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ABsTrACT. For finite abelian groups G, we introduce some generalized zero-sum
invariants DY (G), n™V (G), and sV (G). For example, DYV (G) is the smallest integer ¢
such that every sequence S = g1 - ... gt over G \ {0} of length ¢ has two zero-sum
subsequences T1 = [[;c; 9i and Tz = HjeJ gj such that [, c ;7 gr is not zero-sum,
where I, J are distinct subsets of [1,t]. These invariants have close connection with
Narkiewicz constant and significant applications in Factorization Theory. We first
systematically studied these three invariants.

1. INTRODUCTION

Let G be an additive finite abelian group, let G* = G \ {0}, and let Gy C G be a
nonempty subset. We denote by F(Gg) the free abelian monoid with basis Gg. Elements
of F(Gp) are called sequences over Ggy. In other words, sequences over Gy are finite
unordered sequences with terms from G and repetition allowed. Let

S=gi-....ge= ][] 9
9€Go
be a sequence over Gy, where £ is a positive integer and g1,...,g¢ € Go. Then |S| = £ is
the length of S and v,(S) is the multiplicity of g in S. We say S is a zero-sum sequence
if the sum of all the terms equals zero, i.e., 0(S) = g1 +... + g0 = > cq, Vo(S)g = 0.
Let T be another sequence over Gy. We say T is a subsequence of S (denoted by T' | .S)
if T divides S in F(Gy), or in other words, v4(T") < v4(S) for all g € Gy.

A typical zero-sum problem studies conditions which ensure that given sequences
have nontrivial zero-sum subsequences with prescribed properties. Let {2 be a nonempty
subset of zero-sum sequences with prescribed properties. In 2018, to give a unifying look
at zero-sum invariants, Gao, Li, Peng, and Wang [GLPW18| introduced sq(G) (note
that do(G) is used in the original paper), which is the smallest integer ¢ such that every
sequence S of length ¢ over G has a subsequence belonging to 2. Therefore special sets
Q) lead to the following classic zero-sum invariants (the reader may want to consult one

of the surveys or monographs [GG06, GH06, G13]).

e so(G) = D(G) is the Davenport constant, if € is the set of all zero-sum sequences;
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o so(G) = s(G) is the Erdss-Ginzberg-Ziv constant, if € is the set of all zero-sum
sequences of length exp(G), where exp(G) is the exponent of G;
e so(G) = n(G) is the n-constant, if € is the set of all nontrivial zero-sum sequences

of length not larger than exp(G).

For recent progress of these classic invariants, we refer to [BGH20, L20, N20, S20]. Fur-
thermore, the invariant so(G) has been studied for various other sets §2 (see [GHHLYZ21,
GLPW18]). Recent years, these invariants are also generalized to non-abelian groups,
please see [B07, CDS18, GL10, GL08, H15, HZ19, OZ20, OhZh20].

A natural generalization is to study conditions which ensure that given sequences S
have two nontrivial zero-sum subsequences with prescribed properties and relations. In
2012, B. Girard [G12] initially studied the constant disc(G), which is the smallest integer
t such that all sequences of length ¢ over G have two nontrivial zero-sum subsequences
having distinct lengths. The generalized Davenport constant Do (G) is the smallest integer
t such that every sequence S of length ¢ over G has two disjoint nontrivial zero-sum
subsequences (see [H92]). These two invariants have been studied by many researchers
(see [GHLYZ20, GLZZ16, GZZ15, GHO6, PS11]).

To continue, we need to introduce some relations like “disjoint" for subsequences. Let
S=g1-... g¢ be asequence over Gy and let T7,T5 be two subsequences of S. If Y | T}
and Y | Ty, we say Y is a common divisor of T} and Ts. Let Y be a common divisor
of Ty and T. We say Y is a S-inner common divisor of Ty and Ty, if TyT | SY, or
equivalently, there exist subsets I,.J C [1,/] such that 71 = [],c; gs, T2 = [[,c; 95, and
Y = [liciny 9 In particular, ged(71,T3) is a S-inner common divisor of T} and T5.

Furthermore, we say

e Ty and T are (S-)innerly distinct if 77 and T, have a (S-)inner common divisor
Y such that either Y # T or Y # T, or equivalently, there exist distinct subsets
I,J C [1,£] such that Ty = [],c; 9 and To =[], ; 9;-

e Ty and T5 are (S-)innerly joint if 77 and T» are (S-)innerly distinct and have a
nontrivial (S-)inner common divisor.

e T and T5 are (S-)innerly disjoint if the trivial sequence is a (S-)inner common
divisor of T and T5, or equivalently 7775 | S.

e Ty and T are (S-)innerly non-zero-sum-joint if 77 and T3 are (S-)innerly distinct
and have a non-zero-sum (S-)inner common divisor.

By our definition, subsequences 77 and 75 of S could be both S-innerly joint and disjoint.

ord(

For example, let S = ¢2°"49) and Ty = Ty = ¢°*49), where ¢ is a nonzero element. Then

g* is a S-inner common divisor of T and T3 for each k € [0, ord(g)], which implies that
Ty and Ts are S-innerly distinct, joint, disjoint, and non-zero-sum-joint.
Let Ty = 0°1W; and T5 = 0°2W5 be two subsequences of S = 0°W, where Wy, Wy, W

are sequences over G® and sy, $o,s € Ng. Then 17, T5 are S-innerly non-zero-sum-joint if
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and only if W7, Wy are W-innerly non-zero-sum-joint. Therefore we only need to consider
sequences over G* when studying the “innerly non-zero-sum-joint" property. Now we can
define some generalized zero-sum invariants associated with the innerly non-zero-sum-

joint property.

Definition 1.1. Let G be a finite abelian group with |G| > 1. We define

e DV (@) to be the smallest integer ¢ such that every sequence S over G* of length
£ has two innerly non-zero-sum-joint zero-sum subsequences;

e 7™V(G) to be the smallest integer ¢ such that every sequence S over G* of length
£ has two innerly non-zero-sum-joint zero-sum subsequences of length not larger
than exp(G);

e s"V(G) to be the smallest integer ¢ such that every sequence S over G*® of length

£ has two innerly non-zero-sum-joint zero-sum subsequences of length exp(G).

Let S be a sequence over G* of length |S| > (|G| — 1) exp(G) + 1. Then there exists
g € G* such that v,(S) > exp(G)+1, whence g™P(%) and gP(%) have a S-inner common
divisor ¢®P@) =1 Tt follows that all the three invariants above are finite.

Like the Davenport constant, these invariants have significant applications in Fac-
torization Theory. In fact, we have DV(G) = N{(G) + 1 and 7*(G) = n™V(G) (see Def-
initions 2.2, 2.3 and Lemma 2.4), where N (G) is the Narkiewicz constant and 7*(G)
is a Narkiewicz-sense constant introduced by Gao, Geroldinger, and Wang [GGW11] to
study N;(G). The Narkiewicz constant was first used by Narkiewicz in 1960 to study
the asymptotic behavior of counting functions associated with non-unique factorizations
(see [GHO6, N04] for an overview and historical references). For recent progress of Ny (G)
and n*(G), the readers may refer to [GGW11, GLP11, GPZ13|. Since these new invari-
ants have a flavor of Narkiewicz constants, we can view them as generalized Narkiewicz
constants.

In section 2, we collect necessary notation, build connection with Narkiewicz con-
stants, and gather the required machinery. In section 3, we study the invariants DV (G)
and ™V (G) for finite abelian groups G. The main theorems are Theorems 3.6 and 3.14. In
Section 4, we introduce two more invariants to help study sV (G) and the main theorems
are Theorems 4.8 and 4.18.

2. PRELIMINARIES

We denote by N the set of positive integers and set Ng = NU {0}. For real numbers
a,b € R, we set [a,b] = {x € Z: a <z < b}. For n,r € N, let C,, denote a cyclic group
with n elements and let C], denote the direct sum of r copies of C),. Let G be an abelian
group and let Gy C G be a subset. We let (Go) C G be the subgroup generated by Go,
G§ = Go \ {0}, and —Gy = {—g: g € Go}. A family (e;);cs of nonzero elements of G is
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said to be independent if
Z m;e; =0 implies mye; =0 forallie I, wherem; €7Z.
iel
If I =[1,r] and (eq,...,e,) is independent, then we simply say that eq,...,e, are inde-
pendent elements of G. The tuple (e;);cr is called a basis if (e;);es is independent and

({e;:iel})=G. If 1 < |G| < oo, then we have

G2Ch @®...8C,

where r € N and 1<ny|...|n,.

r )

Then r = r(G) is the rank of G and n, = exp(G) is the exponent of G. Set

D*(G) =1+ (n; —1).
i=1

Let Gy C G be a nonempty subset and let

S=gi-....g= [] g®
9€Go
be a sequence over Gy, where v4(S) € Ny for all g € Go. We call
e h(S) =max{vy(S): g € Go} the height of S;
e supp(S) = {g € Go: v4(S) > 0} the support of S;
and we say S is
o short if 1 < |S] < exp(G);
o a squarefree sequence if vy (S) < 1 for all g € Go.

Let g € G and let T be a subsequence of S. Weset g+S5 = (9+¢1)-...-(g+g¢) and
denote T71S =[] ¢, g% o= () 1f 1 <|T| < |S|, we say T is a proper subsequence of
S. We call §

e a zero-sum free sequence if there is no nontrivial zero-sum subsequence of S
e a minimal zero-sum sequence if S is a nontrivial zero-sum sequence, but S has

no proper zero-sum subsequence.

Let s > 2 and let T1,...,Ts be subsequences of S. We say Ti,...,Ts are S-innerly

disjoint if 77 -. . .- T is a subsequence of S and we say S has no innerly non-zero-sum-joint

e zero-sum subsequences if for any two zero-sum subsequences 17,75 of S, the
subsequences 77 and 75 have only zero-sum S-inner common divisors;

e short zero-sum subsequences if for any two short zero-sum subsequences 17,75
of S, the subsequences 77 and 75 have only zero-sum S-inner common divisors;

e zero-sum subsequences of length NV if for any two zero-sum subsequences 17,75
of S of length |T1| = |Tz| = N, the subsequences T; and T3 have only zero-sum

S-inner common divisors, where N € N.
Let H be another abelian group and let ¢: G — H be a group homomorphism.
Then we can extend ¢ to a homomorphism ¢: F(Gg) — F(p(Gp)), where ¢(S) =
©(g1) « ... @(g) for every sequence S =g -...- g, over Gjp.
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We have the following easy lemma, which will be used often without further mention.

Lemma 2.1. Let ¢: G — H be a group homommorphism, let S be a sequence over G,

and let Ty, Ty be two subsequences of S.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

If Ty and Ty have a S-inner common divisor Y, then o(Y) is a ¢(S)-inner
common dwisor of p(T1) and ¢(T3).

If p(Th) and @(Tz) have a o(S)-inner common divisor X, then there exists a
subsequence T3 of S such that p(T5) = (T2) and Ty, T5 have a S-inner common
divisor Y such that o(Y) = X.

Suppose S = S51.55. If T1,T5 are subsequences of Sy such that Ty, Ty have a S1-
inner common divisor Y1 and T3, Ty are subsequences of Sy such that T3, Ty have
a So-inner common divisor Ys, then TT3, 15T, have a S-inner common divisor
Y1Ys.

If |S| > DV(H) and S € F(G \ ker(p)), then S has two subsequences Ty and
T5 having a non-zero-sum S-inner common dwisor' Y such that o(T1) and o(T3)
are zero-sum and have a non-zero-sum p(S)-inner common divisor o(Y).

If |S| > 7N (H) and S € F(G \ ker(y)), then S has two subsequences Ty and
T5 having a non-zero-sum S-inner common dwisor'Y such that o(T1) and o(T3)
are short zero-sum subsequences and have a non-zero-sum (S)-inner common
divisor o(Y').

If |S| > sNV(H) and S € F(G \ ker(y)), then S has two subsequences Ty and Ty
of length exp(H) having a non-zero-sum S-inner common divisor Y such that
o(Th) and p(Ts) are zero-sum and have a non-zero-sum ¢(S)-inner common
divisor o(Y').

S has two innerly joint minimal zero-sum subsequences if and only if S has two
mnerly non-zero-sum-joint zero-sum subsequences.

S has two innerly joint short minimal zero-sum subsequences if and only if S has

two innerly non-zero-sum-joint short zero-sum subsequences.

Proof. 1. Suppose T} and T, have a S-inner common divisor Y. Then Y ~'T1 T, divides S
and hence (Y ~1T1Ty) divdies ¢(S). It follows that ¢(T}) and ¢(Ts) have a ¢(S)-inner

common divisor ¢(Y).

