ON GENERALIZED NARKIEWICZ CONSTANTS OF FINITE ABELIAN GROUPS

WEIDONG GAO, WANZHEN HUI*, XUE LI, YUANLIN LI, YONGKE QU, AND QINGHAI ZHONG

Abstract

For finite abelian groups G, we introduce some generalized zero-sum invariants $\mathrm{D}^{N}(G), \eta^{N}(G)$, and $\mathbf{s}^{N}(G)$. For example, $\mathrm{D}^{N}(G)$ is the smallest integer t such that every sequence $S=g_{1} \cdot \ldots \cdot g_{t}$ over $G \backslash\{0\}$ of length t has two zero-sum subsequences $T_{1}=\prod_{i \in I} g_{i}$ and $T_{2}=\prod_{j \in J} g_{j}$ such that $\prod_{k \in I \cap J} g_{k}$ is not zero-sum, where I, J are distinct subsets of $[1, t]$. These invariants have close connection with Narkiewicz constant and significant applications in Factorization Theory. We first systematically studied these three invariants.

1. Introduction

Let G be an additive finite abelian group, let $G^{\bullet}=G \backslash\{0\}$, and let $G_{0} \subset G$ be a nonempty subset. We denote by $\mathcal{F}\left(G_{0}\right)$ the free abelian monoid with basis G_{0}. Elements of $\mathcal{F}\left(G_{0}\right)$ are called sequences over G_{0}. In other words, sequences over G_{0} are finite unordered sequences with terms from G_{0} and repetition allowed. Let

$$
S=g_{1} \cdot \ldots \cdot g_{\ell}=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)}
$$

be a sequence over G_{0}, where ℓ is a positive integer and $g_{1}, \ldots, g_{\ell} \in G_{0}$. Then $|S|=\ell$ is the length of S and $\mathrm{v}_{g}(S)$ is the multiplicity of g in S. We say S is a zero-sum sequence if the sum of all the terms equals zero, i.e., $\sigma(S)=g_{1}+\ldots+g_{\ell}=\sum_{g \in G_{0}} \mathrm{v}_{g}(S) g=0$. Let T be another sequence over G_{0}. We say T is a subsequence of S (denoted by $T \mid S$) if T divides S in $\mathcal{F}\left(G_{0}\right)$, or in other words, $\mathrm{v}_{g}(T) \leq \mathrm{v}_{g}(S)$ for all $g \in G_{0}$.

A typical zero-sum problem studies conditions which ensure that given sequences have nontrivial zero-sum subsequences with prescribed properties. Let Ω be a nonempty subset of zero-sum sequences with prescribed properties. In 2018, to give a unifying look at zero-sum invariants, Gao, Li, Peng, and Wang [GLPW18] introduced $\mathrm{s}_{\Omega}(G)$ (note that $\mathrm{d}_{\Omega}(G)$ is used in the original paper), which is the smallest integer t such that every sequence S of length t over G has a subsequence belonging to Ω. Therefore special sets Ω lead to the following classic zero-sum invariants (the reader may want to consult one of the surveys or monographs [GG06, GH06, G13]).

- $\mathrm{s}_{\Omega}(G)=\mathrm{D}(G)$ is the Davenport constant, if Ω is the set of all zero-sum sequences;

[^0]- $\mathrm{s}_{\Omega}(G)=\mathrm{s}(G)$ is the Erdős-Ginzberg-Ziv constant, if Ω is the set of all zero-sum sequences of length $\exp (G)$, where $\exp (G)$ is the exponent of G;
- $\mathrm{s}_{\Omega}(G)=\eta(G)$ is the η-constant, if Ω is the set of all nontrivial zero-sum sequences of length not larger than $\exp (G)$.

For recent progress of these classic invariants, we refer to [BGH20, L20, N20, S20]. Furthermore, the invariant $\mathrm{s}_{\Omega}(G)$ has been studied for various other sets Ω (see [GHHLYZ21, GLPW18]). Recent years, these invariants are also generalized to non-abelian groups, please see [B07, CDS18, GL10, GL08, H15, HZ19, OZ20, OhZh20].

A natural generalization is to study conditions which ensure that given sequences S have two nontrivial zero-sum subsequences with prescribed properties and relations. In 2012, B. Girard [G12] initially studied the constant $\operatorname{disc}(G)$, which is the smallest integer t such that all sequences of length t over G have two nontrivial zero-sum subsequences having distinct lengths. The generalized Davenport constant $\mathrm{D}_{2}(G)$ is the smallest integer t such that every sequence S of length t over G has two disjoint nontrivial zero-sum subsequences (see [H92]). These two invariants have been studied by many researchers (see [GHLYZ20, GLZZ16, GZZ15, GH06, PS11]).

To continue, we need to introduce some relations like "disjoint" for subsequences. Let $S=g_{1} \cdot \ldots \cdot g_{\ell}$ be a sequence over G_{0} and let T_{1}, T_{2} be two subsequences of S. If $Y \mid T_{1}$ and $Y \mid T_{2}$, we say Y is a common divisor of T_{1} and T_{2}. Let Y be a common divisor of T_{1} and T_{2}. We say Y is a S-inner common divisor of T_{1} and T_{2}, if $T_{1} T_{2} \mid S Y$, or equivalently, there exist subsets $I, J \subset[1, \ell]$ such that $T_{1}=\prod_{i \in I} g_{i}, T_{2}=\prod_{i \in J} g_{j}$, and $Y=\prod_{k \in I \cap J} g_{k}$. In particular, $\operatorname{gcd}\left(T_{1}, T_{2}\right)$ is a S-inner common divisor of T_{1} and T_{2}. Furthermore, we say

- T_{1} and T_{2} are (S-)innerly distinct if T_{1} and T_{2} have a $(S$-)inner common divisor Y such that either $Y \neq T_{1}$ or $Y \neq T_{2}$, or equivalently, there exist distinct subsets $I, J \subset[1, \ell]$ such that $T_{1}=\prod_{i \in I} g_{i}$ and $T_{2}=\prod_{i \in J} g_{j}$.
- T_{1} and T_{2} are (S-)innerly joint if T_{1} and T_{2} are $(S$-)innerly distinct and have a nontrivial (S-)inner common divisor.
- T_{1} and T_{2} are (S-)innerly disjoint if the trivial sequence is a $(S$-)inner common divisor of T_{1} and T_{2}, or equivalently $T_{1} T_{2} \mid S$.
- T_{1} and T_{2} are (S-)innerly non-zero-sum-joint if T_{1} and T_{2} are (S-)innerly distinct and have a non-zero-sum (S-)inner common divisor.

By our definition, subsequences T_{1} and T_{2} of S could be both S-innerly joint and disjoint. For example, let $S=g^{2 \operatorname{ord}(g)}$ and $T_{1}=T_{2}=g^{\operatorname{ord}(g)}$, where g is a nonzero element. Then g^{k} is a S-inner common divisor of T_{1} and T_{2} for each $k \in[0, \operatorname{ord}(g)]$, which implies that T_{1} and T_{2} are S-innerly distinct, joint, disjoint, and non-zero-sum-joint.

Let $T_{1}=0^{s_{1}} W_{1}$ and $T_{2}=0^{s_{2}} W_{2}$ be two subsequences of $S=0^{s} W$, where W_{1}, W_{2}, W are sequences over G^{\bullet} and $s_{1}, s_{2}, s \in \mathbb{N}_{0}$. Then T_{1}, T_{2} are S-innerly non-zero-sum-joint if
and only if W_{1}, W_{2} are W-innerly non-zero-sum-joint. Therefore we only need to consider sequences over G^{\bullet} when studying the "innerly non-zero-sum-joint" property. Now we can define some generalized zero-sum invariants associated with the innerly non-zero-sumjoint property.

Definition 1.1. Let G be a finite abelian group with $|G|>1$. We define

- $\mathrm{D}^{N}(G)$ to be the smallest integer ℓ such that every sequence S over $G \bullet$ of length ℓ has two innerly non-zero-sum-joint zero-sum subsequences;
- $\eta^{N}(G)$ to be the smallest integer ℓ such that every sequence S over G^{\bullet} of length ℓ has two innerly non-zero-sum-joint zero-sum subsequences of length not larger than $\exp (G)$;
- $\mathrm{s}^{N}(G)$ to be the smallest integer ℓ such that every sequence S over G of length ℓ has two innerly non-zero-sum-joint zero-sum subsequences of length $\exp (G)$.

Let S be a sequence over $G \bullet$ of length $|S| \geq(|G|-1) \exp (G)+1$. Then there exists $g \in G^{\bullet}$ such that $\mathrm{v}_{g}(S) \geq \exp (G)+1$, whence $g^{\exp (G)}$ and $g^{\exp (G)}$ have a S-inner common divisor $g^{\exp (g)-1}$. It follows that all the three invariants above are finite.

Like the Davenport constant, these invariants have significant applications in Factorization Theory. In fact, we have $\mathrm{D}^{N}(G)=\mathrm{N}_{1}(G)+1$ and $\eta^{*}(G)=\eta^{N}(G)$ (see Definitions 2.2, 2.3 and Lemma 2.4), where $\mathrm{N}_{1}(G)$ is the Narkiewicz constant and $\eta^{*}(G)$ is a Narkiewicz-sense constant introduced by Gao, Geroldinger, and Wang [GGW11] to study $\mathrm{N}_{1}(G)$. The Narkiewicz constant was first used by Narkiewicz in 1960 to study the asymptotic behavior of counting functions associated with non-unique factorizations (see [GH06, N04] for an overview and historical references). For recent progress of $\mathrm{N}_{1}(G)$ and $\eta^{*}(G)$, the readers may refer to [GGW11, GLP11, GPZ13]. Since these new invariants have a flavor of Narkiewicz constants, we can view them as generalized Narkiewicz constants.

In section 2, we collect necessary notation, build connection with Narkiewicz constants, and gather the required machinery. In section 3 , we study the invariants $\mathrm{D}^{N}(G)$ and $\eta^{N}(G)$ for finite abelian groups G. The main theorems are Theorems 3.6 and 3.14. In Section 4, we introduce two more invariants to help study s ${ }^{N}(G)$ and the main theorems are Theorems 4.8 and 4.18 .

2. Preliminaries

We denote by \mathbb{N} the set of positive integers and set $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For real numbers $a, b \in \mathbb{R}$, we set $[a, b]=\{x \in \mathbb{Z}: a \leq x \leq b\}$. For $n, r \in \mathbb{N}$, let C_{n} denote a cyclic group with n elements and let C_{n}^{r} denote the direct sum of r copies of C_{n}. Let G be an abelian group and let $G_{0} \subset G$ be a subset. We let $\left\langle G_{0}\right\rangle \subset G$ be the subgroup generated by G_{0}, $G_{0}^{\bullet}=G_{0} \backslash\{0\}$, and $-G_{0}=\left\{-g: g \in G_{0}\right\}$. A family $\left(e_{i}\right)_{i \in I}$ of nonzero elements of G is
said to be independent if

$$
\sum_{i \in I} m_{i} e_{i}=0 \quad \text { implies } \quad m_{i} e_{i}=0 \quad \text { for all } i \in I, \quad \text { where } m_{i} \in \mathbb{Z}
$$

If $I=[1, r]$ and $\left(e_{1}, \ldots, e_{r}\right)$ is independent, then we simply say that e_{1}, \ldots, e_{r} are independent elements of G. The tuple $\left(e_{i}\right)_{i \in I}$ is called a basis if $\left(e_{i}\right)_{i \in I}$ is independent and $\left\langle\left\{e_{i}: i \in I\right\}\right\rangle=G$. If $1<|G|<\infty$, then we have

$$
G \cong C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}, \quad \text { where } r \in \mathbb{N} \text { and } 1<n_{1}|\ldots| n_{r}
$$

Then $r=r(G)$ is the rank of G and $n_{r}=\exp (G)$ is the exponent of G. Set

$$
\mathrm{D}^{*}(G)=1+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

Let $G_{0} \subset G$ be a nonempty subset and let

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)}
$$

be a sequence over G_{0}, where $\mathrm{v}_{g}(S) \in \mathbb{N}_{0}$ for all $g \in G_{0}$. We call

- $\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S): g \in G_{0}\right\}$ the height of S;
- $\operatorname{supp}(S)=\left\{g \in G_{0}: \mathrm{v}_{g}(S)>0\right\}$ the support of S;
and we say S is
- short if $1 \leq|S| \leq \exp (G)$;
- a squarefree sequence if $\mathrm{v}_{g}(S) \leq 1$ for all $g \in G_{0}$.

Let $g \in G$ and let T be a subsequence of S. We set $g+S=\left(g+g_{1}\right) \cdot \ldots \cdot\left(g+g_{\ell}\right)$ and denote $T^{-1} S=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)-\mathrm{v}_{g}(T)}$. If $1 \leq|T|<|S|$, we say T is a proper subsequence of S. We call S

- a zero-sum free sequence if there is no nontrivial zero-sum subsequence of S;
- a minimal zero-sum sequence if S is a nontrivial zero-sum sequence, but S has no proper zero-sum subsequence.

Let $s \geq 2$ and let T_{1}, \ldots, T_{s} be subsequences of S. We say T_{1}, \ldots, T_{s} are S-innerly disjoint if $T_{1} \ldots \ldots \cdot T_{s}$ is a subsequence of S and we say S has no innerly non-zero-sum-joint

- zero-sum subsequences if for any two zero-sum subsequences T_{1}, T_{2} of S, the subsequences T_{1} and T_{2} have only zero-sum S-inner common divisors;
- short zero-sum subsequences if for any two short zero-sum subsequences T_{1}, T_{2} of S, the subsequences T_{1} and T_{2} have only zero-sum S-inner common divisors;
- zero-sum subsequences of length N if for any two zero-sum subsequences T_{1}, T_{2} of S of length $\left|T_{1}\right|=\left|T_{2}\right|=N$, the subsequences T_{1} and T_{2} have only zero-sum S-inner common divisors, where $N \in \mathbb{N}$.
Let H be another abelian group and let $\varphi: G \rightarrow H$ be a group homomorphism. Then we can extend φ to a homomorphism $\varphi: \mathcal{F}\left(G_{0}\right) \rightarrow \mathcal{F}\left(\varphi\left(G_{0}\right)\right)$, where $\varphi(S)=$ $\varphi\left(g_{1}\right) \cdot \ldots \cdot \varphi\left(g_{l}\right)$ for every sequence $S=g_{1} \cdot \ldots \cdot g_{l}$ over G_{0}.

We have the following easy lemma, which will be used often without further mention.

Lemma 2.1. Let $\varphi: G \rightarrow H$ be a group homommorphism, let S be a sequence over G, and let T_{1}, T_{2} be two subsequences of S.
(1) If T_{1} and T_{2} have a S-inner common divisor Y, then $\varphi(Y)$ is a $\varphi(S)$-inner common divisor of $\varphi\left(T_{1}\right)$ and $\varphi\left(T_{2}\right)$.
(2) If $\varphi\left(T_{1}\right)$ and $\varphi\left(T_{2}\right)$ have a $\varphi(S)$-inner common divisor X, then there exists a subsequence T_{3} of S such that $\varphi\left(T_{3}\right)=\varphi\left(T_{2}\right)$ and T_{1}, T_{3} have a S-inner common divisor Y such that $\varphi(Y)=X$.
(3) Suppose $S=S_{1} S_{2}$. If T_{1}, T_{2} are subsequences of S_{1} such that T_{1}, T_{2} have a S_{1} inner common divisor Y_{1} and T_{3}, T_{4} are subsequences of S_{2} such that T_{3}, T_{4} have a S_{2}-inner common divisor Y_{2}, then $T_{1} T_{3}, T_{2} T_{4}$ have a S-inner common divisor $Y_{1} Y_{2}$.
(4) If $|S| \geq \mathrm{D}^{N}(H)$ and $S \in \mathcal{F}(G \backslash \operatorname{ker}(\varphi))$, then S has two subsequences T_{1} and T_{2} having a non-zero-sum S-inner common divisor Y such that $\varphi\left(T_{1}\right)$ and $\varphi\left(T_{2}\right)$ are zero-sum and have a non-zero-sum $\varphi(S)$-inner common divisor $\varphi(Y)$.
(5) If $|S| \geq \eta^{N}(H)$ and $S \in \mathcal{F}(G \backslash \operatorname{ker}(\varphi))$, then S has two subsequences T_{1} and T_{2} having a non-zero-sum S-inner common divisor Y such that $\varphi\left(T_{1}\right)$ and $\varphi\left(T_{2}\right)$ are short zero-sum subsequences and have a non-zero-sum $\varphi(S)$-inner common divisor $\varphi(Y)$.
(6) If $|S| \geq \mathrm{s}^{N}(H)$ and $S \in \mathcal{F}(G \backslash \operatorname{ker}(\varphi))$, then S has two subsequences T_{1} and T_{2} of length $\exp (H)$ having a non-zero-sum S-inner common divisor Y such that $\varphi\left(T_{1}\right)$ and $\varphi\left(T_{2}\right)$ are zero-sum and have a non-zero-sum $\varphi(S)$-inner common divisor $\varphi(Y)$.
(7) S has two innerly joint minimal zero-sum subsequences if and only if S has two innerly non-zero-sum-joint zero-sum subsequences.
(8) S has two innerly joint short minimal zero-sum subsequences if and only if S has two innerly non-zero-sum-joint short zero-sum subsequences.

Proof. 1. Suppose T_{1} and T_{2} have a S-inner common divisor Y. Then $Y^{-1} T_{1} T_{2}$ divides S and hence $\varphi\left(Y^{-1} T_{1} T_{2}\right)$ divdies $\varphi(S)$. It follows that $\varphi\left(T_{1}\right)$ and $\varphi\left(T_{2}\right)$ have a $\varphi(S)$-inner common divisor $\varphi(Y)$.
2. Suppose $\varphi\left(T_{1}\right)$ and $\varphi\left(T_{2}\right)$ have a $\varphi(S)$-inner common divisor X. Then T_{1} has a subsequence Y_{1} and T_{2} has a subsequence Y_{2} such that $\varphi\left(Y_{1}\right)=\varphi\left(Y_{2}\right)=X$, whence $X^{-1} \varphi\left(T_{1}\right) \varphi\left(T_{2}\right)=\varphi\left(Y_{2}^{-1} T_{1} T_{2}\right)$ divides $\varphi(S)$. Since $\varphi\left(Y_{2}^{-1} T_{2}\right)$ divides $\varphi\left(T_{1}^{-1} S\right)$, there exists a subsequence W of $T_{1}^{-1} S$ such that $\varphi\left(Y_{2}^{-1} T_{2}\right)=\varphi(W)$. Let $T_{3}=Y_{1} W$. Then T_{3} is a subsequence of $T_{1}\left(T_{1}^{-1} S\right)=S$ such that $\varphi\left(T_{3}\right)=\varphi\left(Y_{1}\right) \varphi(W)=\varphi\left(Y_{2}\right) \varphi\left(Y_{2}^{-1} T_{2}\right)=$ $\varphi\left(T_{2}\right)$. Since $Y_{1}^{-1} T_{3} T_{1}=W T_{1}$ divides S, we obtain that T_{1}, T_{3} have a S-inner common divisor Y_{1}.
3. Since $Y_{1}^{-1} T_{1} T_{2}$ divides S_{1} and $Y_{2}^{-1} T_{3} T_{4}$ divides S_{2}, we obtain that $\left(Y_{1} Y_{2}\right)^{-1} T_{1} T_{3} T_{2} T_{4}$ divides S and $Y_{1} Y_{2}$ divides both $T_{1} T_{3}$ and $T_{2} T_{4}$, whence $T_{1} T_{3}, T_{2} T_{4}$ have a S-inner common divisor $Y_{1} Y_{2}$.

