This commit is contained in:
dino.celebic 2025-12-26 20:26:31 +01:00
commit 2467b9ae03
44 changed files with 22631 additions and 0 deletions

View file

@ -0,0 +1,626 @@
// see: http://llvm.org/docs/CodingStandards.html#include-style
#include "vdop.h"
//#include "geom.h"
#include "par_geom.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cmath>
#include <ctime> // contains clock()
#include <fstream>
#include <iostream>
#include <list>
#include <numeric> // accumulate()
#include <string>
#include <vector>
using namespace std;
ParMesh::ParMesh(int ndim, int nvert_e, int ndof_e, int nedge_e, MPI_Comm const &icomm)
: Mesh(ndim, nvert_e, ndof_e, nedge_e),
_icomm(icomm), _numprocs(-1), _myrank(-1),
_v_l2g(0), _t_l2g(0), _v_g2l{{}}, _t_g2l{{}}, _valence(0),
_sendbuf(0), _sendcounts(0), _sdispls(0),
_loc_itf(0), _gloc_itf(0), _buf2loc(0)
{
MPI_Comm_size(icomm, &_numprocs);
MPI_Comm_rank(icomm, &_myrank);
}
ParMesh::~ParMesh()
{}
ParMesh::ParMesh(std::string const &sname, MPI_Comm const &icomm)
: ParMesh(2, 3, 3, 3, icomm) // two dimensions, 3 vertices, 3 dofs, 3 edges per element
{
//const int numprocs = _icomm.Get_size();
const string NS = "_" + to_string(_numprocs);
const string fname = sname + NS + ".txt";
//cout << "############ " << fname << endl;
ReadVertexBasedMesh(fname);
cout << "\n End of sequential File read \n";
// ------------------------------------------------------------------------------
// Until this point a l l processes possess a l l mesh info in g l o b a l numbering
//
// Now, we have to select the data belonging to my_rank
// and we have to create the mapping local to global (l2g) and vice versa (g2l)
// ------------------------------------------------------------------------------
// save the global node mesh (maybe we need it later)
DeriveEdgeFromVertexBased(); // and even more
Mesh global_mesh(*this); // requires a l o t of memory
Del_EdgeConnectivity();
// read the subdomain info
const string dname = sname + NS + "_sd" + ".txt";
vector<int> t2d = ReadElementSubdomains(dname); // global mapping triangle to subdomain for all elements
//const int myrank = _icomm.Get_rank();
Transform_Local2Global_Vertex(_myrank, t2d); // Vertex based mesh: now in l o c a l indexing
DeriveEdgeFromVertexBased(); // Generate also the l o c a l edge based information
Generate_VectorAdd();
// Now we have to organize the MPI communication of vertices on the subdomain interfaces
return;
}
vector<int> ParMesh::ReadElementSubdomains(string const &dname)
{
ifstream ifs(dname);
if (!(ifs.is_open() && ifs.good())) {
cerr << "ParMesh::ReadElementSubdomain: Error cannot open file " << dname << endl;
assert(ifs.is_open());
}
int const OFFSET{1}; // Matlab to C indexing
cout << "ASCI file " << dname << " opened" << endl;
// Read some mesh constants
int nelem;
ifs >> nelem;
cout << nelem << " " << Nelems() << endl;
assert( Nelems() == nelem);
// Allocate memory
vector<int> t2d(nelem, -1);
// Read element mapping
for (int k = 0; k < nelem; ++k) {
int tmp;
ifs >> tmp;
//t2d[k] = tmp - OFFSET;
// 2020-01-08
t2d[k] = min(tmp, NumProcs()) - OFFSET;
}
return t2d;
}
void ParMesh::Transform_Local2Global_Vertex(int const myrank, vector<int> const &t2d)
{
// number of local elements