2. Suppose ¢(T1) and ¢(T3) have a ¢(S)-inner common divisor X. Then T; has a

subsequence Y7 and T, has a subsequence Y5 such that ¢(Y1) = p(Y2) = X, whence
X Yo(T)p(Tz) = p(Yy 'T1Ty) divides ¢(S). Since ¢(Y, 'Ty) divides (77 'S), there
exists a subsequence W of T, 'S such that p(Y, 'Ty) = o(W). Let T3 = Y;W. Then T
is a subsequence of T} (T, 'S) = S such that o(T3) = o(Y1)p(W) = o(Ya)p(Yy 'Ts) =
p(T»). Since Y1_1T3T1 = WT; divides S, we obtain that 77, T3 have a S-inner common

divisor Yj.
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3. Since Y, ' Ty Ty, divides Sy and Y, ' T3Ty divides Sz, we obtain that (Y1Y5) ' Ty T3 T2 Ty
divides S and Y7Y5 divides both T1T3 and 15Ty, whence T1T3, ToT, have a S-inner com-
mon divisor Y7Y5.

The proofs of Items 4, 5, and 6 are similar. We only prove Item 4. Suppose |S| >
DN(H) and S € F(G \ ker(p)). Then o(S) € F(H*®). By definition of DV (H), there
exist subsequences T1,T5 of S such that ¢(T1) and ¢(T>) are zero-sum and ¢(S)-innerly
non-zero-sum-joint. It follows by Item 2 that there exists a subsequence T3 of S such
that ¢(T3) is zero-sum and T, T3 have a S-inner common divisor Y such that ¢(Y) is
not zero-sum. Now the assertion follows by Item 1.

The proofs of Items 7 and 8 are similar. We only prove Item 7. Suppose T} and T5
are S-innerly distinct minimal zero-sum subsequences with a nontrivial S-inner common
divisor Y. We assert that Y is not zero-sum. Assume to the contrary that Y is zero-sum,
since Y | T and T3 is minimal, we have that Y = T3 divides Ty, whence T3 =12 =Y, a
contradiction.

Suppose S has two innerly non-zero-sum-joint zero-sum subsequences T7,75. Let
TW=Wy-....W,., Ty =V;-...-V,, and Y a non-zero-sum S-inner common divisor of T}
and T5, where r,s € N and Wy,..., W, , Vi,...,V, are minimal zero-sum subsequences.
Then for each i € [1,r] and each j € [1,s], W; and V} have a S-inner common divisor

Y; ; such that Y =[] Y; ;. Since Y is not zero-sum, there exist ip € [1,r] and

i€[L,r],j€[l,s]
Jo € [1, s] such that Yj, j, is not zero-sum, whence W;, and Vj, have a nontrivial S-inner

common divisor. O

Type monoids and Narkiewicz constants. Note that Gy xN is a subset of the abelian
group G xZ. We call sequences over G x N are types over Gg. Let a: F(GoxN) — F(Gy)

denote the unique homomorphism satisfying
a((g,n)) =g forall (g,n) € GoxN

and let 7: F(Gp) — F(Go x N) be defined by

vg(S)

7(8)= [[ II (9% € F(Go xN).

geGo k=1
For S € F(Gy), we call 7(5) the type associated with S. We say that T is a zero-sum
type (short, zero-sum free or a minimal zero-sum type) if the associated sequence has
the relevant property. Types were introduced by F. Halter-Koch in [Hal92| and applied
successfully in the analytic theory of so-called type-dependent factorization properties
(see [GHO6, Section 9.1], and [Ha92, Ha93] for some early papers).
For a given squarefree zero-sum type T' (note that a(T') may not be squarefree), we

can always write T" as follows

T=V,-...-V,,
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where 7 € Ng and V1,...,V, are minimal zero-sum subtypes. We say T has unique

factorization if the above factorization of T is unique, i.e., if T' has another factorization
T=U;-...-Uyg,

where s € Ny, U1, ...,Ug are minimal zero-sum subtypes, then r = s and there exists a

permutation 7 € S, such that V; = U, for all i € [1,7].

Definition 2.2. Let G be a finite abelian group. The Narkiewicz constant N1(G) of G

is defined by

N1(G) =sup{|T|: T is a squarefree zero-sum type over G* and T has unique factorization} .

Suppose G = Cp,, @ ... ®Cy, with 1 <nq|...|n, and let (eq,...,e,) be a basis of
G with ord(e;) = n; for all 7 € [1,7]. Let
B = He?i. Then 7(B)= H H(ei,k’)
i=1 i=1k=1
has unique factorization, and hence

Let us recall the definition of n*(G) which was first introduced by Gao, Geroldinger
and Wang [GGW11] to study Ni(G).

Definition 2.3. Let G be a finite abelian group and let n*(G) denote the smallest integer
¢ € Ny such that every squarefree type T' € F(G* x N) of length |T'| > ¢ has two distinct
short minimal zero-sum subtypes T'; and T's such that ged(T'1,T) is not empty.

By the above definitions, we have the following lemma.

Lemma 2.4. Let G be a finite abelian group. Then Ni(G) + 1 = DN (G) and n*(G) =
™ (G).

Proof. We first show that Ni(G) +1 = DV(G). Let T be a squarefree zero-sum type
over G* of length N;(G) such that T has unique factorization. Assume that «(7T') has
two innerly joint minimal zero-sum subsequences S; and Sy with the a(T')-inner common

divisor Y. Then there exist minimal zero-sum subtypes T'; and T's such that a(T1) = 51,

a(Ts) = Sy, and a(ged(T1,T2)) =Y. Therefore
T=T\U,-... Ug=TsV,-...-Vy,

where k,/ € N and Uy,..., Uk, V1,...,V, are minimal zero-sum types. Since Y is not
trivial, we obtain T'y ¢ {T'1,U71,...,U}}, a contradiction to the fact that T has unique
factorization. Thus a(T') has no innerly joint minimal zero-sum subsequences and hence
has no innerly non-zero-sum-joint zero-sum subsequences, whence DV (G) > N1 (G) + 1.

Let S be a sequence over G* of length DV(G) — 1 such that S has no innerly non-

zero-sum-joint zero-sum subsequences. We assert that S is zero-sum. Assume to the
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contrary that S is not zero-sum. Then T := S(—0o(9)) is zero-sum and |T| = D¥(G),
whence there exist two zero-sum subsequences Uy, Vi of T such that Uy, Vi have a non-
zero-sum T-inner common divisor. Let Uy = U; 'T and Vo = V; 'T. Then for every
i € [1,2] and every j € [1,2] we have U; and V} have a non-zero-sum 7-inner common
divisor. By symmetry, we may assume that —c(S) is a term of both Uy and V3, whence
U, and V; are subsequences of S and have a non-zero-sum S-inner common divisor, a
contradiction. Thus S is zero-sum and hence 7(S) is a squarefree zero-sum type over
G* of length DV (G) — 1. Assume that 7(5) does not have unique factorization. Then
there are two minimal zero-sum subtypes T'; and T of 7(5) such that ged(T4,T2) is
nontrivial, whence a(T1) and a(T'2) are minimal zero-sum subsequences of S and have a
nontrivial S-inner common divisor a(ged(T,T3)), a contradiction. Therefore 7(S) has
unique factorization and hence DV (G) — 1 < Ny (G). Therefore DV (G) = Ny (G) + 1.
We next show that 7*(G) = n™(G). Let T be a squarefree type over G* of length
7™ (G). Then «(T) has two innerly joint short minimal zero-sum subsequences Si, Sy
with the nontrivial a(T)-inner common divisor Y, whence there exist minimal zero-sum
subtypes T, Ty of T such that a(T1) = S1, a(T2) = Sa, and a(ged(T,T2)) =Y.
Therefore n*(G) < n™V(G). Let S be a sequence over G* of length n*(G). Then 7(9) is
a squarefree type over G* of length n*(G), whence there exist two short minimal zero-
sum subtypes T'1, T2 of 7(S) such that ged(T1,T2) is not empty. It follows that a(T';)
and a(T'2) are short minimal zero-sum subsequences of S and have a nontrivial S-inner

common divisor a(ged(T'1, T2)), whence ™ (G) < n*(G). Therefore n™¥ (G) = n*(G). O

Property C and Property D. Let G be a finite abelian group. Gao [GG06| conjectured
that s(G) = n(G) + exp(G) — 1. When considering the structure of extremal sequences
that has no short zero-sum subsequence and that has no zero-sum subsequence of length

exp(G), the following definitions are introduced.

Definition 2.5. Let G = C], where n,r € N. We say G has

e Property C with respect to ¢ if every sequence S € F(G) of length |S| = n(G)—1
which has no short zero-sum subsequence has the form S = T"~! for some
sequence T' € F(G) of length c.

e Property D with respect to c if every sequence S € F(G) of length |.S| = s(G)—1
which has no zero-sum subsequence of length n has the form S = 77! for some

sequence T' € F(G) of length c.

If G = C}], has Property D with respect to ¢, then s(G) = n(G) +n —1 = c(exp(G) —
1)4+1 and G has Property C with respect to c—1 (See [GT03, Corollary 1.2]). For groups
of rank 2, Property C was first considered by van Emde Boas and Property D by Gao
(see [E69, GO0, Ga00]). It is conjectured that every group G = CJ. has Property D, where
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r € Nand n > 2 (see [GG06, Conjecture 7.2]). Among others, we collect some known

results.

Lemma 2.6. Let a,b € Ny and r € N.
(1) C%. has Property D with respect to 2.
(2) Cia has Property D with respect to 20.
(3) 03a5b has Property D with respect to 9.
(4) C% has Property D.
(5) C, and C,, ® Cy, have Property C, where n > 2.
(6) C2a3b5u7d has Property D with respect to 4, where ¢,d € Ny.

Proof. For Items 1, 2, and 3, see [FGZ11, Lemma 2.4| and Item 4 follows from [H73,
Hilfssatz 3] and [EEGKRO07, Lemma 2.3.3]. For Item 5, we refer to [GH06, Theorem
5.1.10] and [R10, Section 11.3]. For Item 6, see [Ga00, Theorems 1.4 and 1.5] and [ST02,
Theorem 3.1]. O

Lemma 2.7. Ifn is odd, then there exists a sequence T € F(C2) of length |T| =9 such
that T™~1 has no zero-sum subsequence of length n. In particular, we have n(C3) > 8n—7

and s(C2) > 9n — 8.
Proof. See [EEGKRO07, Theorem 1.2]. O

Lemma 2.8. If n is odd, then there exists a sequence T € F(C2) of length |T| = 20
such that T"~* has no zero-sum subsequence of length n. In particular, we have n(C%) >

19n — 18 and s(C) > 20n — 19.
Proof. See [EEGKRO7, Theorem 1.3]. O

Lemma 2.9. Let n,m,r € N.
(1) n(Cr, ®Cry) =2n+m —2 and s(Cp, ® Cp,) =2n+ 2m — 3 with 1 < n | m.
(2) N(C3g) =21-2" — 6 and s(Clng) = 2427 — 7.
(3) N(C3 @ Cap) =2n+6 forn >2 and s(Cs & Cy,) = 4n +5 for n > 36.
(4) Let G = Cy @ Copy © Coppn. If C2, has Property D orn =1, then
s(G) = 4m + 4mn — 1.
(5) n(Cy) =2 (2" =1)(n—1) + 1.
Proof. For Item 1, see [GH06, Theorem 5.8.3] and for Item 2, see [GHSTO07, Theorem

1.8]. Item 3 follows from [FZ16, Theorem 1.2] and Item 4 follows from [GS19, Theorem
3.2]. Item 5 follows from [HT73]. d

Lemma 2.10. Let o, 3 € Ng. Then

N(Ciuss) =835 —7  and n(Ci.) =193 —18.
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Proof. See |[GHST07, Theorem 1.7, Theorem 1.8] and [FGZ11, Theorem B]. O

Lemma 2.11. [GHO06, Proposition 5.7.11] Let G be a finite abelian group, and let H be
a subgroup of G with exp(G) = exp(H) exp(G/H). Then

(1) W(G) < exp(G/H)(n(H) 1) + n(G/H).
(2) S(G) < exp(G/H)(s(H) — 1) +s(G/H).

Lemma 2.12. Let a € N, 8 € Ng and o > 8. Then
N(Ca.gs) =7-2°3° —6  and  $(Ch.ys) =8-2°3° — 7.

Proof. Let G = C§Q3ﬂ. Let G = Cg’agﬁ. By Lemma 2.9.5, we have n(G) > 7-2%3% — 6.
Since s(G) > n(G) + exp(G) — 1, it suffices to show that s(G) < 8 - exp(G) — 7.

We proceed by induction on . If & = 1, then § = 1 or 0 and Lemma 2.9.2 implies
that s(G) < 8-exp(G)—7. Suppose o > 2 and suppose the assertion s(C3,,,) < 8-2137 -7
holds for all (¢,3) with 3 <t < a. Let H be a subgroup of G such that G/H = C§ if
B > 1 and otherwise G/H =2 C3. By induction hypothesis, we have s(H) < 8-exp(H) —7

and s(G/H) < 8-exp(G/H) — 7. It follows by applying Lemma 2.11.2 that

s(G) <exp(G/H)(s(H) —1)+s(G/H) < 8-exp(G/H)exp(H) —7=8exp(G)—7. O

3. ON 7V (G) anD DV(G)

3.1. On n™(G). In this subsection, our main theorem is Theorem 3.6. We need the

following lemmas.

Lemma 3.1. Let G = C! be a finite abelian group, where n,r € N. If r € [1,2] orn = 2,
then
nV(G)= (2"~ 1) n+1.