The proofs of Items 4, 5, and 6 are similar. We only prove Item 4. Suppose $|S| \geq$ $\mathrm{D}^{N}(H)$ and $S \in \mathcal{F}(G \backslash \operatorname{ker}(\varphi))$. Then $\varphi(S) \in \mathcal{F}\left(H^{\bullet}\right)$. By definition of $\mathrm{D}^{N}(H)$, there exist subsequences T_{1}, T_{2} of S such that $\varphi\left(T_{1}\right)$ and $\varphi\left(T_{2}\right)$ are zero-sum and $\varphi(S)$-innerly non-zero-sum-joint. It follows by Item 2 that there exists a subsequence T_{3} of S such that $\varphi\left(T_{3}\right)$ is zero-sum and T_{1}, T_{3} have a S-inner common divisor Y such that $\varphi(Y)$ is not zero-sum. Now the assertion follows by Item 1.

The proofs of Items 7 and 8 are similar. We only prove Item 7. Suppose T_{1} and T_{2} are S-innerly distinct minimal zero-sum subsequences with a nontrivial S-inner common divisor Y. We assert that Y is not zero-sum. Assume to the contrary that Y is zero-sum, since $Y \mid T_{1}$ and T_{1} is minimal, we have that $Y=T_{1}$ divides T_{2}, whence $T_{1}=T_{2}=Y$, a contradiction.

Suppose S has two innerly non-zero-sum-joint zero-sum subsequences T_{1}, T_{2}. Let $T_{1}=W_{1} \cdot \ldots \cdot W_{r}, T_{2}=V_{1} \cdot \ldots \cdot V_{s}$, and Y a non-zero-sum S-inner common divisor of T_{1} and T_{2}, where $r, s \in \mathbb{N}$ and $W_{1}, \ldots, W_{r}, V_{1}, \ldots, V_{s}$ are minimal zero-sum subsequences. Then for each $i \in[1, r]$ and each $j \in[1, s], W_{i}$ and V_{j} have a S-inner common divisor $Y_{i, j}$ such that $Y=\prod_{i \in[1, r], j \in[1, s]} Y_{i, j}$. Since Y is not zero-sum, there exist $i_{0} \in[1, r]$ and $j_{0} \in[1, s]$ such that $Y_{i_{0}, j_{0}}$ is not zero-sum, whence $W_{i_{0}}$ and $V_{j_{0}}$ have a nontrivial S-inner common divisor.

Type monoids and Narkiewicz constants. Note that $G_{0} \times \mathbb{N}$ is a subset of the abelian $\operatorname{group} G \times \mathbb{Z}$. We call sequences over $G_{0} \times \mathbb{N}$ are types over G_{0}. Let $\boldsymbol{\alpha}: \mathcal{F}\left(G_{0} \times \mathbb{N}\right) \rightarrow \mathcal{F}\left(G_{0}\right)$ denote the unique homomorphism satisfying

$$
\boldsymbol{\alpha}((g, n))=g \quad \text { for all } \quad(g, n) \in G_{0} \times \mathbb{N}
$$

and let $\tau: \mathcal{F}\left(G_{0}\right) \rightarrow \mathcal{F}\left(G_{0} \times \mathbb{N}\right)$ be defined by

$$
\tau(S)=\prod_{g \in G_{0}} \prod_{k=1}^{\mathrm{v}_{g}(S)}(g, k) \in \mathcal{F}\left(G_{0} \times \mathbb{N}\right)
$$

For $S \in \mathcal{F}\left(G_{0}\right)$, we call $\tau(S)$ the type associated with S. We say that \boldsymbol{T} is a zero-sum type (short, zero-sum free or a minimal zero-sum type) if the associated sequence has the relevant property. Types were introduced by F. Halter-Koch in [Hal92] and applied successfully in the analytic theory of so-called type-dependent factorization properties (see [GH06, Section 9.1], and [Ha92, Ha93] for some early papers).

For a given squarefree zero-sum type \boldsymbol{T} (note that $\boldsymbol{\alpha}(\boldsymbol{T})$ may not be squarefree), we can always write \boldsymbol{T} as follows

$$
\boldsymbol{T}=\boldsymbol{V}_{1} \cdot \ldots \cdot \boldsymbol{V}_{r}
$$

where $r \in \mathbb{N}_{0}$ and $\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{r}$ are minimal zero-sum subtypes. We say \boldsymbol{T} has unique factorization if the above factorization of \boldsymbol{T} is unique, i.e., if \boldsymbol{T} has another factorization

$$
\boldsymbol{T}=\boldsymbol{U}_{1} \cdot \ldots \cdot \boldsymbol{U}_{s}
$$

where $s \in \mathbb{N}_{0}, \boldsymbol{U}_{1}, \ldots, \boldsymbol{U}_{s}$ are minimal zero-sum subtypes, then $r=s$ and there exists a permutation $\tau \in \mathcal{S}_{r}$ such that $\boldsymbol{V}_{i}=\boldsymbol{U}_{\tau(i)}$ for all $i \in[1, r]$.

Definition 2.2. Let G be a finite abelian group. The Narkiewicz constant $\mathrm{N}_{1}(G)$ of G is defined by
$\mathrm{N}_{1}(G)=\sup \left\{|\boldsymbol{T}|: \boldsymbol{T}\right.$ is a squarefree zero-sum type over G^{\bullet} and \boldsymbol{T} has unique factorization $\}$.
Suppose $G \cong C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ with $1<n_{1}|\ldots| n_{r}$ and let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=n_{i}$ for all $i \in[1, r]$. Let

$$
B=\prod_{i=1}^{r} e_{i}^{n_{i}} . \quad \text { Then } \quad \tau(B)=\prod_{i=1}^{r} \prod_{k=1}^{n_{i}}\left(e_{i}, k\right)
$$

has unique factorization, and hence

$$
\begin{equation*}
\mathrm{N}_{1}(G) \geq n_{1}+\ldots+n_{r} \tag{2.1}
\end{equation*}
$$

Let us recall the definition of $\eta^{*}(G)$ which was first introduced by Gao, Geroldinger and Wang [GGW11] to study $\mathrm{N}_{1}(G)$.

Definition 2.3. Let G be a finite abelian group and let $\eta^{*}(G)$ denote the smallest integer $\ell \in \mathbb{N}_{0}$ such that every squarefree type $\boldsymbol{T} \in \mathcal{F}(G \cdot \mathbb{N})$ of length $|\boldsymbol{T}| \geq \ell$ has two distinct short minimal zero-sum subtypes \boldsymbol{T}_{1} and \boldsymbol{T}_{2} such that $\operatorname{gcd}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)$ is not empty.

By the above definitions, we have the following lemma.
Lemma 2.4. Let G be a finite abelian group. Then $\mathrm{N}_{1}(G)+1=\mathrm{D}^{N}(G)$ and $\eta^{*}(G)=$ $\eta^{N}(G)$.

Proof. We first show that $\mathrm{N}_{1}(G)+1=\mathrm{D}^{N}(G)$. Let \boldsymbol{T} be a squarefree zero-sum type over G^{\bullet} of length $\mathrm{N}_{1}(G)$ such that \boldsymbol{T} has unique factorization. Assume that $\boldsymbol{\alpha}(\boldsymbol{T})$ has two innerly joint minimal zero-sum subsequences S_{1} and S_{2} with the $\boldsymbol{\alpha}(\boldsymbol{T})$-inner common divisor Y. Then there exist minimal zero-sum subtypes \boldsymbol{T}_{1} and \boldsymbol{T}_{2} such that $\boldsymbol{\alpha}\left(\boldsymbol{T}_{1}\right)=S_{1}$, $\boldsymbol{\alpha}\left(\boldsymbol{T}_{2}\right)=S_{2}$, and $\boldsymbol{\alpha}\left(\operatorname{gcd}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)\right)=Y$. Therefore

$$
\boldsymbol{T}=\boldsymbol{T}_{1} \boldsymbol{U}_{1} \cdot \ldots \cdot \boldsymbol{U}_{k}=\boldsymbol{T}_{2} \boldsymbol{V}_{1} \cdot \ldots \cdot \boldsymbol{V}_{\ell}
$$

where $k, \ell \in \mathbb{N}$ and $\boldsymbol{U}_{1}, \ldots, \boldsymbol{U}_{k}, \boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{\ell}$ are minimal zero-sum types. Since \boldsymbol{Y} is not trivial, we obtain $\boldsymbol{T}_{2} \notin\left\{\boldsymbol{T}_{1}, \boldsymbol{U}_{1}, \ldots, \boldsymbol{U}_{k}\right\}$, a contradiction to the fact that \boldsymbol{T} has unique factorization. Thus $\boldsymbol{\alpha}(\boldsymbol{T})$ has no innerly joint minimal zero-sum subsequences and hence has no innerly non-zero-sum-joint zero-sum subsequences, whence $\mathrm{D}^{N}(G) \geq \mathrm{N}_{1}(G)+1$.

Let S be a sequence over G^{\bullet} of length $\mathrm{D}^{N}(G)-1$ such that S has no innerly non-zero-sum-joint zero-sum subsequences. We assert that S is zero-sum. Assume to the
contrary that S is not zero-sum. Then $T:=S(-\sigma(S))$ is zero-sum and $|T|=\mathrm{D}^{N}(G)$, whence there exist two zero-sum subsequences U_{1}, V_{1} of T such that U_{1}, V_{1} have a non-zero-sum T-inner common divisor. Let $U_{2}=U_{1}^{-1} T$ and $V_{2}=V_{1}^{-1} T$. Then for every $i \in[1,2]$ and every $j \in[1,2]$ we have U_{i} and V_{j} have a non-zero-sum T-inner common divisor. By symmetry, we may assume that $-\sigma(S)$ is a term of both U_{2} and V_{2}, whence U_{1} and V_{1} are subsequences of S and have a non-zero-sum S-inner common divisor, a contradiction. Thus S is zero-sum and hence $\tau(S)$ is a squarefree zero-sum type over G^{\bullet} of length $\mathrm{D}^{N}(G)-1$. Assume that $\tau(S)$ does not have unique factorization. Then there are two minimal zero-sum subtypes \boldsymbol{T}_{1} and \boldsymbol{T}_{2} of $\tau(S)$ such that $\operatorname{gcd}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)$ is nontrivial, whence $\boldsymbol{\alpha}\left(\boldsymbol{T}_{1}\right)$ and $\boldsymbol{\alpha}\left(\boldsymbol{T}_{2}\right)$ are minimal zero-sum subsequences of S and have a nontrivial S-inner common divisor $\boldsymbol{\alpha}\left(\operatorname{gcd}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)\right)$, a contradiction. Therefore $\tau(S)$ has unique factorization and hence $\mathrm{D}^{N}(G)-1 \leq \mathrm{N}_{1}(G)$. Therefore $\mathrm{D}^{N}(G)=\mathrm{N}_{1}(G)+1$.

We next show that $\eta^{*}(G)=\eta^{N}(G)$. Let \boldsymbol{T} be a squarefree type over G^{\bullet} of length $\eta^{N}(G)$. Then $\boldsymbol{\alpha}(\boldsymbol{T})$ has two innerly joint short minimal zero-sum subsequences S_{1}, S_{2} with the nontrivial $\boldsymbol{\alpha}(\boldsymbol{T})$-inner common divisor Y, whence there exist minimal zero-sum subtypes $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$ of \boldsymbol{T} such that $\boldsymbol{\alpha}\left(\boldsymbol{T}_{1}\right)=S_{1}, \boldsymbol{\alpha}\left(\boldsymbol{T}_{2}\right)=S_{2}$, and $\boldsymbol{\alpha}\left(\operatorname{gcd}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)\right)=Y$. Therefore $\eta^{*}(G) \leq \eta^{N}(G)$. Let S be a sequence over G^{\bullet} of length $\eta^{*}(G)$. Then $\tau(S)$ is a squarefree type over G^{\bullet} of length $\eta^{*}(G)$, whence there exist two short minimal zerosum subtypes $\boldsymbol{T}_{1}, \boldsymbol{T}_{2}$ of $\tau(S)$ such that $\operatorname{gcd}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)$ is not empty. It follows that $\boldsymbol{\alpha}\left(\boldsymbol{T}_{1}\right)$ and $\boldsymbol{\alpha}\left(\boldsymbol{T}_{2}\right)$ are short minimal zero-sum subsequences of S and have a nontrivial S-inner common divisor $\boldsymbol{\alpha}\left(\operatorname{gcd}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{2}\right)\right)$, whence $\eta^{N}(G) \leq \eta^{*}(G)$. Therefore $\eta^{N}(G)=\eta^{*}(G)$.

Property C and Property D. Let G be a finite abelian group. Gao [GG06] conjectured that $s(G)=\eta(G)+\exp (G)-1$. When considering the structure of extremal sequences that has no short zero-sum subsequence and that has no zero-sum subsequence of length $\exp (G)$, the following definitions are introduced.

Definition 2.5. Let $G=C_{n}^{r}$, where $n, r \in \mathbb{N}$. We say G has

- Property \mathbf{C} with respect to c if every sequence $S \in \mathcal{F}(G)$ of length $|S|=\eta(G)-1$ which has no short zero-sum subsequence has the form $S=T^{n-1}$ for some sequence $T \in \mathcal{F}(G)$ of length c.
- Property D with respect to c if every sequence $S \in \mathcal{F}(G)$ of length $|S|=\mathbf{s}(G)-1$ which has no zero-sum subsequence of length n has the form $S=T^{n-1}$ for some sequence $T \in \mathcal{F}(G)$ of length c.

If $G=C_{n}^{r}$ has Property D with respect to c, then $\mathbf{s}(G)=\eta(G)+n-1=c(\exp (G)-$ 1) +1 and G has Property C with respect to $c-1$ (See [GT03, Corollary 1.2]). For groups of rank 2, Property C was first considered by van Emde Boas and Property D by Gao (see [E69, G00, Ga00]). It is conjectured that every group $G=C_{n}^{r}$ has Property D, where
$r \in \mathbb{N}$ and $n \geq 2$ (see [GG06, Conjecture 7.2]). Among others, we collect some known results.

Lemma 2.6. Let $a, b \in \mathbb{N}_{0}$ and $r \in \mathbb{N}$.
(1) $C_{2^{a}}^{r}$ has Property D with respect to 2^{r}.
(2) $C_{3^{a}}^{4}$ has Property D with respect to 20.
(3) $C_{3^{a} 5^{b}}^{3}$ has Property D with respect to 9 .
(4) C_{3}^{r} has Property D.
(5) C_{n} and $C_{n} \oplus C_{n}$ have Property C, where $n \geq 2$.
(6) $C_{2^{a} 3^{b} 5^{c} 7^{d}}^{2}$ has Property D with respect to 4 , where $c, d \in \mathbb{N}_{0}$.

Proof. For Items 1, 2, and 3, see [FGZ11, Lemma 2.4] and Item 4 follows from [H73, Hilfssatz 3] and [EEGKR07, Lemma 2.3.3]. For Item 5, we refer to [GH06, Theorem 5.1.10] and [R10, Section 11.3]. For Item 6, see [Ga00, Theorems 1.4 and 1.5] and [ST02, Theorem 3.1].

Lemma 2.7. If n is odd, then there exists a sequence $T \in \mathcal{F}\left(C_{n}^{3}\right)$ of length $|T|=9$ such that T^{n-1} has no zero-sum subsequence of length n. In particular, we have $\eta\left(C_{n}^{3}\right) \geq 8 n-7$ and $\mathrm{s}\left(C_{n}^{3}\right) \geq 9 n-8$.

Proof. See [EEGKR07, Theorem 1.2].
Lemma 2.8. If n is odd, then there exists a sequence $T \in \mathcal{F}\left(C_{n}^{4}\right)$ of length $|T|=20$ such that T^{n-1} has no zero-sum subsequence of length n. In particular, we have $\eta\left(C_{n}^{4}\right) \geq$ $19 n-18$ and $\mathbf{s}\left(C_{n}^{4}\right) \geq 20 n-19$.

Proof. See [EEGKR07, Theorem 1.3].
Lemma 2.9. Let $n, m, r \in \mathbb{N}$.
(1) $\eta\left(C_{n} \oplus C_{m}\right)=2 n+m-2$ and $\mathrm{s}\left(C_{n} \oplus C_{m}\right)=2 n+2 m-3$ with $1 \leq n \mid m$.
(2) $\eta\left(C_{2^{n} 3}^{3}\right)=21 \cdot 2^{n}-6$ and $\mathbf{s}\left(C_{2^{n} 3}^{3}\right)=24 \cdot 2^{n}-7$.
(3) $\eta\left(C_{2}^{3} \oplus C_{2 n}\right)=2 n+6$ for $n \geq 2$ and $\mathrm{s}\left(C_{2}^{3} \oplus C_{2 n}\right)=4 n+5$ for $n \geq 36$.
(4) Let $G=C_{2} \oplus C_{2 m} \oplus C_{2 m n}$. If C_{m}^{2} has Property D or $n=1$, then

$$
\mathrm{s}(G)=4 m+4 m n-1
$$

(5) $\eta\left(C_{n}^{r}\right) \geq\left(2^{r}-1\right)(n-1)+1$.

Proof. For Item 1, see [GH06, Theorem 5.8.3] and for Item 2, see [GHST07, Theorem 1.8]. Item 3 follows from [FZ16, Theorem 1.2] and Item 4 follows from [GS19, Theorem 3.2]. Item 5 follows from [H73].

Lemma 2.10. Let $\alpha, \beta \in \mathbb{N}_{0}$. Then

$$
\eta\left(C_{3^{\alpha} 5^{\beta}}^{3}\right)=8 \cdot 3^{\alpha} 5^{\beta}-7 \quad \text { and } \quad \eta\left(C_{3^{\alpha}}^{4}\right)=19 \cdot 3^{\alpha}-18 .
$$

Proof. See [GHST07, Theorem 1.7, Theorem 1.8] and [FGZ11, Theorem B].
Lemma 2.11. [GH06, Proposition 5.7.11] Let G be a finite abelian group, and let H be a subgroup of G with $\exp (G)=\exp (H) \exp (G / H)$. Then
(1) $\eta(G) \leq \exp (G / H)(\eta(H)-1)+\eta(G / H)$.
(2) $\mathrm{s}(G) \leq \exp (G / H)(\mathrm{s}(H)-1)+\mathrm{s}(G / H)$.

Lemma 2.12. Let $\alpha \in \mathbb{N}, \beta \in \mathbb{N}_{0}$ and $\alpha \geq \beta$. Then

$$
\eta\left(C_{2^{\alpha} 3^{\beta}}^{3}\right)=7 \cdot 2^{\alpha} 3^{\beta}-6 \quad \text { and } \quad \mathrm{s}\left(C_{2^{\alpha} 3^{\beta}}^{3}\right)=8 \cdot 2^{\alpha} 3^{\beta}-7 .
$$

Proof. Let $G=C_{2^{\alpha} 3^{\beta}}^{3}$. Let $G=C_{2^{\alpha} 3^{\beta}}^{3}$. By Lemma 2.9.5, we have $\eta(G) \geq 7 \cdot 2^{\alpha} 3^{\beta}-6$. Since $\mathbf{s}(G) \geq \eta(G)+\exp (G)-1$, it suffices to show that $\mathbf{s}(G) \leq 8 \cdot \exp (G)-7$.

