scf_celebic/ex4/code/task_b.py
dino.celebic 36a12731ef ex4
2025-11-25 19:21:38 +01:00

61 lines
No EOL
1.3 KiB
Python

import numpy as np
import matplotlib.pyplot as plt
# PDE:
# -(lambda(x)u'(x))' = 0 x in (0,1)
# u(0) = 0
# u(1) = 1
# lambda(x) = | 1 x in (0,1/sqrt(2))
# | 10 x in (1/sqrt(2),1)
# parameters
n = 2 # elements (must be even)
# mesh
m = n+1 # nodes
nh = int(n/2) # elements per subdomain
mh = nh+1 # nodes per subdomain
jump = 1/np.sqrt(2)
x1 = np.linspace(0,jump, mh)
x2 = np.linspace(jump, 1, mh)
x = np.concatenate((x1[:-1],x2))
h1 = jump/nh
h2 = (1-jump)/nh
# local stiffness matrix
K_loc1 = ( 1.0/h1) * np.array([[ 1,-1], [-1, 1]])
K_loc2 = (10.0/h2) * np.array([[ 1,-1], [-1, 1]])
# Assembling
K = np.zeros((m,m))
F = np.zeros(m)
for i in range(nh):
K[i:i+2,i:i+2] += K_loc1
for i in range(nh,n):
K[i:i+2,i:i+2] += K_loc2
# Boundary conditions
# Dirichlet: u(0) = 0
K[0,:] = 0
K[0,0] = 1
F[0] = 0
# Dirichlet: u(1) = 1
K[-1,:] = 0
K[-1,-1] = 1
F[-1] = 1
u = np.linalg.solve(K, F)
plt.plot(x, u, "-o", label="u_h")
plt.title(f"n = {n} (already exact)")
plt.xlabel("x")
plt.ylabel("u(x)")
plt.legend()
plt.grid(True)
print("K = ", K)
print("f = ", F)
print("u = ", u)
plt.tight_layout()
plt.savefig("../task_b.png", dpi=300)
plt.show()