Proof. The assertion follows from [GGW11, Corollary 3.11] and [GPZ13, Theorem 2.6].
(]

Lemma 3.2. Let G = C,, ® Cpy, with n,m € N>a. Then n™V(G) > 2n + nm.

Proof. Let (e1,e2) be a basis of G and let
S =el(e; +ex)" ten™.

It is easy to see that S has no innerly joint short minimal zero-sum subsequences. There-

fore nN(G) > |S| + 1 = 2n + nm. O

Lemma 3.3. Let G = C], withn,r € N and n > 2.
(1) nN(G) > (2" = 1)n+ 1.
(2) If G has Property C, then

n(n(G) - 1)

n—1

™ (G) > +1.
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(3) If n =3, then
3n(G) —1)

™M (G) = 5

+1.

Proof. 1. Let (eq,...,e,) be a basis of G and let
S = H <Z el-) .
OAIC[1,r] \i€l

Since every short zero-sum subsequence of S has the form (3, ;e;)", where § # I C
[1,r], we have that S has no innerly non-zero-sum-joint short zero-sum subsequences,
whence ™V (G) > [S|+1=(2"—1)-n+ 1.

2. Let T be a sequence over G of length n(G) — 1 which has no short zero-sum
subsequence. It follows from G has Property C that T has the form

T = Un—l

where U is a squarefree sequence over G®. Let S = U™. Then S € F(G*®) has no innerly
non-zero-sum-joint short zero-sum subsequences. Thus, n™¥ (G) > |S|+1 = % +1.

3. Since G = C% has Property D by Lemma 2.6.4, we have s(G) = n(G) + 2 and G
has Property C. Then it suffices to show ™V (G) < w + 1. Let S be a sequence
over G* of length |S| = W + 1. We need to show that S has two innerly joint short
minimal zero-sum subsequences. Assume to the contrary that S has no innerly joint short
minimal zero-sum subsequences.

Suppose S = By -...-BiBjy1-...-BsS’, where s,1 € Ny, |B;| =3 fori € [1,1], |B;| =2
fori e [l+1,s], By,...,Bs are short minimal zero-sum subsequences and S” has no short
zero-sum subsequence. For every i € [1, s|, we choose an element g; € supp(B;). Since S
has no innerly joint short minimal zero-sum subsequences, we obtain that (g;-...-g;)~1S
has no zero-sum subsequence of length 3 and that (g1 -...-gs)~1S has no short zero-sum
subsequence. It follows that |(g1-...-g;) 15| < s(G)—1=n(G)+1and |(g1-...-gs) 15| <
1n(G) — 1. Therefore | > W and s > @ It follows that

3(n(G) — 1) 3(n(G) — 1)
2 2

which implies that [ = "(G;_S, s = "(G;)H, and |S’| = 0. We infer that (g1-...-gn)+1) 1S
2

+1=|S]=31+2(s=1)+|S|=1+2s+|5| > +1,

has length 1(G) — 1 and has no short zero-sum subsequence, a contradiction to the fact

that G has Property C. O

Proposition 3.4. Let G = C]

mn?’

such that nN(CT) < em+1 and n(C") < c¢(n — 1) + 1, then n™V (G) < cmn + 1.

where r € N and m,n € Nxq. If there exists c € N

Proof. Let S be a sequence over G*® of length cmn + 1. We need to show that S has two
innerly non-zero-sum-joint short zero-sum subsequences. Assume to the contrary that S
has no innerly non-zero-sum-joint short zero-sum subsequences.

Let ¢ : G — G be the multiplication by n. Then ker(p) = C!, and ¢(G) = nG = C7,.

Suppose S = Sy.51, where Sy is a subsequence over ker(y)® and S; is a subsequence over
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G\ker(y). Suppose S = T -.. .. T;Ty, where t € Ng, 11, ..., T; are Sp-innerly disjoint short
minimal zero-sum subsequences over ker(¢)®, and T has no short zero-sum subsequence
over ker(¢)®. Choose a term h; of T; for each i € [1,¢]. If W := (hy - ... h)"1Sy has
a short minimal zero-sum subsequence T' over ker(y)®, then there exists i € [1,¢] such
that T; and T are Sp-innerly joint, a contradiction. Therefore W has no short zero-sum
subsequence over ker(y)®. Note that m|W| > 2|W| > |Sy|.

Let £ € Ny be maximal such that there are S;-innerly disjoint subsequences V7, ..., Vi

satisfying the following properties.

e For every i € [1, k], we have ¢(V;) is a short zero-sum subsequence over ¢(G);

o W-o(V1)-...-0(Vg) has no short zero-sum subsequence over ker(y).
Let U= (Vy-...- Vi)~ 1S1. Then |W|+k < n(Cr) —1 and
U] 2 [81] = km = emn + 1 — |So] — ((Cy,) = 1 = [W])m > em +1 > n™(C,),

whence U has two subsequences Uy, Uz such that ¢(Uy), p(Uz) are o(U)-innerly joint
short minimal zero-sum subsequences and Uj;,Us have a U-inner common divisor Y
such that o(Y) & ker(y). By the maximality of k, there exist subsequences Wi, Wy of
W and subsets I1,I> C [1,k] such that o(U1)Wi [[;e;, 0(Vi) and o(U2)Wa ]y, o(Vi)

are short zero-sum subsequence over ker(y), whence X7 := UyW1 [] V; and Xy 1=

i€l
U Wy Hz‘e I V; are short zero-sum subsequence over G°. Let Yy be a W-inner common

divisor of W7 and Ws. Then X; and X5 have a S-inner common divisor YY) Hie nnt, Vis
which is not zero-sum, a contradiction. O

Corollary 3.5. Let G = C%,, withm > 2. If VN (C") = (2" — 1) -m + 1, then ™V (G) =
2 —1)-2m+1.

Proof. By Lemma 3.3.1, it suffices to prove n™ (G) < (2" —1)-2m+ 1. Note that 7(C}) =
2" = (2" — 1)2 — (2" — 2). The assertion follows by applying Proposition 3.4 for ¢ =
2" — 1. O

Now we can prove our main theorem in this subsection.

Theorem 3.6. Letr,a € N, g € Ny, and let n,m € N.
(1) If n,m > 2 and ged(n,m) = 1, then n™¥ (C,, ® Cpp) = 2n +nm
(2) ¥ (Cha) = (20— 1) 20 + 1.
(3) NN (C3.q0) =T7-2°3% + 1 with a > B.
(4) If n is odd, then n™ (C3) > 8n+1 and n™ (C3, ;) = 8- 357 + 1.
(5) If n is odd, then nN(C2) > 19n + 1 and nN(C5.) =19 - 3% + 1.

Proof. 1. Let G = C,, ® Cp,,. By Lemma 3.2, it suffices to prove that n™ (G) < 2n +nm.
Let S be a sequence over G*® of length 2n + nm. We need to show that S has two innerly
non-zero-sum-joint short zero-sum subsequences. Assume to the contrary that S has no

innerly non-zero-sum-joint short zero-sum subsequences.
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Let ¢ : G — G be the multiplication by m. Note that ged(n,m) = 1. We have
ker(p) = Cy, and p(G) = mG = C2. Let S = SyS1, where Sy is a subsequence over
ker(p)® and S is a subsequence over G \ ker(p). Suppose Sy = T3 - ... 13Ty, where
t € Ny, T1,...,T; are Sp-innerly disjoint short minimal zero-sum subsequences over
ker(¢)®, and Ty has no short zero-sum subsequence over ker(¢)®. Choose a term h; of T;
for each i € [1,¢]. If W := (hy - ...~ hy)"1Sp has a short minimal zero-sum subsequence
T over ker(p)®, then there exists i € [1,t] such that T; and T are Sp-innerly joint, a
contradiction. Therefore W has no short zero-sum subsequence over ker(y)®.

Let £ € Ny be maximal such that there are Si-innerly disjoint subsequences V7, ..., Vi

satisfying the following properties.

e For every i € [1, k], we have ¢(V;) is a short zero-sum subsequence over ¢(G);

o W.-o(V1)-... 0(Vg) has no short zero-sum subsequence over ker(y).
Let U= (Vi -...- Vi)~ 151 Then |W|+k <n(C,,) —1=m —1 and

(3.1) |U| > |S1] — kn > 2n+nm — |Sp| — (m — 1 — |W|)n > 3n.

If ¢(U) has two innerly joint short minimal zero-sum subsequences over (G)®,

whence U has two subsequences Uy, Us such that ¢(Uy), p(Usz) are o(U)-innerly joint
short minimal zero-sum subsequences and U;,Us; have a U-inner common divisor Y
such that o(Y) ¢ ker(¢). By the maximality of k, there exist subsequences Wy, Wy of
W and subsets I1, Iz C [1,k] such that o(U1)W1 [[;c;, o(Vi) and o(U2)Wa [[;cp, o(Vi)
are short zero-sum subsequence over ker(y), whence X; := UyW1 [] V; and X5 =
UsWo 11

divisor of W7 and W5. Then X; and X5 have a S-inner common divisor YY) Hie LAl Vi

iely
ier, Vi are short zero-sum subsequence over G°. Let Yy be a W-inner common

which is not zero-sum, a contradiction.

If ¢(U) has no innerly joint short minimal zero-sum subsequences over ¢(G)®, we
have |p(U)| = |U| < ™V (C,, @ C,) — 1 = 3n. Combining inequality (3.1) and n|W| >
2|W| > |Sp|, we obtain that n = 2, |[U| =6, [W| =t, k=m—1—t,and [T1| = ... = |T}| =
Vil = ... = |Vi| = 2. Since W -0 (V1) -...-0(Vip—1-¢) has no short zero-sum subsequence
over ker(p) and |W-o(V1)-...-0(Vip—1-¢)| = m—1=n(Cy,) — 1, it follows from Lemma
2.6.5 that W -a(Vy) - ...  0(Vin—1—¢) = g™ 1, where g is a generator of ker(p) = C,,.
Thus |T1| = ... = |T}| = 2 implies that T = ... =T, = g(—g). If ¢ > 2, then it is easy to
see that g(—g) and g(—g) are two S-innerly joint short minimal zero-sum subsequences,
a contradiction. If ¢t = 1, then it is easy to see that T} and (—g)V; are two S-innerly joint
short minimal zero-sum subsequences, a contradiction. Therefore t = 0 and k = m — 1.

Let U =g¢;-...-gs, where g1, ..., gs € G\ker(y). Since ¢(U) has no innerly joint short
minimal zero-sum subsequences over p(G) = C2 and |p(U)| = n™V(Cy @ Cs) — 1 = 6,
after renumbering if necessary, we may assume that ¢(g1g2) = €2, v(g3g94) = €2, and
¢(g596) = €3, where {e1,ea,e3} = ©(G) \ {0}. Let L1 = gi1g2, L2 = g3ga, Lz = gs3e,
M; = ¢19395, and My = gogags. For every L € {Lj, Lo, L3, My, My}, we have o(L) €
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ker(p) ={0,9,...,(m —1)g}. We claim that o(L) € {0, ¢}. Assume to the contrary that
o(L)y=agwith2<az<m-—1.Then LV} -...- Vpp_pand LV} - ... -V _» 1 Vi_py1 are
short zero-sum subsequence of S over G* with a non-zero-sum S-inner common divisor
LVy ... Vw1, a contradiction. Therefore o(L) € {0, g}.

If there exist 3,1y with {l1,lo} C {1,2,3} such that o(L;,) = o(L;,) = g, then
LiVi-... - Vi1 and Ly, Vi - ... - Vi1 are short zero-sum subsequence of S over G*
with a non-zero-sum S-inner common divisor Vi -...-V,,_1, a contradiction. Thus, after
renumbering if necessary, we may assume that o(L1) = o(Lz) = 0. If there exists i € [1, 2]
such that o(M;) = 0, then L1 = g1 g2 and M; are short zero-sum subsequence of S over G*
with a non-zero-sum S-inner common divisor g;, a contradiction. Then o(M;) = o(Mz) =
g, which implies that o(L3) = g5+ g6 = 0(L1) + 0(L2) + g5 + g6 = 0(M1) + o (M) = 2g,
a contradiction.

2. If a = 1, then the assertion follows from Lemma 3.1. Suppose a > 2. We proceed
by induction on a and the assertion follows by applying Corollary 3.5.

3. Let G = C3.,5 with o > . By Lemma 3.3.1, we have n™V(G) > 7-2%3° 4 1. It
suffices to show the upper bound. Since Lemma 3.1 implies that n™ (C3) = 7-2+ 1 and
Lemma 2.12 implies that n(Cg’a,lgﬁ) =7.297138 _ 6, it follows by Proposition 3.4 that
NN (G) <7-293° +1.

4. Let G = C3. By Lemma 2.7, there exists a sequence T' € F(G) of length |T| =9
such that 7"~ has no zero-sum subsequence of length n. Let g | T and set S’ = (0~ (—g+
T))™. Tt is easy to see that S’ € F(G*) has no innerly non-zero-sum-joint short zero-sum
subsequences, whence n™¥ (G) > |S'| +1 = 8n + 1.