const int l_ne = count(t2d.cbegin(), t2d.cend(), myrank);
//cout << myrank << ":: " << lne << endl;
vector<int> l_ia(l_ne * NverticesElements(), -1); // local elements still with global vertex numbers
_t_l2g.resize(l_ne, -1);
int lk = 0;
for (size_t k = 0; k < t2d.size(); ++k) {
if (myrank == t2d[k]) {
//if (0==myrank)
//{
//cout << lk << " k " << t2d[k] << endl;
//}
l_ia[3 * lk ] = _ia[3 * k ];
l_ia[3 * lk + 1] = _ia[3 * k + 1];
l_ia[3 * lk + 2] = _ia[3 * k + 2]; // local elements still with global vertex numbers
_t_l2g[lk] = k; // elements: local to global mapping
_t_g2l[k] = lk; // global to local
++lk;
}
}
// Checks:
assert( count(l_ia.cbegin(), l_ia.cend(), -1) == 0 );
assert( count(_t_l2g.cbegin(), _t_l2g.cend(), -1) == 0 );
// Vertices: local to global mapping
auto tmp = l_ia;
sort(tmp.begin(), tmp.end());
auto ip = unique(tmp.begin(), tmp.end());
tmp.erase(ip, tmp.end());
_v_l2g = tmp; // Vertices: local to global mapping
for (size_t lkv = 0; lkv < _v_l2g.size(); ++lkv) {
_v_g2l[_v_l2g[lkv]] = lkv; // global to local
}
// Boundary edges
vector<int> l_bedges;
vector<int> l_sdedges;
for (size_t b = 0; b < _bedges.size(); b += 2) {
int const v1 = _bedges[b ]; // global vertex numbers
int const v2 = _bedges[b + 1];
try {
int const lv1 = _v_g2l.at(v1); // map[] would add that element
int const lv2 = _v_g2l.at(v2); // but at() throws an exeption
l_bedges.push_back(lv1);
l_bedges.push_back(lv2); // Boundaries: already in local indexing
// 2020-01-08
l_sdedges.push_back(_sdedges[b ]);
l_sdedges.push_back(_sdedges[b+1]);
}
catch (std::out_of_range & err) {
//cerr << ".";
}
}
// number of local vertices
const int l_nn = _v_l2g.size();
vector<double> l_xc(Ndims()*l_nn);
for (int lkk = 0; lkk < l_nn; ++lkk) {
int k = _v_l2g.at(lkk);
l_xc[2 * lkk ] = _xc[2 * k ];
l_xc[2 * lkk + 1] = _xc[2 * k + 1];
}
// Now, we represent the vertex mesh in l o c a l numbering
// elements
for (size_t i = 0; i < l_ia.size(); ++i) {
l_ia[i] = _v_g2l.at(l_ia[i]); // element vertices: global to local
}
SetNelem(l_ne);
_ia = l_ia;
// boundary
_bedges = l_bedges;
_sdedges = l_sdedges;
// coordinates
SetNnode(l_nn);
_xc = l_xc;
return;
}
void ParMesh::Generate_VectorAdd()
{
// Some checks
int lnn = Nnodes(); // local number of vertices
assert(static_cast<int>(_v_l2g.size()) == lnn);
int ierr{-12345};
// ---- Determine global largest vertex index
int gidx_max{-1}; // global largest vertex index
int lmax = *max_element(_v_l2g.cbegin(), _v_l2g.cend());
MPI_Allreduce(&lmax, &gidx_max, 1, MPI_INT, MPI_MAX, _icomm);
int gidx_min{-1}; // global smallest vertex index
int lmin = *min_element(_v_l2g.cbegin(), _v_l2g.cend());
MPI_Allreduce(&lmin, &gidx_min, 1, MPI_INT, MPI_MIN, _icomm);
//cout << gidx_min << " " << gidx_max << endl;
assert(0 == gidx_min); // global indices have to start with 0
// ---- Determine for all global vertices the number of subdomains it belongs to
vector<int> global(gidx_max+1, 0); // global scalar array for vertices
for (auto const gidx : _v_l2g) global[gidx] = 1;
// https://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node109.htm
ierr = MPI_Allreduce(MPI_IN_PLACE, global.data(), global.size(), MPI_INT, MPI_SUM, _icomm);
//if (0 == MyRank()) cout << global << endl;
//MPI_Barrier(_icomm);