We proceed by induction on α. If $\alpha=1$, then $\beta=1$ or 0 and Lemma 2.9.2 implies that $\mathrm{s}(G) \leq 8 \cdot \exp (G)-7$. Suppose $\alpha \geq 2$ and suppose the assertion $\mathrm{s}\left(C_{2^{t} 3^{\beta}}^{3}\right) \leq 8 \cdot 2^{t} 3^{\beta}-7$ holds for all (t, β) with $\beta \leq t<\alpha$. Let H be a subgroup of G such that $G / H \cong C_{6}^{3}$ if $\beta \geq 1$ and otherwise $G / H \cong C_{2}^{3}$. By induction hypothesis, we have $\mathrm{s}(H) \leq 8 \cdot \exp (H)-7$ and $s(G / H) \leq 8 \cdot \exp (G / H)-7$. It follows by applying Lemma 2.11.2 that

$$
\mathrm{s}(G) \leq \exp (G / H)(\mathrm{s}(H)-1)+\mathrm{s}(G / H) \leq 8 \cdot \exp (G / H) \exp (H)-7=8 \exp (G)-7
$$

3. ON $\eta^{N}(G)$ AND $\mathrm{D}^{N}(G)$

3.1. On $\eta^{N}(G)$. In this subsection, our main theorem is Theorem 3.6. We need the following lemmas.

Lemma 3.1. Let $G=C_{n}^{r}$ be a finite abelian group, where $n, r \in \mathbb{N}$. If $r \in[1,2]$ or $n=2$, then

$$
\eta^{N}(G)=\left(2^{r}-1\right) \cdot n+1
$$

Proof. The assertion follows from [GGW11, Corollary 3.11] and [GPZ13, Theorem 2.6].

Lemma 3.2. Let $G=C_{n} \oplus C_{n m}$ with $n, m \in \mathbb{N}_{\geq 2}$. Then $\eta^{N}(G) \geq 2 n+n m$.
Proof. Let $\left(e_{1}, e_{2}\right)$ be a basis of G and let

$$
S=e_{1}^{n}\left(e_{1}+e_{2}\right)^{n-1} e_{2}^{n m}
$$

It is easy to see that S has no innerly joint short minimal zero-sum subsequences. Therefore $\eta^{N}(G) \geq|S|+1=2 n+n m$.

Lemma 3.3. Let $G=C_{n}^{r}$ with $n, r \in \mathbb{N}$ and $n \geq 2$.
(1) $\eta^{N}(G) \geq\left(2^{r}-1\right) n+1$.
(2) If G has Property C, then

$$
\eta^{N}(G) \geq \frac{n(\eta(G)-1)}{n-1}+1
$$

(3) If $n=3$, then

$$
\eta^{N}(G)=\frac{3(\eta(G)-1)}{2}+1
$$

Proof. 1. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G and let

$$
S=\prod_{\emptyset \neq I \subset[1, r]}\left(\sum_{i \in I} e_{i}\right)^{n} .
$$

Since every short zero-sum subsequence of S has the form $\left(\sum_{i \in I} e_{i}\right)^{n}$, where $\emptyset \neq I \subset$ [1,r], we have that S has no innerly non-zero-sum-joint short zero-sum subsequences, whence $\eta^{N}(G) \geq|S|+1=\left(2^{r}-1\right) \cdot n+1$.
2. Let T be a sequence over G of length $\eta(G)-1$ which has no short zero-sum subsequence. It follows from G has Property C that T has the form

$$
T=U^{n-1}
$$

where U is a squarefree sequence over G^{\bullet}. Let $S=U^{n}$. Then $S \in \mathcal{F}\left(G^{\bullet}\right)$ has no innerly non-zero-sum-joint short zero-sum subsequences. Thus, $\eta^{N}(G) \geq|S|+1=\frac{n(\eta(G)-1)}{n-1}+1$.
3. Since $G=C_{3}^{r}$ has Property D by Lemma 2.6.4, we have $s(G)=\eta(G)+2$ and G has Property C. Then it suffices to show $\eta^{N}(G) \leq \frac{3(\eta(G)-1)}{2}+1$. Let S be a sequence over $G \bullet$ of length $|S|=\frac{3(\eta(G)-1)}{2}+1$. We need to show that S has two innerly joint short minimal zero-sum subsequences. Assume to the contrary that S has no innerly joint short minimal zero-sum subsequences.

Suppose $S=B_{1} \cdot \ldots \cdot B_{l} B_{l+1} \cdot \ldots \cdot B_{s} S^{\prime}$, where $s, l \in \mathbb{N}_{0},\left|B_{i}\right|=3$ for $i \in[1, l],\left|B_{i}\right|=2$ for $i \in[l+1, s], B_{1}, \ldots, B_{s}$ are short minimal zero-sum subsequences and S^{\prime} has no short zero-sum subsequence. For every $i \in[1, s]$, we choose an element $g_{i} \in \operatorname{supp}\left(B_{i}\right)$. Since S has no innerly joint short minimal zero-sum subsequences, we obtain that $\left(g_{1} \cdot \ldots \cdot g_{l}\right)^{-1} S$ has no zero-sum subsequence of length 3 and that $\left(g_{1} \cdot \ldots \cdot g_{s}\right)^{-1} S$ has no short zero-sum subsequence. It follows that $\left|\left(g_{1} \cdot \ldots \cdot g_{l}\right)^{-1} S\right| \leq \mathrm{s}(G)-1=\eta(G)+1$ and $\left|\left(g_{1} \cdot \ldots \cdot g_{s}\right)^{-1} S\right| \leq$ $\eta(G)-1$. Therefore $l \geq \frac{\eta(G)-3}{2}$ and $s \geq \frac{\eta(G)+1}{2}$. It follows that

$$
\frac{3(\eta(G)-1)}{2}+1=|S|=3 l+2(s-l)+\left|S^{\prime}\right|=l+2 s+\left|S^{\prime}\right| \geq \frac{3(\eta(G)-1)}{2}+1
$$

which implies that $l=\frac{\eta(G)-3}{2}, s=\frac{\eta(G)+1}{2}$, and $\left|S^{\prime}\right|=0$. We infer that $\left(g_{1} \cdot \ldots \cdot g_{\frac{\eta(G)+1}{2}}\right)^{-1} S$ has length $\eta(G)-1$ and has no short zero-sum subsequence, a contradiction to the fact that G has Property C.

Proposition 3.4. Let $G=C_{m n}^{r}$, where $r \in \mathbb{N}$ and $m, n \in \mathbb{N}_{\geq 2}$. If there exists $c \in \mathbb{N}$ such that $\eta^{N}\left(C_{m}^{r}\right) \leq c m+1$ and $\eta\left(C_{n}^{r}\right) \leq c(n-1)+1$, then $\eta^{N}(G) \leq c m n+1$.

Proof. Let S be a sequence over G of length $c m n+1$. We need to show that S has two innerly non-zero-sum-joint short zero-sum subsequences. Assume to the contrary that S has no innerly non-zero-sum-joint short zero-sum subsequences.

Let $\varphi: G \rightarrow G$ be the multiplication by n. Then $\operatorname{ker}(\varphi) \cong C_{n}^{r}$ and $\varphi(G)=n G \cong C_{m}^{r}$. Suppose $S=S_{0} S_{1}$, where S_{0} is a subsequence over $\operatorname{ker}(\varphi)^{\bullet}$ and S_{1} is a subsequence over
$G \backslash \operatorname{ker}(\varphi)$. Suppose $S_{0}=T_{1} \ldots . T_{t} T_{0}$, where $t \in \mathbb{N}_{0}, T_{1}, \ldots, T_{t}$ are S_{0}-innerly disjoint short minimal zero-sum subsequences over $\operatorname{ker}(\varphi)^{\bullet}$, and T_{0} has no short zero-sum subsequence over $\operatorname{ker}(\varphi)^{\bullet}$. Choose a term h_{i} of T_{i} for each $i \in[1, t]$. If $W:=\left(h_{1} \cdot \ldots \cdot h_{t}\right)^{-1} S_{0}$ has a short minimal zero-sum subsequence T over $\operatorname{ker}(\varphi)^{\bullet}$, then there exists $i \in[1, t]$ such that T_{i} and T are S_{0}-innerly joint, a contradiction. Therefore W has no short zero-sum subsequence over $\operatorname{ker}(\varphi)^{\bullet}$. Note that $m|W| \geq 2|W| \geq\left|S_{0}\right|$.

Let $k \in \mathbb{N}_{0}$ be maximal such that there are S_{1}-innerly disjoint subsequences V_{1}, \ldots, V_{k} satisfying the following properties.

- For every $i \in[1, k]$, we have $\varphi\left(V_{i}\right)$ is a short zero-sum subsequence over $\varphi(G)$;
- $W \cdot \sigma\left(V_{1}\right) \cdot \ldots \cdot \sigma\left(V_{k}\right)$ has no short zero-sum subsequence over $\operatorname{ker}(\varphi)$.

Let $U=\left(V_{1} \cdot \ldots \cdot V_{k}\right)^{-1} S_{1}$. Then $|W|+k \leq \eta\left(C_{n}^{r}\right)-1$ and

$$
|U| \geq\left|S_{1}\right|-k m \geq c m n+1-\left|S_{0}\right|-\left(\eta\left(C_{n}^{r}\right)-1-|W|\right) m \geq c m+1 \geq \eta^{N}\left(C_{m}^{r}\right),
$$

whence U has two subsequences U_{1}, U_{2} such that $\varphi\left(U_{1}\right), \varphi\left(U_{2}\right)$ are $\varphi(U)$-innerly joint short minimal zero-sum subsequences and U_{1}, U_{2} have a U-inner common divisor Y such that $\sigma(Y) \notin \operatorname{ker}(\varphi)$. By the maximality of k, there exist subsequences W_{1}, W_{2} of W and subsets $I_{1}, I_{2} \subset[1, k]$ such that $\sigma\left(U_{1}\right) W_{1} \prod_{i \in I_{1}} \sigma\left(V_{i}\right)$ and $\sigma\left(U_{2}\right) W_{2} \prod_{i \in I_{2}} \sigma\left(V_{i}\right)$ are short zero-sum subsequence over $\operatorname{ker}(\varphi)$, whence $X_{1}:=U_{1} W_{1} \prod_{i \in I_{1}} V_{i}$ and $X_{2}:=$ $U_{2} W_{2} \prod_{i \in I_{2}} V_{i}$ are short zero-sum subsequence over G^{\bullet}. Let Y_{0} be a W-inner common divisor of W_{1} and W_{2}. Then X_{1} and X_{2} have a S-inner common divisor $Y Y_{0} \prod_{i \in I_{1} \cap I_{2}} V_{i}$, which is not zero-sum, a contradiction.

Corollary 3.5. Let $G=C_{2 m}^{r}$ with $m \geq 2$. If $\eta^{N}\left(C_{m}^{r}\right)=\left(2^{r}-1\right) \cdot m+1$, then $\eta^{N}(G)=$ $\left(2^{r}-1\right) \cdot 2 m+1$.

Proof. By Lemma 3.3.1, it suffices to prove $\eta^{N}(G) \leq\left(2^{r}-1\right) \cdot 2 m+1$. Note that $\eta\left(C_{2}^{r}\right)=$ $2^{r}=\left(2^{r}-1\right) 2-\left(2^{r}-2\right)$. The assertion follows by applying Proposition 3.4 for $c=$ $2^{r}-1$.

Now we can prove our main theorem in this subsection.
Theorem 3.6. Let $r, \alpha \in \mathbb{N}, \beta \in \mathbb{N}_{0}$, and let $n, m \in \mathbb{N}$.
(1) If $n, m \geq 2$ and $\operatorname{gcd}(n, m)=1$, then $\eta^{N}\left(C_{n} \oplus C_{n m}\right)=2 n+n m$
(2) $\eta^{N}\left(C_{2^{\alpha}}^{r}\right)=\left(2^{r}-1\right) \cdot 2^{\alpha}+1$.
(3) $\eta^{N}\left(C_{2^{\alpha} 3^{\beta}}^{3}\right)=7 \cdot 2^{\alpha} 3^{\beta}+1$ with $\alpha>\beta$.
(4) If n is odd, then $\eta^{N}\left(C_{n}^{3}\right) \geq 8 n+1$ and $\eta^{N}\left(C_{3^{\alpha} 5^{\beta}}^{3}\right)=8 \cdot 3^{\alpha} 5^{\beta}+1$.
(5) If n is odd, then $\eta^{N}\left(C_{n}^{4}\right) \geq 19 n+1$ and $\eta^{N}\left(C_{3^{\alpha}}^{4}\right)=19 \cdot 3^{\alpha}+1$.

Proof. 1. Let $G=C_{n} \oplus C_{n m}$. By Lemma 3.2, it suffices to prove that $\eta^{N}(G) \leq 2 n+n m$. Let S be a sequence over G of length $2 n+n m$. We need to show that S has two innerly non-zero-sum-joint short zero-sum subsequences. Assume to the contrary that S has no innerly non-zero-sum-joint short zero-sum subsequences.

Let $\varphi: G \rightarrow G$ be the multiplication by m. Note that $\operatorname{gcd}(n, m)=1$. We have $\operatorname{ker}(\varphi) \cong C_{m}$ and $\varphi(G)=m G \cong C_{n}^{2}$. Let $S=S_{0} S_{1}$, where S_{0} is a subsequence over $\operatorname{ker}(\varphi)^{\bullet}$ and S_{1} is a subsequence over $G \backslash \operatorname{ker}(\varphi)$. Suppose $S_{0}=T_{1} \cdot \ldots \cdot T_{t} T_{0}$, where $t \in \mathbb{N}_{0}, T_{1}, \ldots, T_{t}$ are S_{0}-innerly disjoint short minimal zero-sum subsequences over $\operatorname{ker}(\varphi)^{\bullet}$, and T_{0} has no short zero-sum subsequence over $\operatorname{ker}(\varphi)^{\bullet}$. Choose a term h_{i} of T_{i} for each $i \in[1, t]$. If $W:=\left(h_{1} \cdot \ldots \cdot h_{t}\right)^{-1} S_{0}$ has a short minimal zero-sum subsequence T over $\operatorname{ker}(\varphi)^{\bullet}$, then there exists $i \in[1, t]$ such that T_{i} and T are S_{0}-innerly joint, a contradiction. Therefore W has no short zero-sum subsequence over $\operatorname{ker}(\varphi)^{\bullet}$.

Let $k \in \mathbb{N}_{0}$ be maximal such that there are S_{1}-innerly disjoint subsequences V_{1}, \ldots, V_{k} satisfying the following properties.

- For every $i \in[1, k]$, we have $\varphi\left(V_{i}\right)$ is a short zero-sum subsequence over $\varphi(G)$;
- $W \cdot \sigma\left(V_{1}\right) \cdot \ldots \cdot \sigma\left(V_{k}\right)$ has no short zero-sum subsequence over $\operatorname{ker}(\varphi)$.

Let $U=\left(V_{1} \cdot \ldots \cdot V_{k}\right)^{-1} S_{1}$. Then $|W|+k \leq \eta\left(C_{m}\right)-1=m-1$ and

$$
\begin{equation*}
|U| \geq\left|S_{1}\right|-k n \geq 2 n+n m-\left|S_{0}\right|-(m-1-|W|) n \geq 3 n \tag{3.1}
\end{equation*}
$$

If $\varphi(U)$ has two innerly joint short minimal zero-sum subsequences over $\varphi(G)^{\bullet}$, whence U has two subsequences U_{1}, U_{2} such that $\varphi\left(U_{1}\right), \varphi\left(U_{2}\right)$ are $\varphi(U)$-innerly joint short minimal zero-sum subsequences and U_{1}, U_{2} have a U-inner common divisor Y such that $\sigma(Y) \notin \operatorname{ker}(\varphi)$. By the maximality of k, there exist subsequences W_{1}, W_{2} of W and subsets $I_{1}, I_{2} \subset[1, k]$ such that $\sigma\left(U_{1}\right) W_{1} \prod_{i \in I_{1}} \sigma\left(V_{i}\right)$ and $\sigma\left(U_{2}\right) W_{2} \prod_{i \in I_{2}} \sigma\left(V_{i}\right)$ are short zero-sum subsequence over $\operatorname{ker}(\varphi)$, whence $X_{1}:=U_{1} W_{1} \prod_{i \in I_{1}} V_{i}$ and $X_{2}:=$ $U_{2} W_{2} \prod_{i \in I_{2}} V_{i}$ are short zero-sum subsequence over G^{\bullet}. Let Y_{0} be a W-inner common divisor of W_{1} and W_{2}. Then X_{1} and X_{2} have a S-inner common divisor $Y Y_{0} \prod_{i \in I_{1} \cap I_{2}} V_{i}$, which is not zero-sum, a contradiction.

If $\varphi(U)$ has no innerly joint short minimal zero-sum subsequences over $\varphi(G)^{\bullet}$, we have $|\varphi(U)|=|U| \leq \eta^{N}\left(C_{n} \oplus C_{n}\right)-1=3 n$. Combining inequality (3.1) and $n|W| \geq$ $2|W| \geq\left|S_{0}\right|$, we obtain that $n=2,|U|=6,|W|=t, k=m-1-t$, and $\left|T_{1}\right|=\ldots=\left|T_{t}\right|=$ $\left|V_{1}\right|=\ldots=\left|V_{k}\right|=2$. Since $W \cdot \sigma\left(V_{1}\right) \cdot \ldots \cdot \sigma\left(V_{m-1-t}\right)$ has no short zero-sum subsequence over $\operatorname{ker}(\varphi)$ and $\left|W \cdot \sigma\left(V_{1}\right) \cdot \ldots \cdot \sigma\left(V_{m-1-t}\right)\right|=m-1=\eta\left(C_{m}\right)-1$, it follows from Lemma 2.6.5 that $W \cdot \sigma\left(V_{1}\right) \cdot \ldots \cdot \sigma\left(V_{m-1-t}\right)=g^{m-1}$, where g is a generator of $\operatorname{ker}(\varphi) \cong C_{m}$. Thus $\left|T_{1}\right|=\ldots=\left|T_{t}\right|=2$ implies that $T_{1}=\ldots=T_{t}=g(-g)$. If $t \geq 2$, then it is easy to see that $g(-g)$ and $g(-g)$ are two S-innerly joint short minimal zero-sum subsequences, a contradiction. If $t=1$, then it is easy to see that T_{1} and $(-g) V_{1}$ are two S-innerly joint short minimal zero-sum subsequences, a contradiction. Therefore $t=0$ and $k=m-1$.

Let $U=g_{1} \ldots . g_{6}$, where $g_{1}, \ldots, g_{6} \in G \backslash \operatorname{ker}(\varphi)$. Since $\varphi(U)$ has no innerly joint short minimal zero-sum subsequences over $\varphi(G) \cong C_{2}^{2}$ and $|\varphi(U)|=\eta^{N}\left(C_{2} \oplus C_{2}\right)-1=6$, after renumbering if necessary, we may assume that $\varphi\left(g_{1} g_{2}\right)=e_{1}^{2}, \varphi\left(g_{3} g_{4}\right)=e_{2}^{2}$, and $\varphi\left(g_{5} g_{6}\right)=e_{3}^{2}$, where $\left\{e_{1}, e_{2}, e_{3}\right\}=\varphi(G) \backslash\{0\}$. Let $L_{1}=g_{1} g_{2}, L_{2}=g_{3} g_{4}, L_{3}=g_{5} g_{6}$, $M_{1}=g_{1} g_{3} g_{5}$, and $M_{2}=g_{2} g_{4} g_{6}$. For every $L \in\left\{L_{1}, L_{2}, L_{3}, M_{1}, M_{2}\right\}$, we have $\sigma(L) \in$
$\operatorname{ker}(\varphi)=\{0, g, \ldots,(m-1) g\}$. We claim that $\sigma(L) \in\{0, g\}$. Assume to the contrary that $\sigma(L)=x g$ with $2 \leq x \leq m-1$. Then $L V_{1} \cdot \ldots \cdot V_{m-x}$ and $L V_{1} \cdot \ldots \cdot V_{m-x-1} V_{m-x+1}$ are short zero-sum subsequence of S over G^{\bullet} with a non-zero-sum S-inner common divisor $L V_{1} \cdot \ldots \cdot V_{m-x-1}$, a contradiction. Therefore $\sigma(L) \in\{0, g\}$.