Suppose n = 3%5°. It suffices to show n™(G) < 8n + 1. The result follows from
Lemma 3.3.3, Proposition 3.4 and Lemma 2.10.

5. Let G = C%. By Lemma 2.8, there exists a sequence T € F(G) of length |T| = 20
such that 7"~! has no zero-sum subsequence of length n. Let g | T and set S" = (0~ (—g+
T))™. It is easy to see that S’ € F(G*) has no innerly non-zero-sum-joint short zero-sum
subsequences, whence n™¥(G) > |S’| +1 = 19n + 1.

Suppose n = 3<. It suffices to show 7 (G) < 19n+ 1. The result follows from Lemma
3.3.3, Proposition 3.4 and Lemma 2.10. O

3.2. On D¥(G) and N;(G). In this subsection, our main theorem is Theorem 3.14. Note
that DV (G) = N1 (G) + 1. We first collect some known results of N1 (G) and D(G).

Lemma 3.7. Let G=Cyp, @ ... C,, be a finite abelian group, where 1 <mnq| ... |n,.
Then N1 (G) = n1 + ...+ n, provided that G has one of the following forms.

(1) G=C, withn > 2.

(2) G=Cp, ®Cy, withl <ny|ns.

(3) G = C% with r € N.
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(4) G = C% with r € N.

(5) G=C5 & Cld® Cym with0<t<1andm>1.

(6) G=C8 & CLa Comy with0<t<1,1>4, and 2™ >r + 3t + 1.
(7) G=C5®Cl® Czm with0<t<1andm>1.

(8) G=C% & Cl® Csm; with 0 <t <1,1>4, and 3™ > 2r + 8t + 1.
(9) G = C2 ® Cas,y, with either m =1 or m > 4.

Proof. Ttem 2 follows from [GPZ13, Theorem 2.3]. For Items 1, 3, and 4, see [GHOG6,
Theorem 6.2.8] and for Items 5-9, see [G97, Theorem 1]. O

Lemma 3.8. Let p be a prime and m,n € N. Then D(G) = D*(G) holds for one of the
following groups.

(1) G=C,, ® Chn.

(2) G is a finite abelian p-group.

(3) G =Csy® Com ® Comn.-

(4) G = Cs ® Ca,y, with m odd.

Proof. For Items 1 and 2, see [GH06, Theorems 5.8.3 and 5.5.9]. Item 3 follows from
[GS19, Theorem 2.7] and Item 4 follows from [E69, Page 1]. O

We need the following lemmas.

Lemma 3.9. Let G be a finite abelian group with |G| > 1 and let T =Uy-...-U, be a
sequence over G*, where r € N and Uy, ..., U, are minimal zero-sum sequences. If T has

no innerly joint minimal zero-sum subsequences, then [[,_, |U;| < |G|.
Proof. See [GGW11, Lemma 3.9]. O

Lemma 3.10. Let G be a finite abelian p-group with p an odd prime and let B =
By ... B, be a sequence over G*, where r € N and By, ..., B, are minimal zero-sum

subsequences. Suppose B has no innerly joint minimal zero-sum subsequences. If exactly

t of |Bil,...,|Br| are odd, then |B| < D(G)+t— 1.

Proof. See [G97, Proposition 1]. O
Definition 3.11. Let S =g; - ... g € F(G) be a sequence of length |S| =1 € Ny and
let g € G.

(1) For every k € N, let
NE(S) = HI ClLl: Y gi=gand|I| = k}‘
el

denote the number of distinct subsequences T in S having sum o(7T) = g and

length |T'| = k.



16 W.D. GAO, W.Z. HUI, X. LI, Y.L. LI, Y.K. QU, AND Q.H. ZHONG
(2) We define

Ny(S) =D Ni(S), Ny(s)=) N(s), Ng(5)=) N;*(s).

k>0 k>0 k>0
Thus N, (S) denotes the number of distinct subsequences T in S with o(T) = g,
N (S) denotes the number of such subsequences in S of even length, and N (5)

denotes the number of such subsequences in S of odd length.

Lemma 3.12. Let G be a finite abelian p-group and let S be a sequence over G of length
D(G) — 2. Suppose that N (S) # Ny (S) (mod p). Then there exist a subgroup H of G
and an element x € G\ H such that G\ £(S) C z + H.

Proof. See [G97, Lemma 10]. O
Lemma 3.13. Let G = C}, where p > 3 is prime and v > 2, and let S = Sy -...- 5
be a sequence over G*, wherel € N and Sy, ...,5; are minimal zero-sum subsequences.

Suppose S has no innerly joint minimal zero-sum subsequences and that |S| = rp+t with

t > 1. Then at least t + 7+ 2 of |S1],...,|Si| are odd.

Proof. Suppose that exactly k of |S1],...,|S;| are odd. Note that D(G) = r(p—1)+1 by
Lemma 3.8.2. Then k& > ¢+ follows from Lemma 3.10. We need to show that k > t+r+2.
Assume to the contrary that k < t+r+ 1. Then k =t+rby k=rmp+t=r+t
(mod 2). After renumbering if necessary, we may assume that [Si],...,|Sr+¢| are odd
and |Sy4¢41]s .- -, |51] are even.
Let a; € supp(S;) for every i € [1,7 + t], choose a term = of a] 'Sy, and set
T = aflx_lSlaQ_ISQ e ar_J}tSr—i-tSr—i-t-i-l 0S5
Then N (T) =21"""t, N;(T) =0, |T| =r(p—1) — 1 = D(G) — 2, and
{—ai,—a; —ag,...,—a1 — pit,—T,—x —a2,...,—T — ars } N S(T) = 0.

It follows from Lemma 3.12 that there exist a subgroup H of G and an element g € G\ H
such that

{—a1,—a1 —ag,...,—a1 —apy4,—T,—T —Q2,...,—T — arpt} C g+ H.
This implies that © — a1 = (—a1) — (—z) € H. Since x was chosen arbitrarily, we obtain
Sy isover a1+ H = —g+ H. In view of ¢(S1) = 0, we obtain |S1|g € H and hence p||S|.
Similarly, we can show
plISals o sp [ el
which implies that |S| > |Si|+ ... + [Sr4¢| > p(r +t) > rp + ¢, a contradiction. Thus
k >t+r+ 2 and we are done. O

Now we are ready to state our main theorem of this subsection.

Theorem 3.14. Let G = Cp,, ®...DC,,,. be a finite abelian group, where 1 < ny| ... |n,.
Then N1(G) = n1 + ...+ n, holds for any one of the following groups.
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(1) G =C5 @& Coy, withm € N and r € [2,3].

(2) G =Ct withr € [1,9].

(3) G = C% with r € [1,6].

(4) G = C7, with r € [1,4].

(5) G = C5 with r € [1,3] and p € {13,17,19,23}.

Proof. 1. We only prove the case that r = 2, since the proof is similar for r = 3. If m = 1,
the assertion follows from Lemma 3.7.3. Suppose m > 2. By (2.1), it suffices to show
that N1 (G) < 2m + 4. Let S be a zero-sum sequence over G* of length |S| > 2m + 5.
We need to show that S has two innerly joint minimal zero-sum subsequences. Assume
to the contrary that S has no innerly joint minimal zero-sum subsequences.

Let S = Uy - ... U, where Uy,...,U; are minimal zero-sum subsequences. Choose
gi € supp(U;) for every i € [1,t]. Then T := (g1 -...-g¢) 1S has no zero-sum subsequence.
If ¢ < 3, then by Lemma 3.8.3 |T| > 2m + 2 = D(G), a contradiction. If ¢ > 4, then
Lemma 3.9 implies that |G| > [T'_, |Ui| > 2%(2m — 1) > |G, a contradiction.

2. By (2.1), it suffices to show that N;(G) < 5r, where r € [1,9]. Let S be a zero-
sum sequence over G* of length |S| = 5r + k with & > 1. We need to show that S has
two innerly joint minimal zero-sum subsequences. Assume to the contrary that S has no
innerly joint minimal zero-sum subsequences.

Let S=U;y-...-UUq1-... Uy, where Uy, ..., U; are minimal zero-sum subsequences
such that |U;] is odd for every i € [1,t] and |U;]| is even for every i € [t +1,1]. By Lemma
3.13, wehavet >r+k+2>r-+3.

If r < 34k, then 5r+k = |S| > 3(r+k+2) > 5r+k, a contradiction. If r > 3+k > 4,
then Lemma 3.9 implies that

l
G| > []IU:| =37 (2r —5) > 5" = |G,

i=1

a contradiction.

3. By (2.1), it suffices to show that N;(G) < 7r, where r € [1,6]. Let S be a zero-
sum sequence over G* of length |S| = 7r + k with k& > 1. We need to show that S has
two innerly joint minimal zero-sum subsequences. Assume to the contrary that S has no
innerly joint minimal zero-sum subsequences.

Let S=U;y-...-UUq1-...-Up, where Uy, ..., U; are minimal zero-sum subsequences
such that |U;] is odd for every i € [1,t] and |U;]| is even for every i € [t +1,1]. By Lemma
3.13, we have t >r+k+2>r+ 3.

If r =1, then Lemma 3.9 implies that

l
Gl = []Ivil =3 >7=1q],

i=1
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a contradiction. If > 2, then Lemma 3.9 implies that
l

G = [TIUil =372 (4r = 5) > 7 = |G
i=1
a contradiction.

4. By (2.1), it suffices to show that N1(G) < 11r, where r € [1,4]. Let S be a zero-
sum sequence over G* of length |S| = 11r + k with k > 1. We need to show that S has
two innerly joint minimal zero-sum subsequences. Assume to the contrary that S has no
innerly joint minimal zero-sum subsequences.

Let S=U;-...-UUq1-... Uy, where Uy, ..., U; are minimal zero-sum subsequences
such that |U;] is odd for every i € [1,¢] and |U;] is even for every ¢ € [t + 1,1]. By Lemma
3.13, wehave t >r+k+2>r+3.

Then Lemma 3.9 implies that

l
G| > [[ il = 372(8r — 5) > 11" = |G,
i=1
a contradiction.

5. By (2.1), it suffices to show that N1(G) < pr, where r € [1,3] and p € {13,17,19, 23}.
Let S be a zero-sum sequence over G* of length |S| = pr+k& with k£ > 1. We need to show
that S has two innerly joint minimal zero-sum subsequences. Assume to the contrary that
S has no innerly joint minimal zero-sum subsequences.

Let S=U;-...-UUssq-...-Up, where Uy, ..., U; are minimal zero-sum subsequences
such that |U;] is odd for every i € [1,t] and |U;]| is even for every i € [t +1,!]. By Lemma
3.13, we havet >r+k+2>r+3.

Then Lemma 3.9 implies that
l
6 = [T1Uil = 37*((p = 3)r = 5) > p" =G
i=1
a contradiction. O

4. On V(@)

In this section we shall investigate s™(G). We first introduce two more invariants

which are lower and upper bounds of sV (G). We define

e s*(G) to be the smallest integer ¢ such that every sequence S of length ¢ over G*
has two innerly joint zero-sum subsequences of length exp(G).

e s**(@G) to be the smallest integer ¢ such that every sequence S of length ¢ over G
with vo(S) < exp(G) has two innerly non-zero-sum-joint zero-sum subsequences

of length exp(G).
It follows from the definitions of s*(G), s**(G) and sV (G) that

s*(G) > sV (G) > s*(G).
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We will frequently use the following easy observation without further mention.

Lemma 4.1. Let G be a finite abelian group and let S be a sequence over G with vo(S) <
kexp(G) such that S has no innerly non-zero-sum-joint zero-sum subsequences of length

kexp(G), where k € N.

(1) Let T be a zero-sum subsequence of S of length |T| = kexp(G). Then vy(T) =
vg(S) for every g € supp(T) \ {0}. In particular, h(S) < kexp(G).

(2) Suppose S =Ty-...- T, Ty, wherer € Ng, Ty, ..., T, are zero-sum subsequences of
S of length |Ty| = ... = |T,| = kexp(G), and Ty has no zero-sum subsequence of
length k exp(G). Then supp(T;)Nsupp(T;) = 0 or {0} for any distinct i,j € [0,7].

Proof. 1. Assume to the contrary that there exists g € supp(T) \ {0} such that v,(T') <
vg(9). Then Tg divides S and ¢! 7T is not zero-sum, whence 7" and 7" have a non-zero-sum
S-inner common divisor g~ '7, a contradiction.

The “in particular" part follows from the fact that for every g € G*, we have gk (&)
is a zero-sum sequence of length kexp(QG).

2. Assume to the contrary that there exist distinct 4, j € [0, 7] such that g € supp(T;)N
supp(Tj) and g € G*. By symmetry we may assume that ¢ > 1 and hence v, (T;) < v4(5),

a contradiction to Item 1. (]
Lemma 4.2. s*(C}) = sV (C5) = 2"t — 1 and s**(C5) = 2"+1 + 1, where r € N.

Proof. Let G = C%. We first show that s*(G) = sV(G) = 2" — 1. Let

s=11 ¢

geG*

and it is easy to see that S € F(G*®) has no innerly joint zero-sum subsequences of length
2. Tt follows that s*(G) > |S|+1=2(2" — 1) +1=2"F1 — 1.