//cout << _xc[2*_v_g2l.at(2)] << " , " << _xc[2*_v_g2l.at(2)+1] << endl;
//MPI_Barrier(_icomm);
// now, global[] contains the number of subdomains a global vertex belongs to
if ( count(global.cbegin(), global.cend(), 0) > 0 )
cerr << "\n !!! Non-continuous global vertex indexing !!!\n";
// ---- Determine local interface vertices ( <==> global[] > 1 )
// _loc_itf, neigh_itf
//vector<int> loc_itf; // local indices of interface vertices on this MPI process
for (size_t lk = 0; lk < _v_l2g.size(); ++lk) {
int const gk = _v_l2g[lk]; // global index of local vertex lk
if ( global[gk] > 1 ) {
_loc_itf.push_back(lk); // local indices of interface vertices on this MPI process
}
}
//MPI_Barrier(_icomm);
//if (0 == MyRank()) cout << "\n..._loc_itf...\n" << _loc_itf << "\n......\n";
//MPI_Barrier(_icomm);
// ---- global indices of local interface vertices
//auto gloc_itf(_loc_itf);
_gloc_itf=_loc_itf;
for_each(_gloc_itf.begin(), _gloc_itf.end(), [this] (auto & v) -> void { v = _v_l2g[v];} );
//MPI_Barrier(_icomm);
//if (0 == MyRank()) cout << "\n..._gloc_itf...\n" << _gloc_itf << "\n......\n";
//DebugVector(_gloc_itf,"_gloc_itf");
// ---- Determine the global length of interfaces
vector<int> vnn(NumProcs(), -1); // number of interface vertices per MPI rank
int l_itf(_loc_itf.size()); // # local interface vertices
ierr = MPI_Allgather(&l_itf, 1, MPI_INT, vnn.data(), 1, MPI_INT, _icomm);
assert(0 == ierr);
//cout << vnn << endl;
// ---- Now we consider only the inferface vertices
int snn = accumulate(vnn.cbegin(), vnn.cend(), 0); // required length of array for global interface indices
//cout << snn << " " << gnn << endl;
vector<int> dispnn(NumProcs(), 0) ; // displacement of interface vertices per MPI rank
partial_sum(vnn.cbegin(), vnn.cend() - 1, dispnn.begin() + 1);
//cout << dispnn << endl;
// ---- Get the global indices for all global interfaces
vector<int> g_itf(snn, -1); // collects all global indices of the global interfaces
// https://www.mpich.org/static//docs/v3.0.x/www3/MPI_Gatherv.html
ierr = MPI_Gatherv( _gloc_itf.data(), _gloc_itf.size(), MPI_INT,
g_itf.data(), vnn.data(), dispnn.data(), MPI_INT, 0, _icomm);
assert(0 == ierr);
// https://www.mpich.org/static/docs/v3.1/www3/MPI_Bcast.html
ierr = MPI_Bcast(g_itf.data(), g_itf.size(), MPI_INT, 0, _icomm);
assert(0 == ierr); // Now, each MPI rank has the all global indices of the global interfaces
//MPI_Barrier(_icomm);
//if (MyRank() == 0) cout << "\n...g_itf...\n" << g_itf << "\n......\n";
//MPI_Barrier(_icomm);
// ----- Determine all MPI ranks a local interface vertex belongs to
vector<vector<int>> neigh_itf(_loc_itf.size());// subdomains a local interface vertex belongs to
for (size_t lk = 0; lk < _loc_itf.size(); ++lk) {
const int gvert = _gloc_itf[lk]; // global index of local interface node lk
for (int rank = 0; rank < NumProcs(); ++rank) {
auto const startl = g_itf.cbegin() + dispnn[rank];
auto const endl = startl + vnn[rank];
if ( find( startl, endl, gvert) != endl) {
neigh_itf[lk].push_back(rank);
}
}
}
// ---- check the available info in _loc_itf[lk], _gloc_itf[lk], neigh_itf[lk]
//MPI_Barrier(_icomm);
////if (MyRank()==0) cout << "\n...neigh_itf ...\n" << neigh_itf << endl;
//if (MyRank() == 0) {
//for (size_t lk = 0; lk < _loc_itf.size(); ++lk ) {
