp_get_wtime() - timestart;
|
||||
cout << "n = " << nvec[k] << "\ttime in s: " << time << endl;
|
||||
}
|
||||
|
||||
// for large n the parallel version is slower than the sequential
|
||||
// the reason is the reduction(VecAdd) which is slow especially for large vectors
|
||||
|
||||
// cout << single_goldbach(694) << endl;
|
||||
// cout << count_goldbach(10000)[690/2] << endl;
|
||||
return 0;
|
||||
}
|
||||
73
Sheet_5/bsp_5_3/mayer_primes.h
Normal file
73
Sheet_5/bsp_5_3/mayer_primes.h
Normal file
|
|
@ -0,0 +1,73 @@
|
|||
#pragma once
|
||||
|
||||
#include <cstring> //memset
|
||||
#include <vector>
|
||||
//using namespace std;
|
||||
|
||||
/** \brief Determines all prime numbers in interval [2, @p max].
|
||||
*
|
||||
* The sieve of Eratosthenes is used.
|
||||
*
|
||||
* The implementation originates from <a href="http://code.activestate.com/recipes/576559-fast-prime-generator/">Florian Mayer</a>.
|
||||
*
|
||||
* \param[in] max end of interval for the prime number search.
|
||||
* \return vector of prime numbers @f$2,3,5, ..., p<=max @f$.
|
||||
*
|
||||
* \copyright
|
||||
* Copyright (c) 2008 Florian Mayer (adapted by Gundolf Haase 2018)
|
||||
*
|
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
* of this software and associated documentation files (the "Software"), to deal
|
||||
* in the Software without restriction, including without limitation the rights
|
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
* copies of the Software, and to permit persons to whom the Software is
|
||||
* furnished to do so, subject to the following conditions:
|
||||
*
|
||||
* The above copyright notice and this permission notice shall be included in
|
||||
* all copies or substantial portions of the Software.
|
||||
*
|
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
|
||||
* INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
*
|
||||
*/
|
||||
template <class T>
|
||||
std::vector<T> get_primes(T max)
|
||||
{
|
||||
std::vector<T> primes;
|
||||
char *sieve;
|
||||
sieve = new char[max / 8 + 1];
|
||||
// Fill sieve with 1
|
||||
memset(sieve, 0xFF, (max / 8 + 1) * sizeof(char));
|
||||
for (T x = 2; x <= max; x++)
|
||||
{
|
||||
if (sieve[x / 8] & (0x01 << (x % 8))) {
|
||||
primes.push_back(x);
|
||||
// Is prime. Mark multiplicates.
|
||||
for (T j = 2 * x; j <= max; j += x)
|
||||
{
|
||||
sieve[j / 8] &= ~(0x01 << (j % 8));
|
||||
}
|
||||
}
|
||||
}
|
||||
delete[] sieve;
|
||||
return primes;
|
||||
}
|
||||
|
||||
//---------------------------------------------------------------
|
||||
//int main() // by Florian Mayer
|
||||
//{g++ -O3 -std=c++14 -fopenmp main.cpp && ./a.out
|
||||
// vector<unsigned long> primes;
|
||||
// primes = get_primes(10000000);
|
||||
// // return 0;
|
||||
// // Print out result.
|
||||
// vector<unsigned long>::iterator it;
|
||||
// for(it=primes.begin(); it < primes.end(); it++)
|
||||
// cout << *it << " ";
|
||||
//
|
||||
// cout << endl;
|
||||
// return 0;
|
||||
//}
|
||||
Loading…
Add table
Add a link
Reference in a new issue