We only need to show sV (G) < 2"+ —1. Let U be a sequence over G* of length 27! —
1. Then h(U) > |U|/(|G| — 1) > 2, whence there exists g € G* such that v,(U) > 3. By
Lemma 4.1.1 we obtain that U has two innerly non-zero-sum-joint zero-sum subsequences
of length 2 and we are done.

We next show that s**(G) = 2"+1 + 1. Let

S’:HgQ.

geG

Then vo(S’) = 2 and S’ has no innerly non-zero-sum-joint zero-sum subsequences of
length 2, whence s**(G) > |S'| + 1 = 2"! + 1. Let U’ be a sequence over G of length
271 4+ 1 with vo(U’) < 2. Since (JU’| = vo(U"))/(|G| — 1) > 2, there exists g € G* such
that vy (U’) > 3. By Lemma 4.1.1 we obtain that U’ has two innerly non-zero-sum-joint

zero-sum subsequences of length 2, whence s**(G) < 271 + 1 and we are done. g

Remark: Let G be a finite abelian group such that exp(G) > 3. Then S =[] o goxP(&)
has a zero-sum subsequence T of length exp(G) such that |supp(7T’)| > 2, whence S
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has two innerly non-zero-sum-joint zero-sum subsequences of length exp(G) and hence

s**(G) < |G| exp(G).
We distinguish three subsections depending on the rank of the groups.

4.1. Cyclic groups. Let G be a finite abelian group and let A;, As, ..., Ap be nonempty
subsets of G, where h > 2. We define

Ai+ ...+ A ={a1+...+ap: a; € A; for i € [1,h]}.

The following lemma is the famous Cauchy-Davenport Theorem.

Lemma 4.3. Let G be a cyclic group of prime order p and let Ay,..., Ap be nonempty

subsets of G, where h > 2. Then
h
| AL+ ...+ An| > min{p, > [Ai] —h+1}.

i=1

Proof. See [N96, Theorem 2.3]. O
Lemma 4.4. Let G = C,,, where n > 3. Then s**(G) > s*(G) > 2n + 1.

Proof. Let g € G such that ord(g) = n and let S = ¢™(2¢g)". Then S has only two
zero-sum subsequences ¢" and (2¢)" of length n. Since g™ and (2¢)™ are not S-innerly

joint, we have s*(G) > |S|+1=2n+1. O
Lemma 4.5. If p is a prime, then s**(Cp) =2p + 1.

Proof. By Lemmas 4.2 and 4.4, it suffices to prove that s**(C,) < 2p + 1. Let S be a
sequence over C, of length |S| = 2p + 1 such that vo(S) < p. We need to show that S
has two innerly non-zero-sum-joint zero-sum subsequences of length p. Assume to the
contrary that S has no innerly non-zero-sum-joint zero-sum subsequences of length p. It
follows from Lemma 4.1.1 that v,(S) < p for every g € C,,.

Note that there exists g € Cg such that v4(S) > 2. Set T = (¢9*)~'S. It follows
from h(T') < p that there exist T-innerly disjoint squarefree subsequences Aq,..., A,_1
of length |A;| = ... = |4,-1] = 2 such that A; -...- A,_; divides T. Applying Lemma
4.3, we obtain that |A; + ...+ Ap_1| > min{p, |41 +... +|Ap_1| — (p—2)} = p, whence
Ai+...+A,_1 =C,. Let W be a subsequence of A;-...-A,_; of length p—1 such that
o(W) = —g. Then gW is a zero-sum subsequence of S of length p with v,(gW) < v4(5),

a contradiction to Lemma 4.1.1. O

Lemma 4.6. Let G be a cyclic group of order m > 2 and let n > m. Let S be a nontrivial
sequence over G such that vo(S) < mn — 3. Suppose that s**(Cp,) = 2m + 1 and that
S has no innerly non-zero-sum-joint zero-sum subsequences of length mn. Then |S| <
mn + 2m — 3 and there exist t € Ny and S-innerly disjoint subsequences Si,...,S; such
that |S;| = n for each i € [1,t], |(S1-...-S;)"1S| < n, and the sequence a(S1)-...-o(St)

has no zero-sum subsequence of length m.
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Proof. Assume to the contrary that |S| > mn + 2m — 2. Then [(0¥(5)=15| > 2m + 1.
It follows from s**(C),) = 2m + 1 that S has two innerly non-zero-sum-joint zero-sum
subsequences Wy and W7 of length |Wy| = |[W;| = m. Let Y be a non-zero-sum S-inner
common divisor of Wy and W; and let W = (WoW1)~1Y'S. Then, |[W| > |S|—(2m—1) >
(n—2)m+2m—1. Now applying s(C,,) = 2m —1 repeatedly to W, one can find n—1 W-

innerly disjoint zero-sum subsequences Wa, ..., W, of length |Ws| = ... = |W,| = m. Set
T =W, H?:z W; and Ty, = W, H?:z W;. Now T} and T5 are two zero-sum subsequences
of S of length |Ty| = |Tz| = mn, and Ty and T have a non-zero-sum S-inner common

divisor Y [[;~, W;, a contradiction.

Therefore |S| < mn+2m—3.If |S| = tn+r < mn, where t € [0,m—1] and r € [1,n],
then choose S-innerly disjoint subsequences Sy, ...,S; of length |S;| = ... = |S;| = n,
whence o(S7) - ... o(St) has no zero-sum subsequence of length m.

Suppose that mn + 1 < |S| < mn + n. Let Sp,...,S5,, be m S-innerly disjoint
subsequences of length |S;| = ... = |S,,| = n such that supp((S; - ... Sn)"19) ¢ {0}.
Set §" = (S1 ...+ Sp)7 LS. Then |S'| < n. If 0(S1) + ... + 0(Sm) # 0, then we are
done. Otherwise choose a term = # 0 of S’ and a term y of S,,. Let S/, = y~'25,,. If
o(S1)+...+0(Sm—1)+0(S],) # 0, then we are done. Otherwise = y and there are two
zero-sum subsequences Sy - ...- Sy, and Sy - ... S,,_1S5), with a non-zero-sum S-inner
common divisor 7S -...-S,,, a contradiction.

Suppose mn +n+1 < |S| < mn + 2n — 3. Then n > 4. Set vo(S) = t1n + r1, where
t1 €[0,m—1]and r; € [0,n —1] and £ = |S| —vo(S) >mn+n+1— (mn—3) =n+4.
Let U = aj - ... a, be the maximal subsequence of (0"°(%))~18 such that U? divides
(0v0 () =1S then 22 = |U?| = |(0¥°))~1S| — | supp((0V0 ) ~18)| > I —(m—1). We assert
that x > m+1—t;. If t; = m—1, then 22 —2(m+1—t1) > {—(m—1)—4 > n+4—m—3 > 0.
If t1 < m — 2, then

22 —2(m+1—t) > L—(m—1)—2(m—+1—1t)
>mn+n+1—(tin+r)—(m—1)—2(m+1—1t)
=(m+1—t)(n—2)—m—r +2
>3n—2)—-m—(n—1)+2

>n—3>0,

whence x > m + 1 — t;. By this assertion, we can choose S-innerly disjoint subsequences
S1,..+,Sma1 oflength |S1] = ... = |Spp1| = msuch that S; = ... = Sy, = 0", a; divides
St 11, aia;y 1 divides Sy, 441 for i € [1,m —t1], and a,,41_¢, divides (Sy-...-Spmy1)” LS.
If 6(S1) - ...  0(Spma1) has no zero-sum subsequence of length m, then we are done. If
there exists ¢ € [1,¢1], say @ = 1, such that o(S2) - ... 0(Sp+1) is zero-sum, then V; :=
Sy - ...+ Syt is a zero-sum subsequence of length mn and vq,, ., , (V1) <Va,,,,_,, (5),

a contradiction to Lemma 4.1.1. If there exists ¢ € [t; + 1,m] such that o(S;) -
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J(Si_l)O'(Si+1) Ceee O'(Sm+1) is Zero-suinm, then V; = Sl Cee.t Si_lsi+1 Ceee Sm+1 is a
zero-sum subsequence of length mn and v, , (Vi) <va,_,, (S), a contradiction to Lemma
41.1.If 0(S1) - ... - 0(Sw) is zero-sum, then V' := Sy -.... S, is a zero-sum subsequence

of length mn and v,,,_, (V') <v,,,_, (5), a contradiction to Lemma 4.1.1. O

Lemma 4.7. If s**(Cy,) = 2m + 1 and s**(C,,) = 2n + 1, then s**(Cpn) = 2mn + 1,

where m,n > 2.

Proof. By symmetry, we may suppose n > m > 2. Let G = C,,,. By Lemma 4.4
it suffices to prove the upper bound. Let S be a sequence of length |S| = 2mn + 1
such that vo(S) < mn. We need to show that S has two innerly non-zero-sum-joint
zero-sum subsequences of length mmn. Assume to the contrary that S has no innerly
non-zero-sum-joint zero-sum subsequences of length mn. Let S’ = (0¥(9))~1S. Then
IS’ > mn +1 = n™(Cyp) by Lemma 3.1.1, whence S’ has two innerly non-zero-sum-
joint short minimal zero-sum subsequences W; and Wj. Let Y be a non-zero-sum S’-
inner common divisor of Wi and Wy. If vo(S) > mn — 2, then W3 := 0™~ IWilyy,
and Wy := 0™~ W2l are zero-sum subsequences of S of length mn and have a non-
zero-sum S-inner common divisor 0°Y, where s € [0, min{mn — |Wy|,mn — |[W2|}], a
contradiction.

Therefore vo(S) < mn — 3. Let ¢: G — G denote the multiplication by m. Then
ker(¢) =2 Cyp, and p(G) = mG =2 Cy,. Set S =gy ... g, where l € Ng and ¢1,...,9; € G,
such that ¢(g;) = 0 for all ¢ € [1,¢] and ¢(g;) # 0 for all i € [t + 1,1], where ¢ € [0,]].
Since the sequence g; -. . .- g; has no innerly non-zero-sum-joint zero-sum subsequences of
length mn, it follows by Lemma 4.6 that ¢ < mn+2m—3 and there exist g; -. . .- gs-innerly
disjoint subsequences Sy, ...,S,, of length |S;| = ... =|Sy,| = n such that

e the sequence o(S) - ... 0(Sy,) has no zero-sum subsequence of length m;

o |(S1oSu)tgr g <
Let u; be the maixmal integer such that we can find (S; ... Sy,) 1 S-innerly disjoint
subsequences Sy,+1,-- -, Sug+u, Of length |Syo1+1] = ... = |Sug+u,| = n satisfying the

following properties.

e ©(S;) is zero-sum for every i € [1,ug + u1];

o 0(S1)...-0(Suy)o(Sug+1) - - -~ (Sug+u, ) has no zero-sum subsequence of length

m.
Let S” = (S1 ... Sugtu,) 1S Therefore ug + u; < s(Cp,) —1 = 2m — 2 and
hence |S”| = |S| — n(ug + u1) > 2n 4+ 1 = s*(C,). We infer that there exist two

subsequences T7 and Ty of S” with |T1| = |T2] = n such that ¢(T1),¢(T2) are zero-
sum and have a non-zero-sum ¢(S"”)-inner common divisor ¢(Y'), where Y is a S”-inner
common divisor of 77 and T5, whence o(Y) ¢ ker(¢). By the maximality of wu;, there

exist I,J C [1,up + u1] with |I| = |J| = m — 1 such that T1 [[,.; S; and T> [[..,;S; are

i€l jeJ
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zero-sum subsequences of length mn and have a non-zero-sum S-inner common divisor

Y [lxcrns Sk, a contradiction. O

By Lemmas 4.4, 4.5, and 4.7, we obtain our first main result of this section.

Theorem 4.8. Let G = C,, with n > 3. Then s**(G) = sV (G) = s*(G) = 2n + 1.

4.2. Abelian groups of rank 2. We first consider s*(G) for abelian groups G of rank
2.

Lemma 4.9. If G=C, ® C,, with 1 <n | m, then
(G) = 4m + 1, ifn=m2>3;
2n +2m — 1, others.

Proof. Let G = C,, @ Cp, with 1 < n | m. If n = m = 2, then the assertion follows from
Lemma 4.2.

Suppose n =m > 3. Let (e1, e3) be a basis of G and let
S = (261 -ep €2 (61 +€2))m.

It is easy to see that S has no innerly joint zero-sum subsequences of length m. Then
s*(G) > |S|+1 =4m+1. To show s*(G) < 4m—+1. Let S be a sequence over G* of length
|S| = 4m + 1. We need to show that S has two innerly joint zero-sum subsequences of

length m. Assume to the contrary that S has no innerly joint zero-sum subsequences of

length m. Let ¢t be maximal such that Si,...,5; are S-innerly disjoint zero-sum subse-
quences of length |S;| = m for i € [1,t], where t € Ng. Then Sy -...- S; | S. For every
i € [1,t], we choose a term g; of S;. It follows that (g1 - ... g;)~'S has no zero-sum
subsequence of length m, whence |(g; - ... g;)"'S| < s(G) — 1 = 4m — 4. We infer that
t=|S]—1|(g1-...-g¢)"1S| > 5 and hence

dm+1=1[S|>|S1-... S| >5m,

a contradiction.