//cout << lk << " : local idx " << _loc_itf[lk] << " , global idx " << _gloc_itf[lk];
//cout << " with MPI ranks " << neigh_itf[lk] << endl;
//}
//}
//MPI_Barrier(_icomm);
// ---- store the valence (e.g., the number of subdomains it belongs to) of all local vertices
_valence.resize(Nnodes(),1);
for (size_t lk = 0; lk < _loc_itf.size(); ++lk)
{
_valence[_loc_itf[lk]] = neigh_itf[lk].size();
}
//DebugVector(_valence,"_valence",_icomm);
// ---- We ware going to use MPI_Alltoallv for data exchange on interfaces
// https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report/node109.htm#Node109
// https://www.open-mpi.org/doc/v4.0/man3/MPI_Alltoallv.3.php
//int MPI_Alltoallv(const void* sendbuf, const int sendcounts[], const int sdispls[], MPI_Datatype sendtype, void* recvbuf, const int recvcounts[], const int rdispls[], MPI_Datatype recvtype, MPI_Comm comm)
//
// MPI_Alltoallv needs:
// vector<double> sendbuf (MPI_IN_PLACE: used also as recvbuf)
// vector<int> sendcounts (the same as for recv)
// vector<int> sdispls (the same as for recv)
//
// We need to map the interface vertices onto the sendbuffer:
// vector<int> loc_itf local index of interface vertex lk
// vector<int> gloc_itf global index of interface vertex lk
// vector<int> buf2loc local indices of sendbuffer positions (the same as for recv)
// ---- Determine sendcounts[] and sdipls[] from neigh_itf[]
//vector<int> _sendcounts(NumProcs(), 0);
_sendcounts.resize(NumProcs(), 0);
for (size_t lk = 0; lk < _loc_itf.size(); ++lk ) {
auto const &kneigh = neigh_itf[lk];
for (size_t ns = 0; ns < kneigh.size(); ++ns) {
++_sendcounts[kneigh[ns]];
}
}
//if (MyRank() == 0) cout << "\n..._sendcounts ...\n" << _sendcounts << endl;
//vector<int> _sdispls(NumProcs(), 0);
_sdispls.resize(NumProcs(), 0);
partial_sum(_sendcounts.cbegin(), _sendcounts.cend() - 1, _sdispls.begin() + 1);
//vector<int> _sdispls(NumProcs()+1, 0);
//partial_sum(_sendcounts.cbegin(), _sendcounts.cend(), _sdispls.begin() + 1);
//if (MyRank() == 0) cout << "\n..._sdispls ...\n" << _sdispls << endl;
// ---- Determine size of buffer 'nbuffer' and mapping 'buf2loc'
int const nbuffer = accumulate(_sendcounts.cbegin(), _sendcounts.cend(), 0);
//vector<int> _buf2loc(nbuffer, -1);
_buf2loc.resize(nbuffer, -1);
int buf_idx = 0; // position in buffer
for (int rank = 0; rank < NumProcs(); ++rank) {
assert( buf_idx == _sdispls[rank]);
for (size_t lk = 0; lk < _loc_itf.size(); ++lk ) {
auto const &kneigh = neigh_itf[lk];
if (find(kneigh.cbegin(),kneigh.cend(),rank)!=kneigh.cend())
{
_buf2loc[buf_idx] = _loc_itf[lk];
++buf_idx;
}
}
}
//if (MyRank() == 0) cout << "\n...buf2loc ...\n" << buf2loc << endl;
//DebugVector(buf2loc,"buf2loc",_icomm);
// ---- Allocate send/recv buffer
//vector<double> _sendbuf(nbuffer,-1.0);
_sendbuf.resize(nbuffer,-1.0);
assert(CheckInterfaceExchange_InPlace());
cout << " Check of data exchange (InPlace) successful!\n";
assert(CheckInterfaceExchange());
cout << " Check of data exchange successful!\n";
assert(CheckInterfaceAdd_InPlace());
cout << " Check of data add successful!\n";
assert(CheckInterfaceAdd());
cout << " Check of data add (InPlace) successful!\n";
vector<double> x(Nnodes(),-1.0);
VecAccu(x);
cout << " VecAccu (InPlace) successful!\n";