If there exist l_{1}, l_{2} with $\left\{l_{1}, l_{2}\right\} \subset\{1,2,3\}$ such that $\sigma\left(L_{l_{1}}\right)=\sigma\left(L_{l_{2}}\right)=g$, then $L_{l_{1}} V_{1} \cdot \ldots \cdot V_{m-1}$ and $L_{l_{2}} V_{1} \cdot \ldots \cdot V_{m-1}$ are short zero-sum subsequence of S over G^{\bullet} with a non-zero-sum S-inner common divisor $V_{1} \cdot \ldots \cdot V_{m-1}$, a contradiction. Thus, after renumbering if necessary, we may assume that $\sigma\left(L_{1}\right)=\sigma\left(L_{2}\right)=0$. If there exists $i \in[1,2]$ such that $\sigma\left(M_{i}\right)=0$, then $L_{1}=g_{1} g_{2}$ and M_{i} are short zero-sum subsequence of S over G^{\bullet} with a non-zero-sum S-inner common divisor g_{i}, a contradiction. Then $\sigma\left(M_{1}\right)=\sigma\left(M_{2}\right)=$ g, which implies that $\sigma\left(L_{3}\right)=g_{5}+g_{6}=\sigma\left(L_{1}\right)+\sigma\left(L_{2}\right)+g_{5}+g_{6}=\sigma\left(M_{1}\right)+\sigma\left(M_{2}\right)=2 g$, a contradiction.
2. If $\alpha=1$, then the assertion follows from Lemma 3.1. Suppose $\alpha \geq 2$. We proceed by induction on α and the assertion follows by applying Corollary 3.5.
3. Let $G=C_{2^{\alpha} 3^{\beta}}^{3}$ with $\alpha>\beta$. By Lemma 3.3.1, we have $\eta^{N}(G) \geq 7 \cdot 2^{\alpha} 3^{\beta}+1$. It suffices to show the upper bound. Since Lemma 3.1 implies that $\eta^{N}\left(C_{2}^{3}\right)=7 \cdot 2+1$ and Lemma 2.12 implies that $\eta\left(C_{2^{\alpha-1} 3^{\beta}}^{3}\right)=7 \cdot 2^{\alpha-1} 3^{\beta}-6$, it follows by Proposition 3.4 that $\eta^{N}(G) \leq 7 \cdot 2^{\alpha} 3^{\beta}+1$.
4. Let $G=C_{n}^{3}$. By Lemma 2.7, there exists a sequence $T \in \mathcal{F}(G)$ of length $|T|=9$ such that T^{n-1} has no zero-sum subsequence of length n. Let $g \mid T$ and set $S^{\prime}=\left(0^{-1}(-g+\right.$ $T))^{n}$. It is easy to see that $S^{\prime} \in \mathcal{F}\left(G^{\bullet}\right)$ has no innerly non-zero-sum-joint short zero-sum subsequences, whence $\eta^{N}(G) \geq\left|S^{\prime}\right|+1=8 n+1$.

Suppose $n=3^{\alpha} 5^{\beta}$. It suffices to show $\eta^{N}(G) \leq 8 n+1$. The result follows from Lemma 3.3.3, Proposition 3.4 and Lemma 2.10.
5. Let $G=C_{n}^{4}$. By Lemma 2.8, there exists a sequence $T \in \mathcal{F}(G)$ of length $|T|=20$ such that T^{n-1} has no zero-sum subsequence of length n. Let $g \mid T$ and set $S^{\prime}=\left(0^{-1}(-g+\right.$ $T))^{n}$. It is easy to see that $S^{\prime} \in \mathcal{F}\left(G^{\bullet}\right)$ has no innerly non-zero-sum-joint short zero-sum subsequences, whence $\eta^{N}(G) \geq\left|S^{\prime}\right|+1=19 n+1$.

Suppose $n=3^{\alpha}$. It suffices to show $\eta^{N}(G) \leq 19 n+1$. The result follows from Lemma 3.3.3, Proposition 3.4 and Lemma 2.10.
3.2. On $\mathrm{D}^{N}(G)$ and $\mathrm{N}_{1}(G)$. In this subsection, our main theorem is Theorem 3.14. Note that $\mathrm{D}^{N}(G)=\mathrm{N}_{1}(G)+1$. We first collect some known results of $\mathrm{N}_{1}(G)$ and $\mathrm{D}(G)$.

Lemma 3.7. Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ be a finite abelian group, where $1 \leq n_{1}|\ldots| n_{r}$. Then $\mathrm{N}_{1}(G)=n_{1}+\ldots+n_{r}$ provided that G has one of the following forms.
(1) $G=C_{n}$ with $n \geq 2$.
(2) $G=C_{n_{1}} \oplus C_{n_{2}}$ with $1<n_{1} \mid n_{2}$.
(3) $G=C_{2}^{r}$ with $r \in \mathbb{N}$.
(4) $G=C_{3}^{r}$ with $r \in \mathbb{N}$.
(5) $G=C_{2}^{r} \oplus C_{4}^{t} \oplus C_{2^{m}}$ with $0 \leq t \leq 1$ and $m \geq 1$.
(6) $G=C_{2}^{r} \oplus C_{4}^{t} \oplus C_{2^{m} l}$ with $0 \leq t \leq 1, l \geq 4$, and $2^{m} \geq r+3 t+1$.
(7) $G=C_{3}^{r} \oplus C_{9}^{t} \oplus C_{3^{m}}$ with $0 \leq t \leq 1$ and $m \geq 1$.
(8) $G=C_{3}^{r} \oplus C_{9}^{t} \oplus C_{3^{m} l}$ with $0 \leq t \leq 1, l \geq 4$, and $3^{m} \geq 2 r+8 t+1$.
(9) $G=C_{5}^{2} \oplus C_{25 m}$ with either $m=1$ or $m \geq 4$.

Proof. Item 2 follows from [GPZ13, Theorem 2.3]. For Items 1, 3, and 4, see [GH06, Theorem 6.2.8] and for Items 5-9, see [G97, Theorem 1].

Lemma 3.8. Let p be a prime and $m, n \in \mathbb{N}$. Then $\mathrm{D}(G)=\mathrm{D}^{*}(G)$ holds for one of the following groups.
(1) $G=C_{n} \oplus C_{m n}$.
(2) G is a finite abelian p-group.
(3) $G=C_{2} \oplus C_{2 m} \oplus C_{2 m n}$.
(4) $G=C_{2}^{3} \oplus C_{2 m}$ with m odd.

Proof. For Items 1 and 2, see [GH06, Theorems 5.8.3 and 5.5.9]. Item 3 follows from [GS19, Theorem 2.7] and Item 4 follows from [E69, Page 1].

We need the following lemmas.

Lemma 3.9. Let G be a finite abelian group with $|G|>1$ and let $T=U_{1} \cdot \ldots \cdot U_{r}$ be a sequence over G^{\bullet}, where $r \in \mathbb{N}$ and U_{1}, \ldots, U_{r} are minimal zero-sum sequences. If T has no innerly joint minimal zero-sum subsequences, then $\prod_{i=1}^{r}\left|U_{i}\right| \leq|G|$.

Proof. See [GGW11, Lemma 3.9].

Lemma 3.10. Let G be a finite abelian p-group with p an odd prime and let $B=$ $B_{1} \cdot \ldots \cdot B_{r}$ be a sequence over G^{\bullet}, where $r \in \mathbb{N}$ and B_{1}, \ldots, B_{r} are minimal zero-sum subsequences. Suppose B has no innerly joint minimal zero-sum subsequences. If exactly t of $\left|B_{1}\right|, \ldots,\left|B_{r}\right|$ are odd, then $|B| \leq \mathrm{D}(G)+t-1$.

Proof. See [G97, Proposition 1].
Definition 3.11. Let $S=g_{1} \cdot \ldots \cdot g_{l} \in \mathcal{F}(G)$ be a sequence of length $|S|=l \in \mathbb{N}_{0}$ and let $g \in G$.
(1) For every $k \in \mathbb{N}_{0}$, let

$$
\mathbf{N}_{g}^{k}(S)=\mid\left\{I \subset[1, l]: \sum_{i \in I} g_{i}=g \text { and }|I|=k\right\} \mid
$$

denote the number of distinct subsequences T in S having sum $\sigma(T)=g$ and length $|T|=k$.
(2) We define

$$
\mathbf{N}_{g}(S)=\sum_{k \geq 0} \mathbf{N}_{g}^{k}(S), \quad \mathbf{N}_{g}^{+}(S)=\sum_{k \geq 0} \mathbf{N}_{g}^{2 k}(S), \quad \mathbf{N}_{g}^{-}(S)=\sum_{k \geq 0} \mathbf{N}_{g}^{2 k+1}(S)
$$

Thus $\mathbf{N}_{g}(S)$ denotes the number of distinct subsequences T in S with $\sigma(T)=g$, $\mathbf{N}_{g}^{+}(S)$ denotes the number of such subsequences in S of even length, and $\mathbf{N}_{g}^{-}(S)$ denotes the number of such subsequences in S of odd length.

Lemma 3.12. Let G be a finite abelian p-group and let S be a sequence over G of length $\mathrm{D}(G)-2$. Suppose that $\mathbf{N}_{0}^{+}(S) \not \equiv \mathbf{N}_{0}^{-}(S)(\bmod p)$. Then there exist a subgroup H of G and an element $x \in G \backslash H$ such that $G \backslash \Sigma(S) \subset x+H$.

Proof. See [G97, Lemma 10].
Lemma 3.13. Let $G=C_{p}^{r}$, where $p \geq 3$ is prime and $r \geq 2$, and let $S=S_{1} \cdot \ldots \cdot S_{l}$ be a sequence over G^{\bullet}, where $l \in \mathbb{N}$ and S_{1}, \ldots, S_{l} are minimal zero-sum subsequences. Suppose S has no innerly joint minimal zero-sum subsequences and that $|S|=r p+t$ with $t \geq 1$. Then at least $t+r+2$ of $\left|S_{1}\right|, \ldots,\left|S_{l}\right|$ are odd.

Proof. Suppose that exactly k of $\left|S_{1}\right|, \ldots,\left|S_{l}\right|$ are odd. Note that $\mathrm{D}(G)=r(p-1)+1$ by Lemma 3.8.2. Then $k \geq t+r$ follows from Lemma 3.10. We need to show that $k \geq t+r+2$. Assume to the contrary that $k \leq t+r+1$. Then $k=t+r$ by $k \equiv r p+t \equiv r+t$ $(\bmod 2)$. After renumbering if necessary, we may assume that $\left|S_{1}\right|, \ldots,\left|S_{r+t}\right|$ are odd and $\left|S_{r+t+1}\right|, \ldots,\left|S_{l}\right|$ are even.

Let $a_{i} \in \operatorname{supp}\left(S_{i}\right)$ for every $i \in[1, r+t]$, choose a term x of $a_{1}^{-1} S_{1}$, and set

$$
T=a_{1}^{-1} x^{-1} S_{1} a_{2}^{-1} S_{2} \cdot \ldots \cdot a_{r+t}^{-1} S_{r+t} S_{r+t+1} \cdot \ldots \cdot S_{l}
$$

Then $\mathbf{N}_{0}^{+}(T)=2^{l-r-t}, \mathbf{N}_{0}^{-}(T)=0,|T|=r(p-1)-1=\mathrm{D}(G)-2$, and

$$
\left\{-a_{1},-a_{1}-a_{2}, \ldots,-a_{1}-a_{r+t},-x,-x-a_{2}, \ldots,-x-a_{r+t}\right\} \cap \Sigma(T)=\emptyset .
$$

It follows from Lemma 3.12 that there exist a subgroup H of G and an element $g \in G \backslash H$ such that

$$
\left\{-a_{1},-a_{1}-a_{2}, \ldots,-a_{1}-a_{r+t},-x,-x-a_{2}, \ldots,-x-a_{r+t}\right\} \subset g+H
$$

This implies that $x-a_{1}=\left(-a_{1}\right)-(-x) \in H$. Since x was chosen arbitrarily, we obtain S_{1} is over $a_{1}+H=-g+H$. In view of $\sigma\left(S_{1}\right)=0$, we obtain $\left|S_{1}\right| g \in H$ and hence $p\left|\left|S_{1}\right|\right.$. Similarly, we can show

$$
p\left|\left|S_{2}\right|, \ldots, p\right|\left|S_{r+t}\right|
$$

which implies that $|S| \geq\left|S_{1}\right|+\ldots+\left|S_{r+t}\right| \geq p(r+t)>r p+t$, a contradiction. Thus $k \geq t+r+2$ and we are done.

Now we are ready to state our main theorem of this subsection.
Theorem 3.14. Let $G=C_{n_{1}} \oplus \ldots \oplus C_{n_{r}}$ be a finite abelian group, where $1 \leq n_{1}|\ldots| n_{r}$. Then $\mathrm{N}_{1}(G)=n_{1}+\ldots+n_{r}$ holds for any one of the following groups.
(1) $G=C_{2}^{r} \oplus C_{2 m}$ with $m \in \mathbb{N}$ and $r \in[2,3]$.
(2) $G=C_{5}^{r}$ with $r \in[1,9]$.
(3) $G=C_{7}^{r}$ with $r \in[1,6]$.
(4) $G=C_{11}^{r}$ with $r \in[1,4]$.
(5) $G=C_{p}^{r}$ with $r \in[1,3]$ and $p \in\{13,17,19,23\}$.

Proof. 1. We only prove the case that $r=2$, since the proof is similar for $r=3$. If $m=1$, the assertion follows from Lemma 3.7.3. Suppose $m \geq 2$. By (2.1), it suffices to show that $\mathrm{N}_{1}(G) \leq 2 m+4$. Let S be a zero-sum sequence over G^{\bullet} of length $|S| \geq 2 m+5$. We need to show that S has two innerly joint minimal zero-sum subsequences. Assume to the contrary that S has no innerly joint minimal zero-sum subsequences.

Let $S=U_{1} \cdot \ldots \cdot U_{t}$, where U_{1}, \ldots, U_{t} are minimal zero-sum subsequences. Choose $g_{i} \in \operatorname{supp}\left(U_{i}\right)$ for every $i \in[1, t]$. Then $T:=\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S$ has no zero-sum subsequence. If $t \leq 3$, then by Lemma 3.8.3 $|T| \geq 2 m+2=\mathrm{D}(G)$, a contradiction. If $t \geq 4$, then Lemma 3.9 implies that $|G| \geq \prod_{i=1}^{t}\left|U_{i}\right| \geq 2^{3}(2 m-1)>|G|$, a contradiction.
2. By (2.1), it suffices to show that $\mathrm{N}_{1}(G) \leq 5 r$, where $r \in[1,9]$. Let S be a zerosum sequence over G^{\bullet} of length $|S|=5 r+k$ with $k \geq 1$. We need to show that S has two innerly joint minimal zero-sum subsequences. Assume to the contrary that S has no innerly joint minimal zero-sum subsequences.

Let $S=U_{1} \cdot \ldots \cdot U_{t} U_{t+1} \cdot \ldots \cdot U_{l}$, where U_{1}, \ldots, U_{l} are minimal zero-sum subsequences such that $\left|U_{i}\right|$ is odd for every $i \in[1, t]$ and $\left|U_{i}\right|$ is even for every $i \in[t+1, l]$. By Lemma 3.13, we have $t \geq r+k+2 \geq r+3$.

If $r<3+k$, then $5 r+k=|S| \geq 3(r+k+2)>5 r+k$, a contradiction. If $r \geq 3+k \geq 4$, then Lemma 3.9 implies that

$$
|G| \geq \prod_{i=1}^{l}\left|U_{i}\right| \geq 3^{r+2}(2 r-5)>5^{r}=|G|
$$

a contradiction.
3. By (2.1), it suffices to show that $\mathrm{N}_{1}(G) \leq 7 r$, where $r \in[1,6]$. Let S be a zerosum sequence over G^{\bullet} of length $|S|=7 r+k$ with $k \geq 1$. We need to show that S has two innerly joint minimal zero-sum subsequences. Assume to the contrary that S has no innerly joint minimal zero-sum subsequences.

Let $S=U_{1} \cdot \ldots \cdot U_{t} U_{t+1} \cdot \ldots \cdot U_{l}$, where U_{1}, \ldots, U_{l} are minimal zero-sum subsequences such that $\left|U_{i}\right|$ is odd for every $i \in[1, t]$ and $\left|U_{i}\right|$ is even for every $i \in[t+1, l]$. By Lemma 3.13 , we have $t \geq r+k+2 \geq r+3$.

If $r=1$, then Lemma 3.9 implies that

$$
|G| \geq \prod_{i=1}^{l}\left|U_{i}\right| \geq 3^{4}>7=|G|
$$

a contradiction. If $r \geq 2$, then Lemma 3.9 implies that

$$
|G| \geq \prod_{i=1}^{l}\left|U_{i}\right| \geq 3^{r+2}(4 r-5)>7^{r}=|G|
$$

a contradiction.
4. By (2.1), it suffices to show that $\mathrm{N}_{1}(G) \leq 11 r$, where $r \in[1,4]$. Let S be a zerosum sequence over G^{\bullet} of length $|S|=11 r+k$ with $k \geq 1$. We need to show that S has two innerly joint minimal zero-sum subsequences. Assume to the contrary that S has no innerly joint minimal zero-sum subsequences.

Let $S=U_{1} \cdot \ldots \cdot U_{t} U_{t+1} \cdot \ldots \cdot U_{l}$, where U_{1}, \ldots, U_{l} are minimal zero-sum subsequences such that $\left|U_{i}\right|$ is odd for every $i \in[1, t]$ and $\left|U_{i}\right|$ is even for every $i \in[t+1, l]$. By Lemma 3.13 , we have $t \geq r+k+2 \geq r+3$.

Then Lemma 3.9 implies that

$$
|G| \geq \prod_{i=1}^{l}\left|U_{i}\right| \geq 3^{r+2}(8 r-5)>11^{r}=|G|
$$

a contradiction.
5. By (2.1), it suffices to show that $\mathrm{N}_{1}(G) \leq p r$, where $r \in[1,3]$ and $p \in\{13,17,19,23\}$. Let S be a zero-sum sequence over $G \bullet$ of length $|S|=p r+k$ with $k \geq 1$. We need to show that S has two innerly joint minimal zero-sum subsequences. Assume to the contrary that S has no innerly joint minimal zero-sum subsequences.

Let $S=U_{1} \cdot \ldots \cdot U_{t} U_{t+1} \cdot \ldots \cdot U_{l}$, where U_{1}, \ldots, U_{l} are minimal zero-sum subsequences such that $\left|U_{i}\right|$ is odd for every $i \in[1, t]$ and $\left|U_{i}\right|$ is even for every $i \in[t+1, l]$. By Lemma 3.13, we have $t \geq r+k+2 \geq r+3$.