Suppose n < m. Then 2n < m. Let (e, e2) be a basis of G and let
T = (e1 + e2)" Lep + 2e2)" el (2e0)™ .

Next we show that T" has no innerly joint zero-sum subsequences of length m. Suppose
that T" is a zero-sum subsequence of T' of length |T’| = m. Then there exist x,y € [0,n—1]

with n|z +y and z € [0,m — x — y] such that
T = (e1 + e2)"(e1 + 2e2)Ye5(2e2) " "7V 7

whence o(T") = (z + y)er + (x + 2y + 2+ 2m — 20 — 2y — 2z)eg = (—x — 2)ea = 0
and hence m divides = + z. Since x + z € [x,m — y], we obtain either z + 2 =2 =0
or x +z=m—y =m, whence z € {0,m}. Note that n|z + y. Both cases imply that

x =y = 0. Therefore 77 € {e}*, (2e2)™} and hence 7" has no innerly joint zero-sum
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subsequences of length m. So we have s*(G) > |T| + 1 = 2n + 2m — 1. Next we need to
prove that s*(G) < 2n+2m—1. Let S’ be a sequence over G* of length |S’| = 2n+2m—1.
We need to show that S’ has two innerly joint zero-sum subsequences of length m. Assume
to the contrary that S’ has no innerly joint zero-sum subsequences of length m. Let ¢ be
maximal such that S, ..., Sy are S'-innerly disjoint zero-sum subsequences with |S;| = m
for i € [1,t], where t € Ng. Then Sy-...-S¢ | S’. For every i € [1,¢], we choose a term g; of
S;. It follows that (g;-...-g;)~ 1S has no zero-sum subsequence in S’ of length m, whence

[(g1-----g1)" 19| <s(G)—1=2n+2m—4. We infer that t = |S’| —|(g1-...-g:) 19" >3

and hence
2n+2m—1=18|>[S1-...- S > 3m.
It follows that 2n — 1 > m, a contradiction. O
Let S =g¢1 ... ge be a sequence over G and let k € N. We define

S(S) = {o(T): T| S with |T| = k}.

Note that we can view every subset A as a squarefree sequence over G and hence X (A)
is well-defined for every k € N. We need some preliminary results beginning with the

following well known Dias da Silva-Hamidoune theorem.

Lemma 4.10. Let p be a prime, and let A C C, with |A| =k. Let 1 < h < k. Then

|24 (A)| > min{p, hk — h? +1}.
Proof. See [N96, Theorem 3.4]. O

Lemma 4.11. Let G be a cyclic group of prime order p and let S be a sequence over

G*. If S| > p, then Yy, (5)(S) = G, where ¥y, 5,(S) = Ui 32,.(5).

Proof. Suppose S = gi' - ... g;*, where gi,...,g: are different nonzero elements and
h(S) = r1 > r3 > ... > 1. Then we can factor S into a product of h(S) nonempty
subsets Ayp,..., Aps), that is to say

S=A1-... Ay
Let A, = A; U {0} for i € [1,h(S) — 1]. Then Egh(S)(S) DA+ + A;](S)fl + An(s)-
By Lemma 4.3,

h(S)—1
|A] + ...+ Afs)—1 + Ans)| = min{p, Z |A] + [Ansy| = h(S) + 1} = p.
=1
So we have }_ ) (5) = G. O

Lemma 4.12. Let G = C’g with p prime. Let S be a sequence over G of length |S| = 4p—1
such that vo(S) < p. If there exist two distinct elements ey,e2 € G* such that v, (S) =
Ve, (S) = p — 1, then S has two innerly non-zero-sum-joint zero-sum subsequences of

length p.
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Proof. Assume to the contrary that S has no innerly non-zero-sum-joint zero-sum subse-
quences of length p. It follows from Lemma 4.1.1 that v, (S) < p for every g € supp(S) \
{0}. Set W = (¥ "eb )" 1S =2y - ... - wopy1, Where xy,..., 22y 11 € supp(S) \ {e1, ea}.
Since |S| =4p — 1 > s(G) = 4p — 3, there exist zero-sum subsequences of length p of
S. Let T be a zero-sum subsequence of S of length p. Then Lemma 4.1.1 implies T | W.
After renumbering if necessary we may assume that there is a ¢ € N such that z; is a
term of some zero-sum subsequences of W of length p for each ¢ € [1,p+1¢] and =z; is not
a term of any zero-sum subsequence of W of length p for each j € [p+¢+1,2p + 1].
Let H = (e2 — e1) be the subgroup of C, & C,, generated by e; — e;. Then H = C,,.

Claim A. z; € H for every i € [1,p+t].

Proof of Claim A. Let Wy =21 - ... zp1+ and let T} be a zero-sum subsequence of W)

of length |T7| = p. Suppose that

Ty =wy @y,
Let U = x;lTleszlegfl. Then U has no zero-sum subsequence of length p. Assume
that U has a zero-sum subsequence Ty of length |T3| = 2p. Then Ty = eS¢l Ty, where
a,f€[l,p—1] and Ty | x;llTh whence T3 := e’l’faeg*BTO*lTl is a zero-sum subsequence
of S of length p. But T35 { W, a contradiction. Therefore U has no zero-sum subsequence
of length p or 2p, whence the sequence —e; +U = (—e; + x;lTl)Op’l(eg —e1)P~! has no
zero-sum subsequence of length p or 2p. It follows that (2;, —e1 +H)-...-(z;, —e1 + H)
is a zero-sum free sequence over G/H, whence x;,, —e; + H = ... = x;, —e1 + H by

Lemma 2.6.5. In view of o(T7) = 0, we have

viy+H=z,+H=...=x;, + H.
Let Ty = xj, - ... z;, be another zero-sum subsequence of Wy of length p such that
IZ: {il,...,ip}ﬂ{jl,...,jp}#@. Thenxj1+H:xj2+H: :wjp+H:-'L'il+H:
Ty, +H=...=uz;, + H. Since erI 24, is a S-inner common divisor of Ty and 77, we

obtain that 0 = o([[,c; 2i,) € [I|2;; + H and it follows from 0 < |I| < p that x;, € H.
Assume to the contrary that there exists ¢ € [1,p + t], say ¢ = 1, such that =, ¢ H.
Let T be a zero-sum subsequence of Wy of length p such that z; is a term of T. If
there exists another zero-sum subsequence T of Wy of length p such that 77 and T
are Wy-innerly joint, then x; € H by the above argument, a contradiction. Thus W)
and hence W have no innerly joint zero-sum subsequencesof length p. Choose two terms
y1,y2 of T=YW. Then Wy := (z1y1y2) W has no zero-sum subsequence of length p and
hence Sy := (71y1y2) 1S has no zero-sum subsequence of length p. Since —e; + Sy =
0P~Y(eg — e1)P~1(—e; + W), we obtain (es — e1)P~!(—e; + W1) has no short zero-sum
subsequence. It follows from Lemma 2.6.5 that there exist distinct f1, fo € G® such
that (ez — e1)P 1 (—e1 + W1) = (ea — e1)P"H(f1 — e1)P"H(f2 — e1)P~ !, whence W; =

p—1 pp—1 -1 _ pep—1 p—1 —1p _ pp—1
H 5 .~ Thusz{ T = f{ "~ or f; ~. By symmetry, we may assume z; 1" = f; = and
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(y192T) W = fgil. Since y1,y2 are chosen arbitrarily, we infer that T-'W = fQPH, a
contradiction to h(S) < p. O(Claim A.)

By Claim A we set
xl-..upo:hT-...-hZ’“,

where hy,...,hy € H are distinct and r1 > ro > ... >rp > 1withri+...+ 71, =p+t.
If k£ = 2, then by Lemma 4.1.1 we obtain that (h1hy)~1S has no zero-sum subsequence
of length p, a contradiction to |(h1hs)™1S| = 4p—3 =s(G@). Thus k > 3. If ry +ry+1r3 >
t + 1. It follows from Lemma 4.1.1 that (hihohz)~1S has no zero-sum subsequence of
length p, whence —e; + (h1hohs)™'S = 0P~ (—e; + €5~ ") (—e1 + (h1hahs) 'W) has no
zero-sum subsequence of length p. Therefore (—e; + €5 ')(—e1 + (h1hahs)"'W) has no
short zero-sum subsequence. By Lemma 2.6.5, there exist distinct f1, fo € G® such that
(hihohs)™'W = f{”*1 571, whence r; > ro > p—1. Thus ry = 7o = p and r3 = 1. Let
T3 be a zero-sum subsequence of W of length p such that hg is a term of T3. Then either
1 <vp(T5) <p—2orl<vy(Ts5) <p-—2,acontradiction to Lemma 4.1.1. Therefore
t>ry +re+rs.

Let I € [1,k] be such that ry = ... =r; >4 > ... > 1. Suppose ] <t—ry+ 1. Let
R = —hy+ (h}*-...-h}*) and let U be a subsequence of (0") 'R of length |U| = p such
that h(U) < ry —1. By Lemma 4.11, we obtain that H =}, (U) C >, _;(U) C H,
whence >, ,(U) = H. It follows that ZZ:LH(U) =0o(U)—=> <, _1(U) = H, which
implies U has a zero-sum subsequence Uy of length |Up| € [p—r1+1, p—1]. Thus 07~ IVl
is a zero-sum subsequence of R and hence hfl’_lU“‘(hl + Up) is a zero-sum subsequence
of S of length p. But 1 < p — |Up| < r1 — 1, a contradiction to Lemma 4.1.1. Therefore
Il>t—7r1+2>r9+1r3+2>4, whencery =ro =13 >2,1>ro+r3+2 > 6, and
r <R < (p-1)/2.

There exist r; squarefree subsequences By, . . ., By, such that V := ' 2h%2-.. -hj* =
By -...-By,. Clearly, |B;| >1—1>5 for each i € [1,r]. Since 1 < (p — 1)/2, we can
choose A; | B; for each i € [1,71] such that |[A;] > 3 and |A;|+...+]A | = 2r1+(p—1)/2.
Since t > ry +ro + 173 > 2r; + 2, we obtain |V| — Ay - ...+ Ay | > (p—1)/2, whence we
can choose a subsequence V; of (A; -...- A,,)"'V of length |Vi| = (p — 1)/2.

By Lemmas 4.10 and 4.3, we have that

1

IS —2(A1) + o+ B4, —2(Ar,)| > min{p, Y (2|4 —4) + 1} = p,
i=1

whence
Epfl(lel et Arl) D] U(Vl) + E‘A1‘+~--+|Ar1|—27"1 (A1 e Arl) =H.

Thus there exists a subsequence V' of V of length p — 1 such that h; + o(V') = 0.
But vp, (S) > r1 — 1 > vp, (M1 V'), a contradiction to Lemma 4.1.1. This completes the

proof. O
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Definition 4.13. Let g(G) denote the smallest integer ¢ such that every squarefree

sequence S of G of length |S| > t contains a zero-sum subsequence of length exp(G).

Lemma 4.14. [GGS07, Theorem 5.1| Let G = C), @ C),, where p > 47 is a prime. Then
g(G)=2p—1.

Lemma 4.15. Let G = C? with n € N.

(1) sV(G) < 8n —T.
(2) If n = p is a prime such that g(G) = 2p — 1, then s (G) < 6p — 5. In particular,
the assertion holds provided that n = p > 47.

Proof. 1. Let S be a sequence of length |S| = 8n — 7 over G*. We need to show that S
has two innerly non-zero-sum-joint zero-sum subsequences of length n.

Let W be a subsequence of S with maxmial length such that W has no zero-sum
subsequence of length n. Then by Lemma 2.9.1 we have |W| < s(G) — 1 = 4n — 4, and
hence T'= W 1S has length at least 4n — 3. Therefore T' has a zero-sum subsequence
To of length n. Let g be a term of Ty. Then the maximality of |W| implies that gW
has a zero-sum subsequence T} of length n with g|7;. It follows that Ty and 7) have a
non-zero-sum S-inner common divisor g.

2. Suppose n = p is a prime such that g(G) = 2p — 1. Let S be a sequence of length
|S| = 6p—5 over G*. We need to show that S has two innerly non-zero-sum-joint zero-sum
subsequences of length p.

Let W be a subsequence of S with maxmial length such that W has no zero-sum
subsequence of length p. Then Lemma 2.9.1 implies that [W| < s(G) — 1 = 4p — 4, and
hence T = W 1S has length at least 2p — 1.

If T is not squarefree, then there exists g € G* such that ¢?|T. The maximality
of |W| implies that gW has a zero-sum subsequence V of length p with g|V. Since
vg(S) > vy (V) > 1, it follows by Lemma 4.1.1 that S has two innerly non-zero-sum-joint
zero-sum subsequences of length p.

If T is squarefree, then Lemma 4.14 implies that 7" has a zero-sum subsequence Tj of
length p. Let g be a term of T. Then the maximality of |IW] implies that gI¥ has a zero-
sum subsequence T of length p with g|T;. It follows that Ty and T have a non-zero-sum
S-inner common divisor g.