return;
}
bool ParMesh::CheckInterfaceExchange_InPlace() const
{
vector<double> x(Nnodes(),-1.0);
copy(_v_l2g.cbegin(),_v_l2g.cend(),x.begin()); // init x with global vertex indices
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
_sendbuf[ls] = x[_buf2loc.at(ls)];
}
int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_DOUBLE,
_sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE, _icomm);
assert(ierr==0);
//DebugVector(_sendbuf,"_sendbuf",_icomm);
vector<double> y(x);
for(size_t lk = 0; lk<_loc_itf.size(); ++lk) y[_loc_itf.at(lk)] = -1.0; // only for interface nodes
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
y[_buf2loc.at(ls)] = _sendbuf[ls];
}
double const eps=1e-10;
bool bv = equal(x.cbegin(),x.cend(),y.cbegin(),
[eps](double a, double b) -> bool
{ return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs(b))); }
);
return bv;
}
bool ParMesh::CheckInterfaceExchange() const
{
vector<double> x(Nnodes(),-1.0);
copy(_v_l2g.cbegin(),_v_l2g.cend(),x.begin()); // init x with global vertex indices
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
_sendbuf[ls] = x[_buf2loc.at(ls)];
}
vector<double> recvbuf(_sendbuf.size());
int ierr = MPI_Alltoallv(_sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE,
recvbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE, _icomm);
//DebugVector(_sendbuf,"_sendbuf",_icomm);
//DebugVector(recvbuf,"recvbuf",_icomm);
assert(ierr==0);
vector<double> y(x);
for(size_t lk = 0; lk<_loc_itf.size(); ++lk) y[_loc_itf.at(lk)] = -1.0; // only for interface nodes
for(size_t ls = 0; ls<recvbuf.size(); ++ls)
{
y[_buf2loc.at(ls)] = recvbuf[ls];
}
//cout << "WRONG : " << count(y.cbegin(),y.cend(), -1.0) << endl;
double const eps=1e-10;
bool bv = equal(x.cbegin(),x.cend(),y.cbegin(),
[eps](double a, double b) -> bool
{ return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs(b))); }
);
return bv;
}
bool ParMesh::CheckInterfaceAdd_InPlace() const
{
vector<double> x(Nnodes(),-1.0);
for (size_t i=0; i<x.size(); ++i)
{
x[i] = _xc[2*i]+_xc[2*i+1]; // init x with coordinate values
}
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
_sendbuf[ls] = x[_buf2loc.at(ls)];
}
int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_DOUBLE,
_sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE, _icomm);
assert(ierr==0);
//DebugVector(_sendbuf,"_sendbuf",_icomm);
vector<double> y(x);
for(size_t lk = 0; lk<_loc_itf.size(); ++lk) y[_loc_itf.at(lk)] = 0.0; // only for interface nodes
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
y[_buf2loc.at(ls)] += _sendbuf[ls];
}
MPI_Barrier(_icomm);
//DebugVector(x,"x",_icomm);
//DebugVector(y,"y",_icomm);
for (size_t i= 0; i<y.size(); ++i) y[i]/=_valence[i]; // divide by valence
double const eps=1e-10;
bool bv = equal(x.cbegin(),x.cend(),y.cbegin(),
[eps](double a, double b) -> bool
{ return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs(b))); }
);
return bv;
}
bool ParMesh::CheckInterfaceAdd() const
{
vector<double> x(Nnodes(),-1.0);
for (size_t i=0; i<x.size(); ++i)
{
//x[i] = _xc[2*i]+_xc[2*i+1]; // init x with coordinate values
x[i] = _v_l2g[i];
}
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
_sendbuf[ls] = x[_buf2loc.at(ls)];
}
vector<double> recvbuf(_sendbuf.size());