Then Lemma 3.9 implies that

$$
|G| \geq \prod_{i=1}^{l}\left|U_{i}\right| \geq 3^{r+2}((p-3) r-5)>p^{r}=|G|
$$

a contradiction.

4. $\mathrm{On} \mathrm{s}^{N}(G)$

In this section we shall investigate $\mathbf{s}^{N}(G)$. We first introduce two more invariants which are lower and upper bounds of $\mathrm{s}^{N}(G)$. We define

- $\mathrm{s}^{*}(G)$ to be the smallest integer t such that every sequence S of length t over G • has two innerly joint zero-sum subsequences of length $\exp (G)$.
- $\mathrm{s}^{* *}(G)$ to be the smallest integer t such that every sequence S of length t over G with $\mathrm{v}_{0}(S) \leq \exp (G)$ has two innerly non-zero-sum-joint zero-sum subsequences of length $\exp (G)$.
It follows from the definitions of $\mathrm{s}^{*}(G), \mathrm{s}^{* *}(G)$ and $\mathrm{s}^{N}(G)$ that

$$
\mathrm{s}^{* *}(G) \geq \mathrm{s}^{N}(G) \geq \mathrm{s}^{*}(G)
$$

We will frequently use the following easy observation without further mention.

Lemma 4.1. Let G be a finite abelian group and let S be a sequence over G with $\mathrm{v}_{0}(S) \leq$ $k \exp (G)$ such that S has no innerly non-zero-sum-joint zero-sum subsequences of length $k \exp (G)$, where $k \in \mathbb{N}$.
(1) Let T be a zero-sum subsequence of S of length $|T|=k \exp (G)$. Then $\mathrm{v}_{g}(T)=$ $\mathrm{v}_{g}(S)$ for every $g \in \operatorname{supp}(T) \backslash\{0\}$. In particular, $\mathrm{h}(S) \leq k \exp (G)$.
(2) Suppose $S=T_{1} \cdot \ldots \cdot T_{r} T_{0}$, where $r \in \mathbb{N}_{0}, T_{1}, \ldots, T_{r}$ are zero-sum subsequences of S of length $\left|T_{1}\right|=\ldots=\left|T_{r}\right|=k \exp (G)$, and T_{0} has no zero-sum subsequence of length $k \exp (G)$. Then $\operatorname{supp}\left(T_{i}\right) \cap \operatorname{supp}\left(T_{j}\right)=\emptyset$ or $\{0\}$ for any distinct $i, j \in[0, r]$.

Proof. 1. Assume to the contrary that there exists $g \in \operatorname{supp}(T) \backslash\{0\}$ such that $\mathrm{v}_{g}(T)<$ $\mathrm{v}_{g}(S)$. Then $T g$ divides S and $g^{-1} T$ is not zero-sum, whence T and T have a non-zero-sum S-inner common divisor $g^{-1} T$, a contradiction.

The "in particular" part follows from the fact that for every $g \in G^{\bullet}$, we have $g^{k \exp (G)}$ is a zero-sum sequence of length $k \exp (G)$.
2. Assume to the contrary that there exist distinct $i, j \in[0, r]$ such that $g \in \operatorname{supp}\left(T_{i}\right) \cap$ $\operatorname{supp}\left(T_{j}\right)$ and $g \in G^{\bullet}$. By symmetry we may assume that $i \geq 1$ and hence $\mathrm{v}_{g}\left(T_{i}\right)<\mathrm{v}_{g}(S)$, a contradiction to Item 1 .

Lemma 4.2. $\mathrm{s}^{*}\left(C_{2}^{r}\right)=\mathrm{s}^{N}\left(C_{2}^{r}\right)=2^{r+1}-1$ and $\mathrm{s}^{* *}\left(C_{2}^{r}\right)=2^{r+1}+1$, where $r \in \mathbb{N}$.
Proof. Let $G=C_{2}^{r}$. We first show that $\mathrm{s}^{*}(G)=\mathrm{s}^{N}(G)=2^{r+1}-1$. Let

$$
S=\prod_{g \in G \bullet} g^{2}
$$

and it is easy to see that $S \in \mathcal{F}\left(G^{\bullet}\right)$ has no innerly joint zero-sum subsequences of length 2. It follows that $\mathrm{s}^{*}(G) \geq|S|+1=2\left(2^{r}-1\right)+1=2^{r+1}-1$.

We only need to show $\mathrm{s}^{N}(G) \leq 2^{r+1}-1$. Let U be a sequence over $G \bullet$ of length $2^{r+1}-$ 1. Then $\mathrm{h}(U) \geq|U| /(|G|-1)>2$, whence there exists $g \in G \bullet$ such that $\mathrm{v}_{g}(U) \geq 3$. By Lemma 4.1.1 we obtain that U has two innerly non-zero-sum-joint zero-sum subsequences of length 2 and we are done.

We next show that $\mathrm{s}^{* *}(G)=2^{r+1}+1$. Let

$$
S^{\prime}=\prod_{g \in G} g^{2}
$$

Then $\mathrm{v}_{0}\left(S^{\prime}\right)=2$ and S^{\prime} has no innerly non-zero-sum-joint zero-sum subsequences of length 2 , whence $\mathrm{s}^{* *}(G) \geq\left|S^{\prime}\right|+1=2^{r+1}+1$. Let U^{\prime} be a sequence over G of length $2^{r+1}+1$ with $\mathrm{v}_{0}\left(U^{\prime}\right) \leq 2$. Since $\left(\left|U^{\prime}\right|-\mathrm{v}_{0}\left(U^{\prime}\right)\right) /(|G|-1)>2$, there exists $g \in G^{\bullet}$ such that $\mathrm{v}_{g}\left(U^{\prime}\right) \geq 3$. By Lemma 4.1.1 we obtain that U^{\prime} has two innerly non-zero-sum-joint zero-sum subsequences of length 2 , whence $\mathrm{s}^{* *}(G) \leq 2^{r+1}+1$ and we are done.

Remark: Let G be a finite abelian group such that $\exp (G) \geq 3$. Then $S=\prod_{g \in G} g^{\exp (G)}$ has a zero-sum subsequence T of length $\exp (G)$ such that $|\operatorname{supp}(T)| \geq 2$, whence S
has two innerly non-zero-sum-joint zero-sum subsequences of length $\exp (G)$ and hence $\mathrm{s}^{* *}(G) \leq|G| \exp (G)$.

We distinguish three subsections depending on the rank of the groups.
4.1. Cyclic groups. Let G be a finite abelian group and let $A_{1}, A_{2}, \ldots, A_{h}$ be nonempty subsets of G, where $h \geq 2$. We define

$$
A_{1}+\ldots+A_{h}=\left\{a_{1}+\ldots+a_{h}: a_{i} \in A_{i} \text { for } i \in[1, h]\right\}
$$

The following lemma is the famous Cauchy-Davenport Theorem.
Lemma 4.3. Let G be a cyclic group of prime order p and let A_{1}, \ldots, A_{h} be nonempty subsets of G, where $h \geq 2$. Then

$$
\left|A_{1}+\ldots+A_{h}\right| \geq \min \left\{p, \sum_{i=1}^{h}\left|A_{i}\right|-h+1\right\}
$$

Proof. See [N96, Theorem 2.3].
Lemma 4.4. Let $G=C_{n}$, where $n \geq 3$. Then $\mathrm{s}^{* *}(G) \geq \mathrm{s}^{*}(G) \geq 2 n+1$.
Proof. Let $g \in G$ such that $\operatorname{ord}(g)=n$ and let $S=g^{n}(2 g)^{n}$. Then S has only two zero-sum subsequences g^{n} and $(2 g)^{n}$ of length n. Since g^{n} and $(2 g)^{n}$ are not S-innerly joint, we have $\mathrm{s}^{*}(G) \geq|S|+1=2 n+1$.

Lemma 4.5. If p is a prime, then $\mathrm{s}^{* *}\left(C_{p}\right)=2 p+1$.
Proof. By Lemmas 4.2 and 4.4, it suffices to prove that $\mathrm{s}^{* *}\left(C_{p}\right) \leq 2 p+1$. Let S be a sequence over C_{p} of length $|S|=2 p+1$ such that $\mathrm{v}_{0}(S) \leq p$. We need to show that S has two innerly non-zero-sum-joint zero-sum subsequences of length p. Assume to the contrary that S has no innerly non-zero-sum-joint zero-sum subsequences of length p. It follows from Lemma 4.1.1 that $\mathrm{v}_{g}(S) \leq p$ for every $g \in C_{p}$.

Note that there exists $g \in C_{p}^{\bullet}$ such that $\mathrm{v}_{g}(S) \geq 2$. Set $T=\left(g^{2}\right)^{-1} S$. It follows from $\mathrm{h}(T) \leq p$ that there exist T-innerly disjoint squarefree subsequences A_{1}, \ldots, A_{p-1} of length $\left|A_{1}\right|=\ldots=\left|A_{p-1}\right|=2$ such that $A_{1} \cdot \ldots \cdot A_{p-1}$ divides T. Applying Lemma 4.3, we obtain that $\left|A_{1}+\ldots+A_{p-1}\right| \geq \min \left\{p,\left|A_{1}\right|+\ldots+\left|A_{p-1}\right|-(p-2)\right\}=p$, whence $A_{1}+\ldots+A_{p-1}=C_{p}$. Let W be a subsequence of $A_{1} \cdot \ldots \cdot A_{p-1}$ of length $p-1$ such that $\sigma(W)=-g$. Then $g W$ is a zero-sum subsequence of S of length p with $\mathrm{v}_{g}(g W)<\mathrm{v}_{g}(S)$, a contradiction to Lemma 4.1.1.

Lemma 4.6. Let G be a cyclic group of order $m \geq 2$ and let $n \geq m$. Let S be a nontrivial sequence over G such that $\mathrm{v}_{0}(S) \leq m n-3$. Suppose that $\mathrm{s}^{* *}\left(C_{m}\right)=2 m+1$ and that S has no innerly non-zero-sum-joint zero-sum subsequences of length mn. Then $|S| \leq$ $m n+2 m-3$ and there exist $t \in \mathbb{N}_{0}$ and S-innerly disjoint subsequences S_{1}, \ldots, S_{t} such that $\left|S_{i}\right|=n$ for each $i \in[1, t],\left|\left(S_{1} \cdot \ldots \cdot S_{t}\right)^{-1} S\right| \leq n$, and the sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{t}\right)$ has no zero-sum subsequence of length m.

Proof. Assume to the contrary that $|S| \geq m n+2 m-2$. Then $\left|\left(0^{v_{0}(S)}\right)^{-1} S\right| \geq 2 m+1$. It follows from $\mathrm{s}^{* *}\left(C_{m}\right)=2 m+1$ that S has two innerly non-zero-sum-joint zero-sum subsequences W_{0} and W_{1} of length $\left|W_{0}\right|=\left|W_{1}\right|=m$. Let Y be a non-zero-sum S-inner common divisor of W_{0} and W_{1} and let $W=\left(W_{0} W_{1}\right)^{-1} Y S$. Then, $|W| \geq|S|-(2 m-1) \geq$ $(n-2) m+2 m-1$. Now applying $s\left(C_{m}\right)=2 m-1$ repeatedly to W, one can find $n-1 W$ innerly disjoint zero-sum subsequences W_{2}, \ldots, W_{n} of length $\left|W_{2}\right|=\ldots=\left|W_{n}\right|=m$. Set $T_{1}=W_{0} \prod_{i=2}^{n} W_{i}$ and $T_{2}=W_{1} \prod_{i=2}^{n} W_{i}$. Now T_{1} and T_{2} are two zero-sum subsequences of S of length $\left|T_{1}\right|=\left|T_{2}\right|=m n$, and T_{1} and T_{2} have a non-zero-sum S-inner common divisor $Y \prod_{i=2}^{n} W_{i}$, a contradiction.

Therefore $|S| \leq m n+2 m-3$. If $|S|=t n+r \leq m n$, where $t \in[0, m-1]$ and $r \in[1, n]$, then choose S-innerly disjoint subsequences S_{1}, \ldots, S_{t} of length $\left|S_{1}\right|=\ldots=\left|S_{t}\right|=n$, whence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{t}\right)$ has no zero-sum subsequence of length m.

Suppose that $m n+1 \leq|S| \leq m n+n$. Let S_{1}, \ldots, S_{m} be m-innerly disjoint subsequences of length $\left|S_{1}\right|=\ldots=\left|S_{m}\right|=n$ such that $\operatorname{supp}\left(\left(S_{1} \cdot \ldots \cdot S_{m}\right)^{-1} S\right) \not \subset\{0\}$. Set $S^{\prime}=\left(S_{1} \cdot \ldots \cdot S_{m}\right)^{-1} S$. Then $\left|S^{\prime}\right| \leq n$. If $\sigma\left(S_{1}\right)+\ldots+\sigma\left(S_{m}\right) \neq 0$, then we are done. Otherwise choose a term $x \neq 0$ of S^{\prime} and a term y of S_{m}. Let $S_{m}^{\prime}=y^{-1} x S_{m}$. If $\sigma\left(S_{1}\right)+\ldots+\sigma\left(S_{m-1}\right)+\sigma\left(S_{m}^{\prime}\right) \neq 0$, then we are done. Otherwise $x=y$ and there are two zero-sum subsequences $S_{1} \cdot \ldots \cdot S_{m}$ and $S_{1} \cdot \ldots \cdot S_{m-1} S_{m}^{\prime}$ with a non-zero-sum S-inner common divisor $x^{-1} S_{1} \cdot \ldots \cdot S_{m}$, a contradiction.

Suppose $m n+n+1 \leq|S| \leq m n+2 n-3$. Then $n \geq 4$. Set $\mathrm{v}_{0}(S)=t_{1} n+r_{1}$, where $t_{1} \in[0, m-1]$ and $r_{1} \in[0, n-1]$ and $\ell=|S|-\mathrm{v}_{0}(S) \geq m n+n+1-(m n-3)=n+4$. Let $U=a_{1} \cdot \ldots \cdot a_{x}$ be the maximal subsequence of $\left(0^{v_{0}(S)}\right)^{-1} S$ such that U^{2} divides $\left(0^{\mathrm{v}_{0}(S)}\right)^{-1} S$, then $2 x=\left|U^{2}\right|=\left|\left(0^{\mathrm{v}_{0}(S)}\right)^{-1} S\right|-\left|\operatorname{supp}\left(\left(0^{\mathrm{v}_{0}(S)}\right)^{-1} S\right)\right| \geq l-(m-1)$. We assert that $x \geq m+1-t_{1}$. If $t_{1}=m-1$, then $2 x-2\left(m+1-t_{1}\right) \geq \ell-(m-1)-4 \geq n+4-m-3>0$. If $t_{1} \leq m-2$, then

$$
\begin{aligned}
2 x-2\left(m+1-t_{1}\right) & \geq \ell-(m-1)-2\left(m+1-t_{1}\right) \\
& \geq m n+n+1-\left(t_{1} n+r_{1}\right)-(m-1)-2\left(m+1-t_{1}\right) \\
& =\left(m+1-t_{1}\right)(n-2)-m-r_{1}+2 \\
& \geq 3(n-2)-m-(n-1)+2 \\
& \geq n-3>0,
\end{aligned}
$$

whence $x \geq m+1-t_{1}$. By this assertion, we can choose S-innerly disjoint subsequences S_{1}, \ldots, S_{m+1} of length $\left|S_{1}\right|=\ldots=\left|S_{m+1}\right|=m$ such that $S_{1}=\ldots=S_{t_{1}}=0^{n}, a_{1}$ divides $S_{t_{1}+1}, a_{i} a_{i+1}$ divides $S_{t_{1}+i+1}$ for $i \in\left[1, m-t_{1}\right]$, and $a_{m+1-t_{1}}$ divides $\left(S_{1} \cdot \ldots \cdot S_{m+1}\right)^{-1} S$. If $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{m+1}\right)$ has no zero-sum subsequence of length m, then we are done. If there exists $i \in\left[1, t_{1}\right]$, say $i=1$, such that $\sigma\left(S_{2}\right) \cdot \ldots \cdot \sigma\left(S_{m+1}\right)$ is zero-sum, then $V_{1}:=$ $S_{2} \cdot \ldots \cdot S_{m+1}$ is a zero-sum subsequence of length $m n$ and $\mathrm{v}_{a_{m+1-t_{1}}}\left(V_{1}\right)<\mathrm{v}_{a_{m+1-t_{1}}}(S)$, a contradiction to Lemma 4.1.1. If there exists $i \in\left[t_{1}+1, m\right]$ such that $\sigma\left(S_{1}\right) \cdot \ldots$.
$\sigma\left(S_{i-1}\right) \sigma\left(S_{i+1}\right) \cdot \ldots \cdot \sigma\left(S_{m+1}\right)$ is zero-sum, then $V_{i}:=S_{1} \cdot \ldots \cdot S_{i-1} S_{i+1} \cdot \ldots \cdot S_{m+1}$ is a zero-sum subsequence of length $m n$ and $\mathrm{v}_{a_{i-t_{1}}}\left(V_{i}\right)<\mathrm{v}_{a_{i-t_{1}}}(S)$, a contradiction to Lemma 4.1.1. If $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{m}\right)$ is zero-sum, then $V^{\prime}:=S_{1} \cdot \ldots \cdot S_{m}$ is a zero-sum subsequence of length $m n$ and $v_{a_{m-t_{1}}}\left(V^{\prime}\right)<\mathrm{v}_{a_{m-t_{1}}}(S)$, a contradiction to Lemma 4.1.1.

Lemma 4.7. If $\mathrm{s}^{* *}\left(C_{m}\right)=2 m+1$ and $\mathrm{s}^{* *}\left(C_{n}\right)=2 n+1$, then $\mathrm{s}^{* *}\left(C_{m n}\right)=2 m n+1$, where $m, n \geq 2$.

Proof. By symmetry, we may suppose $n \geq m \geq 2$. Let $G=C_{m n}$. By Lemma 4.4 it suffices to prove the upper bound. Let S be a sequence of length $|S|=2 m n+1$ such that $\mathrm{v}_{0}(S) \leq m n$. We need to show that S has two innerly non-zero-sum-joint zero-sum subsequences of length $m n$. Assume to the contrary that S has no innerly non-zero-sum-joint zero-sum subsequences of length $m n$. Let $S^{\prime}=\left(0^{v_{0}(S)}\right)^{-1} S$. Then $\left|S^{\prime}\right| \geq m n+1=\eta^{N}\left(C_{m n}\right)$ by Lemma 3.1.1, whence S^{\prime} has two innerly non-zero-sumjoint short minimal zero-sum subsequences W_{1} and W_{2}. Let Y be a non-zero-sum S^{\prime} inner common divisor of W_{1} and W_{2}. If $\mathrm{v}_{0}(S) \geq m n-2$, then $W_{3}:=0^{m n-\left|W_{1}\right|} W_{1}$ and $W_{4}:=0^{m n-\left|W_{2}\right|} W_{2}$ are zero-sum subsequences of S of length $m n$ and have a non-zero-sum S-inner common divisor $0^{s} Y$, where $s \in\left[0, \min \left\{m n-\left|W_{1}\right|, m n-\left|W_{2}\right|\right\}\right]$, a contradiction.