For the "in particular" part, we finish the proof by applying Lemma 4.14. O

Lemma 4.16. Let G = C,, & C,, with n > 2. Then every sequence of length 4n — 2 over

G has a zero-sum subsequence of length 2n.

Proof. The assertion follows from [GHPS14, Proposition 4.1]. O
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Lemma 4.17. Let m,n, k € N withn > 6, let G = C,,, ®C,,, and let S be a sequence over
G* of length kn+ng, where ng € [1,n]. Suppose that S has no innerly non-zero-sum-joint

zero-sum subsequences of length mn.

(1) There are S-innerly disjoint subsequences S1,..., Sk of length |S;| = n fori €
[1,k] such that o(S1) - ... c(Sk) has no zero-sum subsequence of length m.

(2) |S| < mn+3m—3.

Proof. 1. By Lemma 4.1.1, we have h(S) < mn. If K < m — 1, then the assertion is clear.
If K = m, we can choose a subsequence Sy of S of length |Sy| = mn such that Sy is not
a zero-sum sequence and split Sy into a product of m subsequences of length n, whence
the assertion follows. Suppose k > m + 1.

Let r be the maximal integer such that there exist S-innerly disjoint subsequences
T17W17T27 WQ, s ;T'r; W’r

with o(T;) = o(W;) # 0 and |T;| = |W;| =2 for all i € [1,r].

If r > k, then we can construct S-innerly disjoint subseqeuences S, ..., Sk such that
Ty | S1, W;_1T; | S; for every i € [2,k], and |S;| = n for every i € [1,k]. We assert that
the sequence o(S1) - ... 0(Sk) has no zero-sum subsequence of length m. Assume to the
contrary that there is a subset {i1,... iy} C [1,k] with 1 <43 < ... < iy, < k such
that Y7, 0(S;;) = 0. If éy > 1, then let S, = W, 1,5;,T;, 1 and hence [}, S;, and
Si, H;ﬂzz S;; are both zero-sum subsequences of S of length mn and have a non-zero-sum
S-inner common divisor ngl H;n:l Si,, a contradiction. Thus ¢; = 1. Since k > m + 1,
there exists s € [2, k] such that s & {i1,...,%}. Then we can choose s € [2, k] minimal
such that s & {i1,...,%m}, whence s—1 € {iy,...,im}. Let ST, = T;_lle,lSs,l. Then
[T/, i, and 5.1, S, [T/~ Si, are both zero-sum subsequences of S of length mn and

have a non-zero-sum S-inner common divisor T;ll H;nzl Si,, a contradiction.

Thus » < k — 1. Let
U=TWy-...-T,W,)"*S.

Assume that there is no element g of order two such that v,(U) > 3. Then the maximality
of r implies that h(U) < 3. and that there are at most two elements y;,y2 such that
vy, (U) > 2 and v,,(U) > 2. Let V be a squarefree subsequence of U with maximal
length. Then

V> U —4=|S|—dr—4>kn+1—4(k—1)—4d=(n—4)k+1>2k+1>2m+3.

|4

Since V has at least (“2/‘) — % subsequences of length 2 which are not zero-sum and

the sums of all these subsequences are pairwise distinct, we obtain that (l‘gl) — % <

|G| — 1 =m? — 1, whence

Vv
|V|—1:\/2(|2|) —|V|+1§\/2m2—1§\/§m§2m,
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a contradiction. Therefore there exists a order 2 element g with v4(U) > 3. Let V =

(¢"s)~'U. Then h(V) =1 and (%) - % < m? — 1, whence

V|—1= \/2(|V|> —VI+1<V2m2—1<V2m<2m.

2
It follows that

vg(U)+r = |U|—|V|+r=|S]|—|V|-3r > kn+1-2m—3(k—1) > 3k—2m+4 > k+6.

Then we can construct S-innerly disjoint subsequences S; for ¢ € [1,k] with T} | Si,
W;_1T; | S; foreveryi € [2,r], W,.g | Sp41,and g | S; for every i € [r+2, k]. Assume to the
contrary that the sequence o(S7)-...-0(Sk) has a zero-sum subsequence of length m. Then
there is a subset {i1,...,im} C [1,k] such that 337" | o(S;;) = 0. If there exists i € [1,7]
such that i & {i1,...,%m}, then similarly as above we obtain two zero-sum subsequences
of length mn which are S-innerly non-zero-sum-joint, a contradiction. Otherwise [1,r] C
{#1,...,%m} and hence there exists ¢ € [r + 1,k] such that ¢ & {i1,...,%n}, whence

vo([Tj21 Si;) < vg(S), a contradiction to Lemma 4.1.1.

2. Assume to the contrary that |S| > mn + 3m — 2. By Lemma 4.15.1, we have
sV (G) < 8m — 7 < mn+ 3m — 2, whence S has two innerly non-zero-sum-joint zero-
sum subsequences Xy and X of length |Xo| = |X}| = m. Let Y be the non-zero-sum
S-inner common divisor and let §' = (XoX{})"!SY. Then |[S’| > [S| — (2m — 1) >
(n —3)m + 4m — 1. Now by Lemma 2.9.1 and applying s(G) = 4m — 3 repeatedly to
S’, we can find n — 3 S’-innerly disjoint zero-sum subsequences X1, ..., X,_3 of length
| Xi|=...=|X,3| =m.Let S = (X1 -...- Xpu_3)"19". Then |S”| > 4m — 2. It follows
from Lemma 4.16 that S” has a zero-sum subsequence X,,_o of length | X,,_o| = 2m. Let
Y1 = Xy H?;lz X; and Y3 = X, H?;f X;. Then Y7 and Y3 are two zero-sum subsequences
of length |Y7| = |Y2] = mn with a non-zero-sum S-inner common divisor Y’ H?:_f X;, a

contradiction. O

We are now ready to prove our second theorem of this section.

Theorem 4.18. Let n € N and let p > 47 be a prime divisor of n such that n >

W. Then s™ (C2) = 4n + 1.

Proof. Let G = C2 and let m = n/p. By Lemma 4.9 it suffices to prove that sV (G) <
4n + 1. Let S be a sequence over G* of length |S| =1 = 4n 4+ 1. We need to show that S
has two innerly non-zero-sum-joint zero-sum subsequences of length n.

Assume to the contrary that S has no innerly non-zero-sum-joint zero-sum subse-
quences of length n. Let ¢: G — G denote the multiplication by m. Then ker(p) = C2,
and o(G) = mG = C;.

Let S = X(X; such that X is over ker(¢) and X is over G\ ker(¢). Since Xy has no

innerly non-zero-sum-joint zero-sum subsequences of length pm, it follows from Lemma
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4.17 that | Xo| < pm+3m—3 and there exist Xo-innerly disjoint subsequences Sy, . .., Sy,

such that |S;| = p for each ¢ € [1,up], 0(S1) - ... 0(Sy,) has no zero-sum sequence of

length m, and the remaining subsequence X, = (S1-...-S,,) ' Xj is of length | X{| < p.
We set

(4.1) o(Xy)=e€' ..o ek,

where ej,...,e; € ¢(G) are distinct and r; > ... > rp > 1. We continue with the

following assertion.

Al. ro > (7Tp—6)(p—2).

Proof of A1. If r; < pm + 3m — 3, then
|S] — | Xo| — (pm +3m —3) < dpm+1—pm—3m+3—pm—3m+3

T2

- [p(G)\ {0, e1}] - p*—2
2pm — 6m + 7
== > (Tp—6)(p—2).
PR > (Tp—6)(p —2)
Suppose 11 > pm +3m —2 = (p—1)m +4m — 2. Let X., = hy - ... hy, be the

subsequence of X; such that ¢(X.,) = e]'. Then there exist an element h € G with
ord(h) = n and s € [1,n—1] with p { s such that h; = sh. Let mg be the maximal divisor
of m such that ged(mog, s) = 1. Then ord(hy + moph) = pm and ¢(hy + meph) = e1. Set
ho = h1 + moph. Then (hy — hg) - ... - (hy, — ho) is a sequence over ker(y). By using
s(C2) = 4m — 3 repeatedly, we can find p — 1 (hy — ho) - ... - (hy, — ho)-innerly disjoint
zero-sum subsequences F1, ..., E,_q of length |Ei| = ... = |E,_1| = m. It follows from
Lemma 4.16 that (E1-...- E,—1)"*(h1 —hg) ...~ (hr, — ho) has a zero-sum subsequence
E, of length |E,| = 2m. Let E = E,[[’-} E; and E' = E,[[’, E;. Then hy + E
and hg + E’ are two zero-sum subsequences of X., of length n and have a X, -inner
common divisor ho + E, [[°=5 E;. But a(ho + E, [[°=5 Ei) = (p — 1)mho = —mhg # 0,
a contradiction. O(AL)

Let W7 be a subsequence of X7 such that ¢(W7) = ej'es? and Wa = Wlel. Let u; €

Ny be maximal such that there exist Wa-innerly disjoint subsequences Sy +1, - - - Sug+us
with the following properties.

® Suotl - Sugtu, | Was

e For every v € [1,u1], ©(Sug+v) is a zero-sum sequence over ¢(G) of length p;

e The sequence o(S1) - ...  0(Suy)o(Sug+1) - -+ - 0(Sug+u,) € F(ker(p)) has no

zero-sum subsequence of length m.

We set W5 = (Sugt+1 -+ * Sugtuy) " Wa. If there exist two subsequence Ty and Ty of
W4 with |T1| = |Tz| = p such that ¢(T1), ¢(T») are zero-sum and have a non-zero-sum
@(W4)-inner common divisor ¢(Y"), where Y is a Wj-inner common divisor of T} and T,
whence o(Y) & ker(p). By the maximality of ug, there exist I, J C [1,ug +u;]| with |I| =
|J| = m—1 such that Ty [[,.; S; and To ]|

and have a non-zero-sum S-inner common divisor Y [], c;~; Sk, a contradiction. Hence

el jed S; are zero-sum subsequences of length pm
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©(W3) has no innerly non-zero-sum-joint subsequences of length p. It follows from Lemma
4.15.2 that |[W3| = |p(W3)| < 6p — 6.
Let @ = X{W3 and hence |Q| < p+ 6p — 6 = 7Tp — 6. Note that 7o > (7Tp — 6)(p —
2). Let us € Ny be maximal such that there exist W;@Q-innerly disjoint subsequences
Suotur+1s- -+ s Sugtus+us With the following properties.
® Ouptur+1 - Su0+u1+u2 | W@
e For every v € [1,us], ©(Suytu,+v) is a zero-sum subsequence of e~ 'eh ' p(Q)
over ¢(G) of length |Sy,tu;+v| = p. Note that ve, (0(Sugtus+v)) < p— 2 and
Ves (0(Sugtui+v)) <p— 2

e The sequence o(S51) ... 0(Sug+us+us) € F(ker(y)) has no zero-sum subsequence
of length m.
Let B = (Sugtuyt1 -+ Sugtustus) ‘WiQ and let By = ged(E, W), By = E;'E.

If |[E5| > 2p + 1, then e 'eb™" divides o(F;) and e~ 'o(E,) has no innerly non-
zero-sum-joint zero-sum subsequences of length p, a contradiction to Lemma 4.12. Thus
|Ea| < 2p.
Let us € Ny be maximal such that there are Eq-innerly disjoint subseqeunces Sy 4u; +us+1s - - - » Sug+us+us-+us

with the following properties.

® Oupturtuz+l .- Su0+u1+u2+u3 |E1;
o For every v € [1, us], 9(Sug+ur+uztus+v) € {€7, €3}
e The sequence o(S1) - ... 0(Sugtus+ust+us) € F(ker(¢)) has no zero-sum subse-

quence of length m.

We set F' = (Sugtuytust1 - Suptus+ustus) 1 and observe that h(¢(F)) < p, whence
|FEs| < p+p+2p = 4p. Therefore, ug+ug +uz +uz = ‘Sl_lpFEzl > f‘S‘;@] >4dm—3 =

s(ker(y)), a contradiction.

4.3. Abelian groups of higher rank.

Lemma 4.19. Let G = C], with n,r € N and n > 3. Suppose that G has Property D.

Then
n(s(G) — 1)

n—1

s'(G) = + 1.