int ierr = MPI_Alltoallv(_sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE,
recvbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE, _icomm);
//DebugVector(_sendbuf,"_sendbuf",_icomm);
//DebugVector(recvbuf,"recvbuf",_icomm);
assert(ierr==0);
vector<double> y(x);
for(size_t lk = 0; lk<_loc_itf.size(); ++lk) y[_loc_itf.at(lk)] = 0.0; // only for interface nodes
for(size_t ls = 0; ls<recvbuf.size(); ++ls)
{
//if (0==MyRank()) cout << ls << ": " << _buf2loc.at(ls) << " " << y[_buf2loc.at(ls)] << "("<< x[_buf2loc.at(ls)] << ")" << " " << recvbuf[ls] << " (" << _sendbuf[ls] << ")" << endl;
y[_buf2loc.at(ls)] += recvbuf[ls];
}
MPI_Barrier(_icomm);
//DebugVector(x,"x",_icomm);
//DebugVector(y,"y",_icomm);
for (size_t i= 0; i<y.size(); ++i) y[i]/=_valence[i]; // divide by valence
double const eps=1e-10;
bool bv = equal(x.cbegin(),x.cend(),y.cbegin(),
[eps](double a, double b) -> bool
{ return std::abs(a-b)<eps*(1.0+0.5*(std::abs(a)+ std::abs(b))); }
);
return bv;
}
// ----------
void ParMesh::VecAccu(std::vector<double> &w) const
{
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
_sendbuf[ls] = w[_buf2loc.at(ls)];
}
int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_DOUBLE,
_sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE, _icomm);
assert(ierr==0);
//DebugVector(_sendbuf,"_sendbuf",_icomm);
for(size_t lk = 0; lk<_loc_itf.size(); ++lk) w[_loc_itf.at(lk)] = 0.0; // only for interface nodes
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
w[_buf2loc.at(ls)] += _sendbuf[ls];
}
return;
}
// ##########################################################################
// ##########################################################################
// ---- EX10 ----
void ParMesh::VecAccuInt(std::vector<int> &w) const
{
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
_sendbuf[ls] = w[_buf2loc.at(ls)];
}
int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_DOUBLE,
_sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE, _icomm);
assert(ierr==0);
//DebugVector(_sendbuf,"_sendbuf",_icomm);
for(size_t lk = 0; lk<_loc_itf.size(); ++lk) w[_loc_itf.at(lk)] = 0.0; // only for interface nodes
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
w[_buf2loc.at(ls)] += _sendbuf[ls];
}
return;
}
// ---- EX11 ----
int ParMesh::GlobalNodes() const
{
int local_count = 0;
for (int i=0; i<Nnodes(); ++i) {
local_count += 1.0 / _valence[i];
}
int global_nodes = 0;
MPI_Allreduce(&local_count, &global_nodes, 1, MPI_INT, MPI_SUM, _icomm);
return global_nodes;
}
// ---- EX12 ----
void ParMesh::Average(std::vector<double> &w) const
{
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
_sendbuf[ls] = w[_buf2loc.at(ls)];
}
int ierr = MPI_Alltoallv(MPI_IN_PLACE, _sendcounts.data(), _sdispls.data(), MPI_DOUBLE,
_sendbuf.data(), _sendcounts.data(), _sdispls.data(), MPI_DOUBLE, _icomm);
assert(ierr==0);
//DebugVector(_sendbuf,"_sendbuf",_icomm);
for(size_t lk = 0; lk<_loc_itf.size(); ++lk) w[_loc_itf.at(lk)] = 0.0; // only for interface nodes
for(size_t ls = 0; ls<_sendbuf.size(); ++ls)
{
w[_buf2loc.at(ls)] += _sendbuf[ls];
}
// Divide interface nodes value by its valence
for(size_t lk = 0; lk<_loc_itf.size(); ++lk) w[_loc_itf.at(lk)] /= _valence[_loc_itf.at(lk)];
}