Therefore $\mathrm{v}_{0}(S) \leq m n-3$. Let $\varphi: G \rightarrow G$ denote the multiplication by m. Then $\operatorname{ker}(\varphi) \cong C_{m}$ and $\varphi(G)=m G \cong C_{n}$. Set $S=g_{1} \cdot \ldots \cdot g_{l}$, where $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G$, such that $\varphi\left(g_{i}\right)=0$ for all $i \in[1, t]$ and $\varphi\left(g_{i}\right) \neq 0$ for all $i \in[t+1, l]$, where $t \in[0, l]$. Since the sequence $g_{1} \cdot \ldots \cdot g_{t}$ has no innerly non-zero-sum-joint zero-sum subsequences of length $m n$, it follows by Lemma 4.6 that $t \leq m n+2 m-3$ and there exist $g_{1} \cdot \ldots \cdot g_{t}$-innerly disjoint subsequences $S_{1}, \ldots, S_{u_{0}}$ of length $\left|S_{1}\right|=\ldots=\left|S_{u_{0}}\right|=n$ such that

- the sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{u_{0}}\right)$ has no zero-sum subsequence of length m;
- $\left|\left(S_{1} \cdot \ldots \cdot S_{u_{0}}\right)^{-1} g_{1} \cdot \ldots \cdot g_{t}\right| \leq n$.

Let u_{1} be the maixmal integer such that we can find $\left(S_{1} \cdot \ldots \cdot S_{u_{0}}\right)^{-1} S$-innerly disjoint subsequences $S_{u_{0}+1}, \ldots, S_{u_{0}+u_{1}}$ of length $\left|S_{u_{0}+1}\right|=\ldots=\left|S_{u_{0}+u_{1}}\right|=n$ satisfying the following properties.

- $\varphi\left(S_{i}\right)$ is zero-sum for every $i \in\left[1, u_{0}+u_{1}\right]$;
- $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{u_{0}}\right) \sigma\left(S_{u_{0}+1}\right) \cdot \ldots \cdot \sigma\left(S_{u_{0}+u_{1}}\right)$ has no zero-sum subsequence of length m.

Let $S^{\prime \prime}=\left(S_{1} \cdot \ldots \cdot S_{u_{0}+u_{1}}\right)^{-1} S$. Therefore $u_{0}+u_{1} \leq \mathrm{s}\left(C_{m}\right)-1=2 m-2$ and hence $\left|S^{\prime \prime}\right|=|S|-n\left(u_{0}+u_{1}\right) \geq 2 n+1=\mathrm{s}^{* *}\left(C_{n}\right)$. We infer that there exist two subsequences T_{1} and T_{2} of $S^{\prime \prime}$ with $\left|T_{1}\right|=\left|T_{2}\right|=n$ such that $\varphi\left(T_{1}\right), \varphi\left(T_{2}\right)$ are zerosum and have a non-zero-sum $\varphi\left(S^{\prime \prime}\right)$-inner common divisor $\varphi(Y)$, where Y is a $S^{\prime \prime}$-inner common divisor of T_{1} and T_{2}, whence $\sigma(Y) \notin \operatorname{ker}(\varphi)$. By the maximality of u_{1}, there exist $I, J \subset\left[1, u_{0}+u_{1}\right]$ with $|I|=|J|=m-1$ such that $T_{1} \prod_{i \in I} S_{i}$ and $T_{2} \prod_{j \in J} S_{j}$ are
zero-sum subsequences of length $m n$ and have a non-zero-sum S-inner common divisor $Y \prod_{k \in I \cap J} S_{k}$, a contradiction.

By Lemmas 4.4, 4.5, and 4.7, we obtain our first main result of this section.
Theorem 4.8. Let $G=C_{n}$ with $n \geq 3$. Then $\mathrm{s}^{* *}(G)=\mathrm{s}^{N}(G)=\mathrm{s}^{*}(G)=2 n+1$.
4.2. Abelian groups of rank 2. We first consider $\mathrm{s}^{*}(G)$ for abelian groups G of rank 2.

Lemma 4.9. If $G=C_{n} \oplus C_{m}$ with $1<n \mid m$, then

$$
\mathrm{s}^{*}(G)= \begin{cases}4 m+1, & \text { if } n=m \geq 3 \\ 2 n+2 m-1, & \text { others }\end{cases}
$$

Proof. Let $G=C_{n} \oplus C_{m}$ with $1<n \mid m$. If $n=m=2$, then the assertion follows from Lemma 4.2.

Suppose $n=m \geq 3$. Let $\left(e_{1}, e_{2}\right)$ be a basis of G and let

$$
S=\left(2 e_{1} \cdot e_{1} \cdot e_{2} \cdot\left(e_{1}+e_{2}\right)\right)^{m}
$$

It is easy to see that S has no innerly joint zero-sum subsequences of length m. Then $\mathrm{s}^{*}(G) \geq|S|+1=4 m+1$. To show $\mathrm{s}^{*}(G) \leq 4 m+1$. Let S be a sequence over $G \bullet$ of length $|S|=4 m+1$. We need to show that S has two innerly joint zero-sum subsequences of length m. Assume to the contrary that S has no innerly joint zero-sum subsequences of length m. Let t be maximal such that S_{1}, \ldots, S_{t} are S-innerly disjoint zero-sum subsequences of length $\left|S_{i}\right|=m$ for $i \in[1, t]$, where $t \in \mathbb{N}_{0}$. Then $S_{1} \cdot \ldots \cdot S_{t} \mid S$. For every $i \in[1, t]$, we choose a term g_{i} of S_{i}. It follows that $\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S$ has no zero-sum subsequence of length m, whence $\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S\right| \leq \mathrm{s}(G)-1=4 m-4$. We infer that $t=|S|-\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S\right| \geq 5$ and hence

$$
4 m+1=|S| \geq\left|S_{1} \cdot \ldots \cdot S_{t}\right| \geq 5 m
$$

a contradiction.
Suppose $n<m$. Then $2 n \leq m$. Let $\left(e_{1}, e_{2}\right)$ be a basis of G and let

$$
T=\left(e_{1}+e_{2}\right)^{n-1}\left(e_{1}+2 e_{2}\right)^{n-1} e_{2}^{m}\left(2 e_{2}\right)^{m}
$$

Next we show that T has no innerly joint zero-sum subsequences of length m. Suppose that T^{\prime} is a zero-sum subsequence of T of length $\left|T^{\prime}\right|=m$. Then there exist $x, y \in[0, n-1]$ with $n \mid x+y$ and $z \in[0, m-x-y]$ such that

$$
T^{\prime}=\left(e_{1}+e_{2}\right)^{x}\left(e_{1}+2 e_{2}\right)^{y} e_{2}^{z}\left(2 e_{2}\right)^{m-x-y-z}
$$

whence $\sigma\left(T^{\prime}\right)=(x+y) e_{1}+(x+2 y+z+2 m-2 x-2 y-2 z) e_{2}=(-x-z) e_{2}=0$ and hence m divides $x+z$. Since $x+z \in[x, m-y]$, we obtain either $x+z=x=0$ or $x+z=m-y=m$, whence $z \in\{0, m\}$. Note that $n \mid x+y$. Both cases imply that $x=y=0$. Therefore $T^{\prime} \in\left\{e_{2}^{m},\left(2 e_{2}\right)^{m}\right\}$ and hence T has no innerly joint zero-sum
subsequences of length m. So we have $s^{*}(G) \geq|T|+1=2 n+2 m-1$. Next we need to prove that $\mathrm{s}^{*}(G) \leq 2 n+2 m-1$. Let S^{\prime} be a sequence over G^{\bullet} of length $\left|S^{\prime}\right|=2 n+2 m-1$. We need to show that S^{\prime} has two innerly joint zero-sum subsequences of length m. Assume to the contrary that S^{\prime} has no innerly joint zero-sum subsequences of length m. Let t be maximal such that S_{1}, \ldots, S_{t} are S^{\prime}-innerly disjoint zero-sum subsequences with $\left|S_{i}\right|=m$ for $i \in[1, t]$, where $t \in \mathbb{N}_{0}$. Then $S_{1} \cdot \ldots \cdot S_{t} \mid S^{\prime}$. For every $i \in[1, t]$, we choose a term g_{i} of S_{i}. It follows that $\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S^{\prime}$ has no zero-sum subsequence in S^{\prime} of length m, whence $\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S^{\prime}\right| \leq \mathrm{s}(G)-1=2 n+2 m-4$. We infer that $t=\left|S^{\prime}\right|-\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S^{\prime}\right| \geq 3$ and hence

$$
2 n+2 m-1=\left|S^{\prime}\right| \geq\left|S_{1} \cdot \ldots \cdot S_{t}\right| \geq 3 m
$$

It follows that $2 n-1 \geq m$, a contradiction.
Let $S=g_{1} \cdot \ldots \cdot g_{\ell}$ be a sequence over G and let $k \in \mathbb{N}$. We define

$$
\Sigma_{k}(S)=\{\sigma(T): T \mid S \text { with }|T|=k\}
$$

Note that we can view every subset A as a squarefree sequence over G and hence $\Sigma_{k}(A)$ is well-defined for every $k \in \mathbb{N}$. We need some preliminary results beginning with the following well known Dias da Silva-Hamidoune theorem.

Lemma 4.10. Let p be a prime, and let $A \subset C_{p}$ with $|A|=k$. Let $1 \leq h \leq k$. Then

$$
\left|\Sigma_{h}(A)\right| \geq \min \left\{p, h k-h^{2}+1\right\}
$$

Proof. See [N96, Theorem 3.4].
Lemma 4.11. Let G be a cyclic group of prime order p and let S be a sequence over $G \cdot$. If $|S| \geq p$, then $\sum_{\leq \mathrm{h}(S)}(S)=G$, where $\sum_{\leq \mathrm{h}(S)}(S)=\bigcup_{r=1}^{\mathrm{h}(S)} \sum_{r}(S)$.

Proof. Suppose $S=g_{1}^{r_{1}} \cdot \ldots \cdot g_{t}^{r_{t}}$, where g_{1}, \ldots, g_{t} are different nonzero elements and $\mathrm{h}(S)=r_{1} \geq r_{2} \geq \ldots \geq r_{t}$. Then we can factor S into a product of $\mathrm{h}(S)$ nonempty subsets $A_{1}, \ldots, A_{\mathrm{h}(S)}$, that is to say

$$
S=A_{1} \cdot \ldots \cdot A_{\mathrm{h}(S)}
$$

Let $A_{i}^{\prime}=A_{i} \cup\{0\}$ for $i \in[1, \mathrm{~h}(S)-1]$. Then $\sum_{\leq \mathrm{h}(S)}(S) \supset A_{1}^{\prime}+\ldots+A_{\mathrm{h}(S)-1}^{\prime}+A_{\mathrm{h}(S)}$. By Lemma 4.3,

$$
\left|A_{1}^{\prime}+\ldots+A_{\mathrm{h}(S)-1}^{\prime}+A_{\mathrm{h}(S)}\right| \geq \min \left\{p, \sum_{i=1}^{\mathrm{h}(S)-1}\left|A_{i}^{\prime}\right|+\left|A_{\mathrm{h}(S)}\right|-\mathrm{h}(S)+1\right\}=p
$$

So we have $\sum_{\leq \mathrm{h}(S)}(S)=G$.
Lemma 4.12. Let $G=C_{p}^{2}$ with p prime. Let S be a sequence over G of length $|S|=4 p-1$ such that $\mathrm{v}_{0}(S) \leq p$. If there exist two distinct elements $e_{1}, e_{2} \in G$ such that $\mathrm{v}_{e_{1}}(S)=$ $\mathrm{v}_{e_{2}}(S)=p-1$, then S has two innerly non-zero-sum-joint zero-sum subsequences of length p.

Proof. Assume to the contrary that S has no innerly non-zero-sum-joint zero-sum subsequences of length p. It follows from Lemma 4.1.1 that $\mathrm{v}_{g}(S) \leq p$ for every $g \in \operatorname{supp}(S) \backslash$ $\{0\}$. Set $W=\left(e_{1}^{p-1} e_{2}^{p-1}\right)^{-1} S=x_{1} \cdot \ldots \cdot x_{2 p+1}$, where $x_{1}, \ldots, x_{2 p+1} \in \operatorname{supp}(S) \backslash\left\{e_{1}, e_{2}\right\}$. Since $|S|=4 p-1>\mathbf{s}(G)=4 p-3$, there exist zero-sum subsequences of length p of S. Let T be a zero-sum subsequence of S of length p. Then Lemma 4.1.1 implies $T \mid W$. After renumbering if necessary we may assume that there is a $t \in \mathbb{N}$ such that x_{i} is a term of some zero-sum subsequences of W of length p for each $i \in[1, p+t]$ and x_{j} is not a term of any zero-sum subsequence of W of length p for each $j \in[p+t+1,2 p+1]$.

Let $H=\left\langle e_{2}-e_{1}\right\rangle$ be the subgroup of $C_{p} \oplus C_{p}$ generated by $e_{2}-e_{1}$. Then $H \cong C_{p}$.
Claim A. $x_{i} \in H$ for every $i \in[1, p+t]$.
Proof of Claim A. Let $W_{0}=x_{1} \cdot \ldots \cdot x_{p+t}$ and let T_{1} be a zero-sum subsequence of W_{0} of length $\left|T_{1}\right|=p$. Suppose that

$$
T_{1}=x_{i_{1}} \cdot \ldots \cdot x_{i_{p}}
$$

Let $U=x_{i_{1}}^{-1} T_{1} e_{1}^{p-1} e_{2}^{p-1}$. Then U has no zero-sum subsequence of length p. Assume that U has a zero-sum subsequence T_{2} of length $\left|T_{2}\right|=2 p$. Then $T_{2}=e_{1}^{\alpha} e_{2}^{\beta} T_{0}$, where $\alpha, \beta \in[1, p-1]$ and $T_{0} \mid x_{i_{1}}^{-1} T_{1}$, whence $T_{3}:=e_{1}^{p-\alpha} e_{2}^{p-\beta} T_{0}^{-1} T_{1}$ is a zero-sum subsequence of S of length p. But $T_{3} \nmid W$, a contradiction. Therefore U has no zero-sum subsequence of length p or $2 p$, whence the sequence $-e_{1}+U=\left(-e_{1}+x_{i_{1}}^{-1} T_{1}\right) 0^{p-1}\left(e_{2}-e_{1}\right)^{p-1}$ has no zero-sum subsequence of length p or $2 p$. It follows that $\left(x_{i_{2}}-e_{1}+H\right) \cdot \ldots \cdot\left(x_{i_{p}}-e_{1}+H\right)$ is a zero-sum free sequence over G / H, whence $x_{i_{2}}-e_{1}+H=\ldots=x_{i_{p}}-e_{1}+H$ by Lemma 2.6.5. In view of $\sigma\left(T_{1}\right)=0$, we have

$$
x_{i_{1}}+H=x_{i_{2}}+H=\ldots=x_{i_{p}}+H
$$

Let $T_{4}=x_{j_{1}} \cdot \ldots \cdot x_{j_{p}}$ be another zero-sum subsequence of W_{0} of length p such that $I:=\left\{i_{1}, \ldots, i_{p}\right\} \cap\left\{j_{1}, \ldots, j_{p}\right\} \neq \emptyset$. Then $x_{j_{1}}+H=x_{j_{2}}+H=\ldots=x_{j_{p}}+H=x_{i_{1}}+H=$ $x_{i_{2}}+H=\ldots=x_{i_{p}}+H$. Since $\prod_{k \in I} x_{i_{k}}$ is a S-inner common divisor of T_{4} and T_{1}, we obtain that $0=\sigma\left(\prod_{k \in I} x_{i_{k}}\right) \in|I| x_{i_{1}}+H$ and it follows from $0<|I|<p$ that $x_{i_{1}} \in H$.

Assume to the contrary that there exists $i \in[1, p+t]$, say $i=1$, such that $x_{1} \notin H$.
Let T be a zero-sum subsequence of W_{0} of length p such that x_{1} is a term of T. If there exists another zero-sum subsequence T^{\prime} of W_{0} of length p such that T^{\prime} and T are W_{0}-innerly joint, then $x_{1} \in H$ by the above argument, a contradiction. Thus W_{0} and hence W have no innerly joint zero-sum subsequencesof length p. Choose two terms y_{1}, y_{2} of $T^{-1} W$. Then $W_{1}:=\left(x_{1} y_{1} y_{2}\right)^{-1} W$ has no zero-sum subsequence of length p and hence $S_{0}:=\left(x_{1} y_{1} y_{2}\right)^{-1} S$ has no zero-sum subsequence of length p. Since $-e_{1}+S_{0}=$ $0^{p-1}\left(e_{2}-e_{1}\right)^{p-1}\left(-e_{1}+W_{1}\right)$, we obtain $\left(e_{2}-e_{1}\right)^{p-1}\left(-e_{1}+W_{1}\right)$ has no short zero-sum subsequence. It follows from Lemma 2.6.5 that there exist distinct $f_{1}, f_{2} \in G^{\bullet}$ such that $\left(e_{2}-e_{1}\right)^{p-1}\left(-e_{1}+W_{1}\right)=\left(e_{2}-e_{1}\right)^{p-1}\left(f_{1}-e_{1}\right)^{p-1}\left(f_{2}-e_{1}\right)^{p-1}$, whence $W_{1}=$ $f_{1}^{p-1} f_{2}^{p-1}$. Thus $x_{1}^{-1} T=f_{1}^{p-1}$ or f_{2}^{p-1}. By symmetry, we may assume $x_{1}^{-1} T=f_{1}^{p-1}$ and
$\left(y_{1} y_{2} T\right)^{-1} W=f_{2}^{p-1}$. Since y_{1}, y_{2} are chosen arbitrarily, we infer that $T^{-1} W=f_{2}^{p+1}$, a contradiction to $\mathrm{h}(S) \leq p$.
\square (Claim A.)

By Claim A we set

$$
x_{1} \cdot \ldots \cdot x_{p+t}=h_{1}^{r_{1}} \cdot \ldots \cdot h_{k}^{r_{k}}
$$

where $h_{1}, \ldots, h_{k} \in H$ are distinct and $r_{1} \geq r_{2} \geq \ldots \geq r_{k} \geq 1$ with $r_{1}+\ldots+r_{k}=p+t$. If $k=2$, then by Lemma 4.1.1 we obtain that $\left(h_{1} h_{2}\right)^{-1} S$ has no zero-sum subsequence of length p, a contradiction to $\left|\left(h_{1} h_{2}\right)^{-1} S\right|=4 p-3=\mathbf{s}(G)$. Thus $k \geq 3$. If $r_{1}+r_{2}+r_{3} \geq$ $t+1$. It follows from Lemma 4.1.1 that $\left(h_{1} h_{2} h_{3}\right)^{-1} S$ has no zero-sum subsequence of length p, whence $-e_{1}+\left(h_{1} h_{2} h_{3}\right)^{-1} S=0^{p-1}\left(-e_{1}+e_{2}^{p-1}\right)\left(-e_{1}+\left(h_{1} h_{2} h_{3}\right)^{-1} W\right)$ has no zero-sum subsequence of length p. Therefore $\left(-e_{1}+e_{2}^{p-1}\right)\left(-e_{1}+\left(h_{1} h_{2} h_{3}\right)^{-1} W\right)$ has no short zero-sum subsequence. By Lemma 2.6.5, there exist distinct $f_{1}, f_{2} \in G \bullet$ such that $\left(h_{1} h_{2} h_{3}\right)^{-1} W=f_{1}^{p-1} f_{2}^{p-1}$, whence $r_{1} \geq r_{2} \geq p-1$. Thus $r_{1}=r_{2}=p$ and $r_{3}=1$. Let T_{3} be a zero-sum subsequence of W of length p such that h_{3} is a term of T_{3}. Then either $1 \leq \mathrm{v}_{f_{1}}\left(T_{3}\right) \leq p-2$ or $1 \leq \mathrm{v}_{f_{2}}\left(T_{3}\right) \leq p-2$, a contradiction to Lemma 4.1.1. Therefore $t \geq r_{1}+r_{2}+r_{3}$.