Proof. Let T be a sequence over G of length s(G) — 1 which has no zero-sum subsequence

of length n. It follows from G having Property D that T" has the form
T=U"",

where U is squarefree. Let ¢ € G such that —g & supp(U). Then S := (g + U)" €

F(G*) has no innerly joint zero-sum subsequences of length n. Thus, s*(G) > |S|+ 1 =
n(s(G)l—l) +1.

n—

Next, we need to prove that s*(G) < % + 1. Let S” € F(G*) be a sequence of

length % +1. We need to show that S has two innerly joint zero-sum subsequences
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of length n. Assume to the contrary that S’ has no innerly joint zero-sum subsequences
of length n.
Let ¢t be maximal such that Sy,...,S; are S’-innerly disjoint zero-sum subsequences

of length n. Then

S1-...- 8|S
and for every i € [1,t] we choose an element g; | S;. It follows that (g1 - ... g;)~S’ has
no zero-sum subsequence of length n. Then |(g1 ... g;)~ 9’| <s(G) — 1, which implies
that ¢t > % + 1. Therefore
n(s(G) — 1 s(G) -1
((¢) —1) )+1:|s/|2|51....-5t|:n(7( ) +1),
n—1 n—1
a contradiction. O
Theorem 4.20. Let n,m,r € N.
(1) If G = C2 & Comn @ Comn, then
15, ifn=m=1,
s(G) =< 8m+5, ifn=1andm > 3;

dmn +4m + 1, if n >3 and C2, has Property D.
(2) Let G = C" with n > 3. Then s*(G) > 2" -n+ 1. If r = 3 and n = 23" with
a,b € N and a > b, then
s*(G)=8n+1.
(38) Let G = C3 withn > 3 odd. Thens*(G) > 9In+1. Ifn = 35" > 3 with a,b € N,
then
s'(G) =9n+ 1.
(4) Let G = C} with n > 3 odd. Then s*(G) > 20n + 1. If n = 3% with a € N, then
s*(G) =20n + 1.
(5) If G = C3 & Oy, with n > 36, then
s'(G)=4n+T7.

(6) If G = C%. with a € N, then

‘(@) 1, ifa=1;
S =
a1, ifa>2.

Proof. 1. Let G = Cy & Coayy, ® Copny, and let (e1,e2,e3) be a basis of G. If n =m =1,
then the assertion follows from Lemma 4.2.

Suppose n =1 and m > 3. Then s(G) = 8m + 1 by Lemma 2.9.4. Let
T = (e1 +e2)(e1 + 2e2)(e1 +e3)(e1 +ea + e3)es™ea™(eq + e3)?™ (2e2)*™ .

It is easy to see that 7" has no innerly joint zero-sum subsequences of length 2m. Therefore
s*(G) > |T)|+1 = 8n + 5. Let S be a sequence over G* of length |S| = 8m + 5. We

need to show that S has two innerly joint zero-sum subsequences of length 2m. Assume
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to the contrary that S has no innerly joint zero-sum subsequences of length 2m. Let ¢
be maximal such that Si,...,S; are S-innerly disjoint zero-sum subsequences of length
|Si| = 2m for i € [1,t], where t € Ng. Then Sy -...-S; | S. For every i € [1,t], we choose
a term g; of S;. It follows that (g; - ... g;)~1S has no zero-sum subsequence of length
2m, whence [(g1-...-g:) S| <s(G)—1=8m. Thent = |S| —|(g1...-g¢) 15| > 5 and
hence

8m+5=|5]>|S1-...-S¢ > 10m,

a contradiction to m > 3. Therefore s*(G) = 8m + 5.
Suppose n > 3 and C2, has Property D. Then s(G) = 4mn + 4m — 1 by Lemmas
2.9.4. Let

T = (e1 + e3)(e1 + 2e3)(ea + e3)*™ ey + 263)27”_16%7”"(263)2"‘" .

It is easy to see that 7’ has no innerly joint zero-sum subsequences of length 2mmn.
Therefore s*(G) > |T'| + 1 = 4mn + 4m + 1. Let S’ be a sequence over G* of length
|S’] = 4mn+4m+1. We need to show that S’ has two innerly joint zero-sum subsequences
of length 2mn. Assume to the contrary that S’ has no innerly joint zero-sum subsequences
of length 2mn. Let ¢ be maximal such that Si,...,S; are S-innerly disjoint zero-sum
subsequences of length |S;| = 2mn for i € [1,¢], where ¢t € Ng. Then Sy -...-S; | S’. For
every i € [1,t], we choose a term g; of S;. It follows that (g -...-g;)~ 1S’ has no zero-sum
subsequence of length 2mn, whence |(g1 -...-g:) 715’ < s(G) —1 = 4mn + 4m — 2. Then
t=19—-1(g1-... g:)" 15| >3 and hence

dmn+4m +1=|5"| > |S1-...- S¢| > 6mn.

It follows that 2m < 1, a contradiction. Therefore s*(G) = 4mn + 4m + 1.
2. Let (eq,...,e,) be a basis of G and let
S =(2e1)" H (Z e)" .
0A£IC(1,r] i€l
Suppose T is a zero-sum subsequence of S of length |T'| = n. Then either T' = (2e1)" or
T = (> ;cre:)" where ) # I C [1,r]. Therefore S € F(G*) has no innerly joint zero-sum
subsequences of length n, whence s*(G) > |S|+1=2"n+1.

Suppose r = 3 and n = 223" with a,b € N and a > b. Then s(G) = 8n — 7 by Lemma
2.12. Let S be a sequence over G* of length |S| = 8n+ 1. We need to show that S has two
innerly joint zero-sum subsequences of length n. Assume to the contrary that S has no
innerly joint zero-sum subsequences of length n. Let ¢t be maximal such that Sy, ...,S; are
S-innerly disjoint zero-sum subsequences with |S;| = n for ¢ € [1,t], where ¢ € Ny. Then
S1-...-S¢ | S. For every i € [1,t], we choose a term g; of S;. It follows that (g1-...-g;) 1S
has no zero-sum subsequence of length n, whence |(g1 -...-g;)"1S| <s(G) —1 = 8n —8.

Then t = |[S| — [(g1 ...+ g:)"1S| > 9 and hence

8n+1=|S|>|S1:...- S| >9In,
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a contradiction to n > 3. Therefore s*(G) = 8n + 1.

3. By Lemma 2.7, there exists a sequence T € F(G) of length |T'| = 9 such that 77!
has no zero-sum subsequence in 7! of length n, there exists g € G such that 01 (g+7).
Set S = (g+T)", then S € F(G*) has no innerly joint zero-sum subsequences of length
n. Therefore we have s*(G) > |S|+1=9n+ 1.

Suppose n = 3%5% with a,b € Ny. Then by Lemma 2.6.3 C2 has Property D and
hence by Lemma 4.19 that s*(G) = 9n + 1.

4. By Lemma 2.8, there exists a sequence T' € F(G) of length |T| = 20 such that
7™~ has no zero-sum subsequence in 77! of length n, there exists g € G such that
01(g+T).Set S =(g+T)", then S € F(G*) has no innerly joint zero-sum subsequences
of length n. Therefore we have s*(G) > |S| + 1 = 20n + 1.

If n = 3% with a € N, then by Lemma 2.6.2 C2 has Property D and hence by Lemma
419 s*(G) = 20n + 1.

5. Let (e1, e, e3,€4) be a basis of G and let

T = (e1 +eq)(e1 + 2e4)(ea + eq)(ea + 2e4)(e3 + e4)(e3 + 2e4)ed™(2e4)*" .

It is easy to see that T has no innerly joint zero-sum subsequences of length 2n. Therefore
s*(G) > |T|+1=4n+ 7. Let S be a sequence over G* of length |S| = 4n + 7. We need
to show that S has two innerly joint zero-sum subsequences of length 2n. Assume to the
contrary that S has no innerly joint zero-sum subsequences of length 2n. Let ¢t be maximal
such that Si,...,S; are S-innerly disjoint zero-sum subsequences of length |S;| = 2n for
€ [1,t], where t € Ng. Then Sy -...-S; | S. For every i € [1,t], we choose a term g;
of S;. It follows that (g; - ...-g;)~1S has no zero-sum subsequence of length 2n, whence
l(g1-----9:)71S] <s(G)—1=4n+4 by Lemma 2.9.3. Then t = |S|—|(g1-...-g¢) 15| >3
and hence
dn+T7=1|5>1S1-...- S >6n,
a contradiction to n > 36. Therefore s*(G) = 4n + 7.
6. If @ = 1, then the assertion follows from Lemma 4.2. Suppose a > 2. Then by
Lemma 2.6.1 C%. has Property D and hence by Lemma 4.19 that s*(G) =2""*+1. O

Theorem 4.21. Let G = C5. Then

s (@) =sV(G) =s*(G) = 3:(@) =1 + 1.

2
Proof. By Lemma 4.19 and G = C% has property D, we have s*(G) = W + 1.

It suffices to show that s**(G) < w + 1. Let S € F(G) be a sequence of length
|S| = w + 1 such that vo(S) < 3. We need to show that S has two innerly non-
zero-sum-joint zero-sum subsequences of length 3. We distinguish two cases.

Case 1. vo(S) > 1.

Let 8" = (0*(9))~1S. Then |$'| > [S] — 3 = 291 1 1 — (@) by Lemma 3.1,

whence there exist two S’-innerly non-zero-sum-joint short zero-sum subsequences T}
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and Ty. Let Y be the non-zero-sum S’-inner common divisor. Since min{|T1|, |T2|} > 2,
we have max{3 — |T1],3 — |T»|} < 1, whence 03737} and 0°~172IT} are two zero-sum
subsequences of S of length 3 and have a non-zero-sum S-inner common divisor 0'Y,
where t < min{3 — |T1],3 — |T»|}.

Case 2. vo(S) = 0.

Then every zero-sum subsequence of S of length 3 is minimal. Suppose S = Tj -
... T Ty, where T1,...,T, are zero-sum subsequences of S of length 3 and Ty has no
zero-sum subsequence of length 3. Then r < ng = % Choose a term g; | T; for
each i € [1,r] and let S’ = (g1 ... g,)"1S. Thus |S’| > |S| — r > s(G), whence S’ has
a zero-sum subsequence T' of length 3. Since T has no zero-sum subsequence of length
3, there exists i € [1,7] such that T; and T have a non-zero-sum S-inner common divisor

Y, where Y is a nontrivial subsequence of g;” . O

Proposition 4.22. Suppose that G = Cf has Property D. Then
5(s(G) - 1)

sV(G) =s*(G) = 1

+ 1.

Proof. By Lemma 4.19 and that G = C{ has property D, we have s*(G) = w + 1.
Next we need to prove that sV (G) < W +1. Let S be a sequence over G* of length
|S] = %)_1) + 1. We need to show that S has two innerly non-zero-sum-joint zero-sum
subsequences of length 5. Assume to the contrary that S has no innerly non-zero-sum-
joint zero-sum subsequences of length 5. By Lemma 4.1.1, if T' is a zero-sum subsequence
of S of length 5, then v4(T) = v4(S) for every g € supp(T).

Suppose S = 57 - ... S50, where r € N, S7,..., S, are S-innerly disjoint zero-sum
subsequences of length |S1| = ... = |S,| = 5, and Sy has no zero-sum subsequence of

_ s(G)—-1
length 5. Thus r < [|S|/5] = 2 i :

Let ¢ € [1,7]. If S; is not a minimal zero-sum sequence, then S; = T;T, where T;, T}
are minimal zero-sum subsequences such that |T;| = 3 and |T| = 2, whence there exist an
element g; € supp(77) \ supp(7;) such that g; ' S; has no zero-sum subsequence of length
2 and an element h; € supp(7;) \ supp(7}) such that h; 'S; has no zero-sum subsequence

of length 3. If S; is a minimal zero-sum sequence, choose any two terms g;, h; of .S;.

We consider the sequence S’ := (g; - ...~ ¢g,)"S. If S has no zero-sum subsequence
of length 5, then |S'| = W +1—7r < s(G) — 1, whence r > %, a contra-

diction. Thus we may assume that S’ has a zero-sum subsequence T of length 5. Since
So has no zero-sum subsequence of length 5, there exists ip € [1,7] such that T and
Si, have a nontrivial S-inner common divisor Y, where Y is a subsequence of 9is 1s;.
By our assumption, Y is zero-sum. It follows that S;, is not a minimal zero-sum se-
quence, Y = T;,, YT is a minimal zero-sum subsequence of length 2, and YT
divides So [ Lie 1.\ fio) g;'S;. Assume that there exists j € [1,7]\ {io} such that Y ~'T

and g;lSj are Sp Hje[l,r]\{io} Sj-innerly joint. Then the inner common divisor is not
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zero-sum and hence T and S; have a non-zero-sum S-inner common divisor, a contra-
diction. Therefore Y ~!7T and Hje[l,r]\{io} g;lsj are not Sy Hje[l,r]\{ig} Sj-innerly joint,
whence Y ~!7T divides Sy, i.e., Sy has a zero-sum subsequence U = Y ~'T of length 2.
Now we consider the sequence S” := (hy ... - h,)~1S and similarly as above we can
show Sy has a zero-sum subsequence V of length 3. If U and V are Sp-innerly disjoint,
then UV is a zero-sum subsequence of Sy of length 5, a contradiction. If U and V have a
So-inner common divisor Y7, then |Y7]| = 1 and hence Y] is not zero-sum. It follows that
T = UT;, and VT are zero-sum subsequences of S of length 5 and have a non-zero-sum

S-inner common divisor Y7, a contradiction. O

4.4. Concluding remarks. Let G = C2. If n € [3,10], then G has property D by
Lemma 2.6.6, whence Lemma 4.19 implies that s*(G) = 4n + 1. It follows from Theorem
4.21 and Proposition 4.2 that s¥(C2) = 4n + 1 for n = 3 or 5. Let m > 242"+
for some prime p > 47. Then Theorem 4.18 implies that sN(C’f,m) = 4pm + 1. All these

results support the following conjecture.
Conjecture 4.23. Let G = C2, where n > 3. Then sV (G) = 4n + 1.
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