Let $l \in[1, k]$ be such that $r_{1}=\ldots=r_{l}>r_{l+1} \geq \ldots \geq r_{k}$. Suppose $l \leq t-r_{1}+1$. Let $R=-h_{1}+\left(h_{1}^{r_{1}} \cdot \ldots \cdot h_{k}^{r_{k}}\right)$ and let U be a subsequence of $\left(0^{r_{1}}\right)^{-1} R$ of length $|U|=p$ such that $\mathrm{h}(U) \leq r_{1}-1$. By Lemma 4.11, we obtain that $H=\sum_{\leq \mathrm{h}(U)}(U) \subset \sum_{\leq r_{1}-1}(U) \subset H$, whence $\sum_{\leq r_{1}-1}(U)=H$. It follows that $\sum_{p-r_{1}+1}^{p-1}(U)=\sigma(U)-\sum_{\leq r_{1}-1}(U)=H$, which implies U has a zero-sum subsequence U_{0} of length $\left|U_{0}\right| \in\left[p-r_{1}+1, p-1\right]$. Thus $0^{p-\left|U_{0}\right|} U_{0}$ is a zero-sum subsequence of R and hence $h_{1}^{p-\left|U_{0}\right|}\left(h_{1}+U_{0}\right)$ is a zero-sum subsequence of S of length p. But $1 \leq p-\left|U_{0}\right| \leq r_{1}-1$, a contradiction to Lemma 4.1.1. Therefore $l \geq t-r_{1}+2 \geq r_{2}+r_{3}+2 \geq 4$, whence $r_{1}=r_{2}=r_{3} \geq 2, l \geq r_{2}+r_{3}+2 \geq 6$, and $r_{1} \leq\left\lfloor\frac{2 p+1}{6}\right\rfloor \leq(p-1) / 2$.

There exist r_{1} squarefree subsequences $B_{1}, \ldots, B_{r_{1}}$ such that $V:=h_{1}^{r_{1}-2} h_{2}^{r_{2}} \cdot \ldots \cdot h_{k}^{r_{k}}=$ $B_{1} \cdot \ldots \cdot B_{r_{1}}$. Clearly, $\left|B_{i}\right| \geq l-1 \geq 5$ for each $i \in\left[1, r_{1}\right]$. Since $r_{1} \leq(p-1) / 2$, we can choose $A_{i} \mid B_{i}$ for each $i \in\left[1, r_{1}\right]$ such that $\left|A_{i}\right| \geq 3$ and $\left|A_{1}\right|+\ldots+\left|A_{r_{1}}\right|=2 r_{1}+(p-1) / 2$. Since $t \geq r_{1}+r_{2}+r_{3} \geq 2 r_{1}+2$, we obtain $|V|-\left|A_{1} \cdot \ldots \cdot A_{r_{1}}\right| \geq(p-1) / 2$, whence we can choose a subsequence V_{1} of $\left(A_{1} \cdot \ldots \cdot A_{r_{1}}\right)^{-1} V$ of length $\left|V_{1}\right|=(p-1) / 2$.

By Lemmas 4.10 and 4.3, we have that

$$
\left|\Sigma_{\left|A_{1}\right|-2}\left(A_{1}\right)+\ldots+\Sigma_{\left|A_{r_{1}}\right|-2}\left(A_{r_{1}}\right)\right| \geq \min \left\{p, \sum_{i=1}^{r_{1}}\left(2\left|A_{i}\right|-4\right)+1\right\}=p
$$

whence

$$
\Sigma_{p-1}\left(V_{1} A_{1} \cdot \ldots \cdot A_{r_{1}}\right) \supset \sigma\left(V_{1}\right)+\Sigma_{\left|A_{1}\right|+\ldots+\left|A_{r_{1}}\right|-2 r_{1}}\left(A_{1} \cdot \ldots \cdot A_{r_{1}}\right)=H
$$

Thus there exists a subsequence V^{\prime} of V of length $p-1$ such that $h_{1}+\sigma\left(V^{\prime}\right)=0$. But $\mathrm{v}_{h_{1}}(S)>r_{1}-1 \geq \mathrm{v}_{h_{1}}\left(h_{1} V^{\prime}\right)$, a contradiction to Lemma 4.1.1. This completes the proof.

Definition 4.13. Let $\mathrm{g}(G)$ denote the smallest integer t such that every squarefree sequence S of G of length $|S| \geq t$ contains a zero-sum subsequence of length $\exp (G)$.

Lemma 4.14. [GGS07, Theorem 5.1] Let $G=C_{p} \oplus C_{p}$, where $p \geq 47$ is a prime. Then $\mathrm{g}(G)=2 p-1$.

Lemma 4.15. Let $G=C_{n}^{2}$ with $n \in \mathbb{N}$.
(1) $\mathrm{s}^{N}(G) \leq 8 n-7$.
(2) If $n=p$ is a prime such that $\mathrm{g}(G)=2 p-1$, then $\mathrm{s}^{N}(G) \leq 6 p-5$. In particular, the assertion holds provided that $n=p \geq 47$.

Proof. 1. Let S be a sequence of length $|S|=8 n-7$ over G^{\bullet}. We need to show that S has two innerly non-zero-sum-joint zero-sum subsequences of length n.

Let W be a subsequence of S with maxmial length such that W has no zero-sum subsequence of length n. Then by Lemma 2.9.1 we have $|W| \leq \mathrm{s}(G)-1=4 n-4$, and hence $T=W^{-1} S$ has length at least $4 n-3$. Therefore T has a zero-sum subsequence T_{0} of length n. Let g be a term of T_{0}. Then the maximality of $|W|$ implies that $g W$ has a zero-sum subsequence T_{1} of length n with $g \mid T_{1}$. It follows that T_{0} and T_{1} have a non-zero-sum S-inner common divisor g.
2. Suppose $n=p$ is a prime such that $\mathrm{g}(G)=2 p-1$. Let S be a sequence of length $|S|=6 p-5$ over G^{\bullet}. We need to show that S has two innerly non-zero-sum-joint zero-sum subsequences of length p.

Let W be a subsequence of S with maxmial length such that W has no zero-sum subsequence of length p. Then Lemma 2.9.1 implies that $|W| \leq \mathrm{s}(G)-1=4 p-4$, and hence $T=W^{-1} S$ has length at least $2 p-1$.

If T is not squarefree, then there exists $g \in G^{\bullet}$ such that $g^{2} \mid T$. The maximality of $|W|$ implies that $g W$ has a zero-sum subsequence V of length p with $g \mid V$. Since $\mathrm{v}_{g}(S)>\mathrm{v}_{g}(V) \geq 1$, it follows by Lemma 4.1.1 that S has two innerly non-zero-sum-joint zero-sum subsequences of length p.

If T is squarefree, then Lemma 4.14 implies that T has a zero-sum subsequence T_{0} of length p. Let g be a term of T_{0}. Then the maximality of $|W|$ implies that $g W$ has a zerosum subsequence T_{1} of length p with $g \mid T_{1}$. It follows that T_{0} and T_{1} have a non-zero-sum S-inner common divisor g.

For the "in particular" part, we finish the proof by applying Lemma 4.14.

Lemma 4.16. Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$. Then every sequence of length $4 n-2$ over G has a zero-sum subsequence of length $2 n$.

Proof. The assertion follows from [GHPS14, Proposition 4.1].

Lemma 4.17. Let $m, n, k \in \mathbb{N}$ with $n \geq 6$, let $G=C_{m} \oplus C_{m}$, and let S be a sequence over $G \bullet$ of length $k n+n_{0}$, where $n_{0} \in[1, n]$. Suppose that S has no innerly non-zero-sum-joint zero-sum subsequences of length mn.
(1) There are S-innerly disjoint subsequences S_{1}, \ldots, S_{k} of length $\left|S_{i}\right|=n$ for $i \in$ $[1, k]$ such that $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{k}\right)$ has no zero-sum subsequence of length m.
(2) $|S| \leq m n+3 m-3$.

Proof. 1. By Lemma 4.1.1, we have $\mathrm{h}(S) \leq m n$. If $k \leq m-1$, then the assertion is clear. If $k=m$, we can choose a subsequence S_{0} of S of length $\left|S_{0}\right|=m n$ such that S_{0} is not a zero-sum sequence and split S_{0} into a product of m subsequences of length n, whence the assertion follows. Suppose $k \geq m+1$.

Let r be the maximal integer such that there exist S-innerly disjoint subsequences

$$
T_{1}, W_{1}, T_{2}, W_{2}, \ldots, T_{r}, W_{r}
$$

with $\sigma\left(T_{i}\right)=\sigma\left(W_{i}\right) \neq 0$ and $\left|T_{i}\right|=\left|W_{i}\right|=2$ for all $i \in[1, r]$.
If $r \geq k$, then we can construct S-innerly disjoint subseqeuences S_{1}, \ldots, S_{k} such that $T_{1}\left|S_{1}, W_{i-1} T_{i}\right| S_{i}$ for every $i \in[2, k]$, and $\left|S_{i}\right|=n$ for every $i \in[1, k]$. We assert that the sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{k}\right)$ has no zero-sum subsequence of length m. Assume to the contrary that there is a subset $\left\{i_{1}, \ldots, i_{m}\right\} \subset[1, k]$ with $1 \leq i_{1}<\ldots<i_{m} \leq k$ such that $\sum_{j=1}^{m} \sigma\left(S_{i_{j}}\right)=0$. If $i_{1}>1$, then let $S_{i_{1}}^{\prime}=W_{i_{1}-1}^{-1} S_{i_{1}} T_{i_{1}-1}$ and hence $\prod_{j=1}^{m} S_{i_{j}}$ and $S_{i_{1}}^{\prime} \prod_{j=2}^{m} S_{i_{j}}$ are both zero-sum subsequences of S of length $m n$ and have a non-zero-sum S-inner common divisor $W_{i_{1}-1}^{-1} \prod_{j=1}^{m} S_{i_{j}}$, a contradiction. Thus $i_{1}=1$. Since $k \geq m+1$, there exists $s \in[2, k]$ such that $s \notin\left\{i_{1}, \ldots, i_{m}\right\}$. Then we can choose $s \in[2, k]$ minimal such that $s \notin\left\{i_{1}, \ldots, i_{m}\right\}$, whence $s-1 \in\left\{i_{1}, \ldots, i_{m}\right\}$. Let $S_{s-1}^{\prime}=T_{s-1}^{-1} W_{s-1} S_{s-1}$. Then $\prod_{j=1}^{m} S_{i_{j}}$ and $S_{s-1}^{-1} S_{s-1}^{\prime} \prod_{j=1}^{m} S_{i_{j}}$ are both zero-sum subsequences of S of length $m n$ and have a non-zero-sum S-inner common divisor $T_{s-1}^{-1} \prod_{j=1}^{m} S_{i_{j}}$, a contradiction.

Thus $r \leq k-1$. Let

$$
U=\left(T_{1} W_{1} \cdot \ldots \cdot T_{r} W_{r}\right)^{-1} S
$$

Assume that there is no element g of order two such that $\mathrm{v}_{g}(U) \geq 3$. Then the maximality of r implies that $\mathrm{h}(U) \leq 3$. and that there are at most two elements y_{1}, y_{2} such that $\mathrm{v}_{y_{1}}(U) \geq 2$ and $\mathrm{v}_{y_{2}}(U) \geq 2$. Let V be a squarefree subsequence of U with maximal length. Then
$|V| \geq|U|-4=|S|-4 r-4 \geq k n+1-4(k-1)-4=(n-4) k+1 \geq 2 k+1 \geq 2 m+3$.
Since V has at least $\binom{|V|}{2}-\frac{|V|}{2}$ subsequences of length 2 which are not zero-sum and the sums of all these subsequences are pairwise distinct, we obtain that $\binom{|V|}{2}-\frac{|V|}{2} \leq$ $|G|-1=m^{2}-1$, whence

$$
|V|-1=\sqrt{2\binom{|V|}{2}-|V|+1} \leq \sqrt{2 m^{2}-1} \leq \sqrt{2} m \leq 2 m
$$

a contradiction. Therefore there exists a order 2 element g with $\mathrm{v}_{g}(U) \geq 3$. Let $V=$ $\left(g^{\vee_{g}(U)}\right)^{-1} U$. Then $\mathrm{h}(V)=1$ and $\binom{|V|}{2}-\frac{|V|}{2} \leq m^{2}-1$, whence

$$
|V|-1=\sqrt{2\binom{|V|}{2}-|V|+1} \leq \sqrt{2 m^{2}-1} \leq \sqrt{2} m \leq 2 m
$$

It follows that
$\mathrm{v}_{g}(U)+r=|U|-|V|+r=|S|-|V|-3 r \geq k n+1-2 m-3(k-1) \geq 3 k-2 m+4 \geq k+6$.
Then we can construct S-innerly disjoint subsequences S_{i} for $i \in[1, k]$ with $T_{1} \mid S_{1}$, $W_{i-1} T_{i} \mid S_{i}$ for every $i \in[2, r], W_{r} g \mid S_{r+1}$, and $g \mid S_{i}$ for every $i \in[r+2, k]$. Assume to the contrary that the sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{k}\right)$ has a zero-sum subsequence of length m. Then there is a subset $\left\{i_{1}, \ldots, i_{m}\right\} \subset[1, k]$ such that $\sum_{j=1}^{m} \sigma\left(S_{i_{j}}\right)=0$. If there exists $i \in[1, r]$ such that $i \notin\left\{i_{1}, \ldots, i_{m}\right\}$, then similarly as above we obtain two zero-sum subsequences of length $m n$ which are S-innerly non-zero-sum-joint, a contradiction. Otherwise $[1, r] \subset$ $\left\{i_{1}, \ldots, i_{m}\right\}$ and hence there exists $i \in[r+1, k]$ such that $i \notin\left\{i_{1}, \ldots, i_{m}\right\}$, whence $\mathrm{v}_{g}\left(\prod_{j=1}^{m} S_{i_{j}}\right)<\mathrm{v}_{g}(S)$, a contradiction to Lemma 4.1.1.
2. Assume to the contrary that $|S| \geq m n+3 m-2$. By Lemma 4.15.1, we have $\mathrm{s}^{N}(G) \leq 8 m-7 \leq m n+3 m-2$, whence S has two innerly non-zero-sum-joint zerosum subsequences X_{0} and X_{0}^{\prime} of length $\left|X_{0}\right|=\left|X_{0}^{\prime}\right|=m$. Let Y be the non-zero-sum S-inner common divisor and let $S^{\prime}=\left(X_{0} X_{0}^{\prime}\right)^{-1} S Y$. Then $\left|S^{\prime}\right| \geq|S|-(2 m-1) \geq$ $(n-3) m+4 m-1$. Now by Lemma 2.9.1 and applying $\mathrm{s}(G)=4 m-3$ repeatedly to S^{\prime}, we can find $n-3 S^{\prime}$-innerly disjoint zero-sum subsequences X_{1}, \ldots, X_{n-3} of length $\left|X_{1}\right|=\ldots=\left|X_{n-3}\right|=m$. Let $S^{\prime \prime}=\left(X_{1} \cdot \ldots \cdot X_{n-3}\right)^{-1} S^{\prime}$. Then $\left|S^{\prime \prime}\right|>4 m-2$. It follows from Lemma 4.16 that $S^{\prime \prime}$ has a zero-sum subsequence X_{n-2} of length $\left|X_{n-2}\right|=2 m$. Let $Y_{1}=X_{0} \prod_{i=1}^{n-2} X_{i}$ and $Y_{2}=X_{0}^{\prime} \prod_{i=1}^{n-2} X_{i}$. Then Y_{1} and Y_{2} are two zero-sum subsequences of length $\left|Y_{1}\right|=\left|Y_{2}\right|=m n$ with a non-zero-sum S-inner common divisor $Y \prod_{i=1}^{n-2} X_{i}$, a contradiction.

We are now ready to prove our second theorem of this section.

Theorem 4.18. Let $n \in \mathbb{N}$ and let $p \geq 47$ be a prime divisor of n such that $n \geq$ $\frac{7 p^{4}+p^{3}+2 p^{2}}{2}$. Then $\mathbf{s}^{N}\left(C_{n}^{2}\right)=4 n+1$.

Proof. Let $G=C_{n}^{2}$ and let $m=n / p$. By Lemma 4.9 it suffices to prove that $\mathrm{s}^{N}(G) \leq$ $4 n+1$. Let S be a sequence over $G \bullet$ of length $|S|=l=4 n+1$. We need to show that S has two innerly non-zero-sum-joint zero-sum subsequences of length n.

Assume to the contrary that S has no innerly non-zero-sum-joint zero-sum subsequences of length n. Let $\varphi: G \rightarrow G$ denote the multiplication by m. Then $\operatorname{ker}(\varphi) \cong C_{m}^{2}$ and $\varphi(G)=m G \cong C_{p}^{2}$.

Let $S=X_{0} X_{1}$ such that X_{0} is over $\operatorname{ker}(\varphi)$ and X_{1} is over $G \backslash \operatorname{ker}(\varphi)$. Since X_{0} has no innerly non-zero-sum-joint zero-sum subsequences of length $p m$, it follows from Lemma
4.17 that $\left|X_{0}\right| \leq p m+3 m-3$ and there exist X_{0}-innerly disjoint subsequences $S_{1}, \ldots, S_{u_{0}}$ such that $\left|S_{i}\right|=p$ for each $i \in\left[1, u_{0}\right], \sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{u_{0}}\right)$ has no zero-sum sequence of length m, and the remaining subsequence $X_{0}^{\prime}=\left(S_{1} \cdot \ldots \cdot S_{u_{0}}\right)^{-1} X_{0}$ is of length $\left|X_{0}^{\prime}\right| \leq p$.

We set

$$
\begin{equation*}
\varphi\left(X_{1}\right)=e_{1}^{r_{1}} \cdot \ldots \cdot e_{k}^{r_{k}} \tag{4.1}
\end{equation*}
$$

where $e_{1}, \ldots, e_{k} \in \varphi(G)$ are distinct and $r_{1} \geq \ldots \geq r_{k} \geq 1$. We continue with the following assertion.

A1. $r_{2} \geq(7 p-6)(p-2)$.
Proof of A1. If $r_{1} \leq p m+3 m-3$, then

$$
\begin{aligned}
r_{2} & \geq \frac{|S|-\left|X_{0}\right|-(p m+3 m-3)}{\left|\varphi(G) \backslash\left\{0, e_{1}\right\}\right|} \geq \frac{4 p m+1-p m-3 m+3-p m-3 m+3}{p^{2}-2} \\
& =\frac{2 p m-6 m+7}{p^{2}-2} \geq(7 p-6)(p-2) .
\end{aligned}
$$

Suppose $r_{1} \geq p m+3 m-2=(p-1) m+4 m-2$. Let $X_{e_{1}}=h_{1} \cdot \ldots \cdot h_{r_{1}}$ be the subsequence of X_{1} such that $\varphi\left(X_{e_{1}}\right)=e_{1}^{r_{1}}$. Then there exist an element $h \in G$ with $\operatorname{ord}(h)=n$ and $s \in[1, n-1]$ with $p \nmid s$ such that $h_{1}=s h$. Let m_{0} be the maximal divisor of m such that $\operatorname{gcd}\left(m_{0}, s\right)=1$. Then $\operatorname{ord}\left(h_{1}+m_{0} p h\right)=p m$ and $\varphi\left(h_{1}+m_{0} p h\right)=e_{1}$. Set $h_{0}=h_{1}+m_{0} p h$. Then $\left(h_{1}-h_{0}\right) \cdot \ldots \cdot\left(h_{r_{1}}-h_{0}\right)$ is a sequence over $\operatorname{ker}(\varphi)$. By using $\mathrm{s}\left(C_{m}^{2}\right)=4 m-3$ repeatedly, we can find $p-1\left(h_{1}-h_{0}\right) \cdot \ldots \cdot\left(h_{r_{1}}-h_{0}\right)$-innerly disjoint zero-sum subsequences E_{1}, \ldots, E_{p-1} of length $\left|E_{1}\right|=\ldots=\left|E_{p-1}\right|=m$. It follows from Lemma 4.16 that $\left(E_{1} \cdot \ldots \cdot E_{p-1}\right)^{-1}\left(h_{1}-h_{0}\right) \cdot \ldots \cdot\left(h_{r_{1}}-h_{0}\right)$ has a zero-sum subsequence E_{p} of length $\left|E_{p}\right|=2 m$. Let $E=E_{p} \prod_{i=1}^{p-2} E_{i}$ and $E^{\prime}=E_{p} \prod_{i=2}^{p-1} E_{i}$. Then $h_{0}+E$ and $h_{0}+E^{\prime}$ are two zero-sum subsequences of $X_{e_{1}}$ of length n and have a $X_{e_{1}}$-inner common divisor $h_{0}+E_{p} \prod_{i=2}^{p-2} E_{i}$. But $\sigma\left(h_{0}+E_{p} \prod_{i=2}^{p-2} E_{i}\right)=(p-1) m h_{0}=-m h_{0} \neq 0$, a contradiction.

Let W_{1} be a subsequence of X_{1} such that $\varphi\left(W_{1}\right)=e_{1}^{r_{1}} e_{2}^{r_{2}}$ and $W_{2}=W_{1}^{-1} X_{1}$. Let $u_{1} \in$ \mathbb{N}_{0} be maximal such that there exist W_{2}-innerly disjoint subsequences $S_{u_{0}+1}, \ldots, S_{u_{0}+u_{1}}$ with the following properties.

- $S_{u_{0}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}} \mid W_{2} ;$
- For every $\nu \in\left[1, u_{1}\right], \varphi\left(S_{u_{0}+\nu}\right)$ is a zero-sum sequence over $\varphi(G)$ of length p;
- The sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{u_{0}}\right) \sigma\left(S_{u_{0}+1}\right) \cdot \ldots \cdot \sigma\left(S_{u_{0}+u_{1}}\right) \in \mathcal{F}(\operatorname{ker}(\varphi))$ has no zero-sum subsequence of length m.

We set $W_{2}^{\prime}=\left(S_{u_{0}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}}\right)^{-1} W_{2}$. If there exist two subsequence T_{1} and T_{2} of W_{2}^{\prime} with $\left|T_{1}\right|=\left|T_{2}\right|=p$ such that $\varphi\left(T_{1}\right), \varphi\left(T_{2}\right)$ are zero-sum and have a non-zero-sum $\varphi\left(W_{2}^{\prime}\right)$-inner common divisor $\varphi(Y)$, where Y is a W_{2}^{\prime}-inner common divisor of T_{1} and T_{2}, whence $\sigma(Y) \notin \operatorname{ker}(\varphi)$. By the maximality of u_{1}, there exist $I, J \subset\left[1, u_{0}+u_{1}\right]$ with $|I|=$ $|J|=m-1$ such that $T_{1} \prod_{i \in I} S_{i}$ and $T_{2} \prod_{j \in J} S_{j}$ are zero-sum subsequences of length $p m$ and have a non-zero-sum S-inner common divisor $Y \prod_{k \in I \cap J} S_{k}$, a contradiction. Hence
$\varphi\left(W_{2}^{\prime}\right)$ has no innerly non-zero-sum-joint subsequences of length p. It follows from Lemma 4.15.2 that $\left|W_{2}^{\prime}\right|=\left|\varphi\left(W_{2}^{\prime}\right)\right| \leq 6 p-6$.

Let $Q=X_{0}^{\prime} W_{2}^{\prime}$ and hence $|Q| \leq p+6 p-6=7 p-6$. Note that $r_{2} \geq(7 p-6)(p-$ $2)$. Let $u_{2} \in \mathbb{N}_{0}$ be maximal such that there exist $W_{1} Q$-innerly disjoint subsequences $S_{u_{0}+u_{1}+1}, \ldots, S_{u_{0}+u_{1}+u_{2}}$ with the following properties.

- $S_{u_{0}+u_{1}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}+u_{2}} \mid W_{1} Q ;$
- For every $\nu \in\left[1, u_{2}\right], \varphi\left(S_{u_{0}+u_{1}+\nu}\right)$ is a zero-sum subsequence of $e_{1}^{p-1} e_{2}^{p-1} \varphi(Q)$ over $\varphi(G)$ of length $\left|S_{u_{0}+u_{1}+\nu}\right|=p$. Note that $\mathrm{v}_{e_{1}}\left(\varphi\left(S_{u_{0}+u_{1}+\nu}\right)\right) \leq p-2$ and $\mathrm{v}_{e_{2}}\left(\varphi\left(S_{u_{0}+u_{1}+\nu}\right)\right) \leq p-2 ;$
- The sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{u_{0}+u_{1}+u_{2}}\right) \in \mathcal{F}(\operatorname{ker}(\varphi))$ has no zero-sum subsequence of length m.

Let $E=\left(S_{u_{0}+u_{1}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}+u_{2}}\right)^{-1} W_{1} Q$ and let $E_{1}=\operatorname{gcd}\left(E, W_{1}\right), E_{2}=E_{1}^{-1} E$. If $\left|E_{2}\right| \geq 2 p+1$, then $e_{1}^{p-1} e_{2}^{p-1}$ divides $\varphi\left(E_{1}\right)$ and $e_{1}^{p-1} e_{2}^{p-1} \varphi\left(E_{2}\right)$ has no innerly non-zero-sum-joint zero-sum subsequences of length p, a contradiction to Lemma 4.12. Thus $\left|E_{2}\right| \leq 2 p$.

Let $u_{3} \in \mathbb{N}_{0}$ be maximal such that there are E_{1}-innerly disjoint subseqeunces $S_{u_{0}+u_{1}+u_{2}+1}, \ldots, S_{u_{0}+u_{1}+u_{2}+u_{3}}$ with the following properties.

- $S_{u_{0}+u_{1}+u_{2}+1} \cdot \ldots \cdot S_{u_{0}+u_{1}+u_{2}+u_{3}} \mid E_{1}$;
- For every $\nu \in\left[1, u_{3}\right], \varphi\left(S_{u_{0}+u_{1}+u_{2}+u_{3}+\nu}\right) \in\left\{e_{1}^{p}, e_{2}^{p}\right\}$;
- The sequence $\sigma\left(S_{1}\right) \cdot \ldots \cdot \sigma\left(S_{u_{0}+u_{1}+u_{2}+u_{3}}\right) \in \mathcal{F}(\operatorname{ker}(\varphi))$ has no zero-sum subsequence of length m.
We set $F=\left(S_{u_{0}+u_{1}+u_{2}+1} \cdots \cdot S_{u_{0}+u_{1}+u_{2}+u_{3}}\right)^{-1} E_{1}$ and observe that $\mathrm{h}(\varphi(F)) \leq p$, whence $\left|F E_{2}\right| \leq p+p+2 p=4 p$. Therefore, $u_{0}+u_{1}+u_{2}+u_{3}=\frac{|S|-\left|F E_{2}\right|}{p} \geq\left\lceil\frac{|S|-4 p}{p}\right\rceil \geq 4 m-3=$ $\mathrm{s}(\operatorname{ker}(\varphi))$, a contradiction.

4.3. Abelian groups of higher rank.

Lemma 4.19. Let $G=C_{n}^{r}$ with $n, r \in \mathbb{N}$ and $n \geq 3$. Suppose that G has Property D. Then

$$
\mathrm{s}^{*}(G)=\frac{n(\mathrm{~s}(G)-1)}{n-1}+1
$$

Proof. Let T be a sequence over G of length $\mathbf{s}(G)-1$ which has no zero-sum subsequence of length n. It follows from G having Property D that T has the form

$$
T=U^{n-1}
$$

where U is squarefree. Let $g \in G$ such that $-g \notin \operatorname{supp}(U)$. Then $S:=(g+U)^{n} \in$ $\mathcal{F}\left(G^{\bullet}\right)$ has no innerly joint zero-sum subsequences of length n. Thus, $\mathrm{s}^{*}(G) \geq|S|+1=$ $\frac{n(\mathrm{~s}(G)-1)}{n-1}+1$.

Next, we need to prove that $\mathrm{s}^{*}(G) \leq \frac{n(\mathrm{~s}(G)-1)}{n-1}+1$. Let $S^{\prime} \in \mathcal{F}\left(G^{\bullet}\right)$ be a sequence of length $\frac{n(\mathbf{s}(G)-1)}{n-1}+1$. We need to show that S^{\prime} has two innerly joint zero-sum subsequences
of length n. Assume to the contrary that S^{\prime} has no innerly joint zero-sum subsequences of length n.

Let t be maximal such that S_{1}, \ldots, S_{t} are S^{\prime}-innerly disjoint zero-sum subsequences of length n. Then

$$
S_{1} \cdot \ldots \cdot S_{t} \mid S^{\prime}
$$

and for every $i \in[1, t]$ we choose an element $g_{i} \mid S_{i}$. It follows that $\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S^{\prime}$ has no zero-sum subsequence of length n. Then $\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S^{\prime}\right| \leq \mathbf{s}(G)-1$, which implies that $t \geq \frac{\mathrm{s}(G)-1}{n-1}+1$. Therefore

$$
\frac{n(\mathbf{s}(G)-1)}{n-1}+1=\left|S^{\prime}\right| \geq\left|S_{1} \cdot \ldots \cdot S_{t}\right|=n\left(\frac{\mathbf{s}(G)-1}{n-1}+1\right)
$$

a contradiction.
Theorem 4.20. Let $n, m, r \in \mathbb{N}$.
(1) If $G=C_{2} \oplus C_{2 m} \oplus C_{2 m n}$, then

$$
\mathrm{s}^{*}(G)= \begin{cases}15, & \text { if } n=m=1 \\ 8 m+5, & \text { if } n=1 \text { and } m \geq 3 \\ 4 m n+4 m+1, & \text { if } n \geq 3 \text { and } C_{m}^{2} \text { has Property } D .\end{cases}
$$

(2) Let $G=C_{n}^{r}$ with $n \geq 3$. Then $\mathrm{s}^{*}(G) \geq 2^{r} \cdot n+1$. If $r=3$ and $n=2^{a} 3^{b}$ with $a, b \in \mathbb{N}$ and $a \geq b$, then

$$
\mathrm{s}^{*}(G)=8 n+1
$$

(3) Let $G=C_{n}^{3}$ with $n \geq 3$ odd. Then $\mathrm{s}^{*}(G) \geq 9 n+1$. If $n=3^{a} 5^{b} \geq 3$ with $a, b \in \mathbb{N}_{0}$, then

$$
\mathrm{s}^{*}(G)=9 n+1
$$

(4) Let $G=C_{n}^{4}$ with $n \geq 3$ odd. Then $\mathrm{s}^{*}(G) \geq 20 n+1$. If $n=3^{a}$ with $a \in \mathbb{N}$, then

$$
\mathrm{s}^{*}(G)=20 n+1
$$

(5) If $G=C_{2}^{3} \oplus C_{2 n}$ with $n \geq 36$, then

$$
\mathrm{s}^{*}(G)=4 n+7
$$

(6) If $G=C_{2^{a}}^{r}$ with $a \in \mathbb{N}$, then

$$
\mathrm{s}^{*}(G)= \begin{cases}2^{r+1}-1, & \text { if } a=1 \\ 2^{r+a}+1, & \text { if } a \geq 2\end{cases}
$$

Proof. 1. Let $G=C_{2} \oplus C_{2 m} \oplus C_{2 m n}$ and let $\left(e_{1}, e_{2}, e_{3}\right)$ be a basis of G. If $n=m=1$, then the assertion follows from Lemma 4.2.

Suppose $n=1$ and $m \geq 3$. Then $s(G)=8 m+1$ by Lemma 2.9.4. Let

$$
T=\left(e_{1}+e_{2}\right)\left(e_{1}+2 e_{2}\right)\left(e_{1}+e_{3}\right)\left(e_{1}+e_{2}+e_{3}\right) e_{2}^{2 m} e_{3}^{2 m}\left(e_{2}+e_{3}\right)^{2 m}\left(2 e_{2}\right)^{2 m}
$$

It is easy to see that T has no innerly joint zero-sum subsequences of length $2 m$. Therefore $\mathrm{s}^{*}(G) \geq|T|+1=8 m+5$. Let S be a sequence over $G \bullet$ of length $|S|=8 m+5$. We need to show that S has two innerly joint zero-sum subsequences of length $2 m$. Assume
to the contrary that S has no innerly joint zero-sum subsequences of length $2 m$. Let t be maximal such that S_{1}, \ldots, S_{t} are S-innerly disjoint zero-sum subsequences of length $\left|S_{i}\right|=2 m$ for $i \in[1, t]$, where $t \in \mathbb{N}_{0}$. Then $S_{1} \cdot \ldots \cdot S_{t} \mid S$. For every $i \in[1, t]$, we choose a term g_{i} of S_{i}. It follows that $\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S$ has no zero-sum subsequence of length $2 m$, whence $\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S\right| \leq s(G)-1=8 m$. Then $t=|S|-\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S\right| \geq 5$ and hence

$$
8 m+5=|S| \geq\left|S_{1} \cdot \ldots \cdot S_{t}\right| \geq 10 m
$$

a contradiction to $m \geq 3$. Therefore $\mathrm{s}^{*}(G)=8 m+5$.
Suppose $n \geq 3$ and C_{m}^{2} has Property D. Then $s(G)=4 m n+4 m-1$ by Lemmas 2.9.4. Let

$$
T^{\prime}=\left(e_{1}+e_{3}\right)\left(e_{1}+2 e_{3}\right)\left(e_{2}+e_{3}\right)^{2 m-1}\left(e_{2}+2 e_{3}\right)^{2 m-1} e_{3}^{2 m n}\left(2 e_{3}\right)^{2 m n}
$$

It is easy to see that T^{\prime} has no innerly joint zero-sum subsequences of length 2 mn . Therefore $\mathrm{s}^{*}(G) \geq\left|T^{\prime}\right|+1=4 m n+4 m+1$. Let S^{\prime} be a sequence over G^{\bullet} of length $\left|S^{\prime}\right|=4 m n+4 m+1$. We need to show that S^{\prime} has two innerly joint zero-sum subsequences of length $2 m n$. Assume to the contrary that S^{\prime} has no innerly joint zero-sum subsequences of length $2 m n$. Let t be maximal such that S_{1}, \ldots, S_{t} are S-innerly disjoint zero-sum subsequences of length $\left|S_{i}\right|=2 m n$ for $i \in[1, t]$, where $t \in \mathbb{N}_{0}$. Then $S_{1} \cdot \ldots \cdot S_{t} \mid S^{\prime}$. For every $i \in[1, t]$, we choose a term g_{i} of S_{i}. It follows that $\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S^{\prime}$ has no zero-sum subsequence of length $2 m n$, whence $\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S^{\prime}\right| \leq \mathrm{s}(G)-1=4 m n+4 m-2$. Then $t=\left|S^{\prime}\right|-\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S^{\prime}\right| \geq 3$ and hence

$$
4 m n+4 m+1=\left|S^{\prime}\right| \geq\left|S_{1} \cdot \ldots \cdot S_{t}\right| \geq 6 m n
$$

It follows that $2 m \leq 1$, a contradiction. Therefore $\mathrm{s}^{*}(G)=4 m n+4 m+1$.
2. Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G and let

$$
S=\left(2 e_{1}\right)^{n} \prod_{\emptyset \neq I \subset[1, r]}\left(\sum_{i \in I} e_{i}\right)^{n}
$$

Suppose T is a zero-sum subsequence of S of length $|T|=n$. Then either $T=\left(2 e_{1}\right)^{n}$ or $T=\left(\sum_{i \in I} e_{i}\right)^{n}$, where $\emptyset \neq I \subset[1, r]$. Therefore $S \in \mathcal{F}\left(G^{\bullet}\right)$ has no innerly joint zero-sum subsequences of length n, whence $\mathrm{s}^{*}(G) \geq|S|+1=2^{r} n+1$.

Suppose $r=3$ and $n=2^{a} 3^{b}$ with $a, b \in \mathbb{N}$ and $a \geq b$. Then $\mathbf{s}(G)=8 n-7$ by Lemma 2.12. Let S be a sequence over $G \bullet$ of length $|S|=8 n+1$. We need to show that S has two innerly joint zero-sum subsequences of length n. Assume to the contrary that S has no innerly joint zero-sum subsequences of length n. Let t be maximal such that S_{1}, \ldots, S_{t} are S-innerly disjoint zero-sum subsequences with $\left|S_{i}\right|=n$ for $i \in[1, t]$, where $t \in \mathbb{N}_{0}$. Then $S_{1} \cdot \ldots \cdot S_{t} \mid S$. For every $i \in[1, t]$, we choose a term g_{i} of S_{i}. It follows that $\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S$ has no zero-sum subsequence of length n, whence $\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S\right| \leq \mathrm{s}(G)-1=8 n-8$. Then $t=|S|-\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S\right| \geq 9$ and hence

$$
8 n+1=|S| \geq\left|S_{1} \cdot \ldots \cdot S_{t}\right| \geq 9 n
$$

a contradiction to $n \geq 3$. Therefore $\mathrm{s}^{*}(G)=8 n+1$.
3. By Lemma 2.7, there exists a sequence $T \in \mathcal{F}(G)$ of length $|T|=9$ such that T^{n-1} has no zero-sum subsequence in T^{n-1} of length n, there exists $g \in G$ such that $0 \nmid(g+T)$. Set $S=(g+T)^{n}$, then $S \in \mathcal{F}\left(G^{\bullet}\right)$ has no innerly joint zero-sum subsequences of length n. Therefore we have $\mathrm{s}^{*}(G) \geq|S|+1=9 n+1$.

Suppose $n=3^{a} 5^{b}$ with $a, b \in \mathbb{N}_{0}$. Then by Lemma 2.6.3 C_{n}^{3} has Property D and hence by Lemma 4.19 that $\mathrm{s}^{*}(G)=9 n+1$.
4. By Lemma 2.8, there exists a sequence $T \in \mathcal{F}(G)$ of length $|T|=20$ such that T^{n-1} has no zero-sum subsequence in T^{n-1} of length n, there exists $g \in G$ such that $0 \nmid(g+T)$. Set $S=(g+T)^{n}$, then $S \in \mathcal{F}\left(G^{\bullet}\right)$ has no innerly joint zero-sum subsequences of length n. Therefore we have $\mathrm{s}^{*}(G) \geq|S|+1=20 n+1$.

If $n=3^{a}$ with $a \in \mathbb{N}$, then by Lemma 2.6.2 C_{n}^{4} has Property D and hence by Lemma $4.19 \mathrm{~s}^{*}(G)=20 n+1$.
5. Let $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ be a basis of G and let

$$
T=\left(e_{1}+e_{4}\right)\left(e_{1}+2 e_{4}\right)\left(e_{2}+e_{4}\right)\left(e_{2}+2 e_{4}\right)\left(e_{3}+e_{4}\right)\left(e_{3}+2 e_{4}\right) e_{4}^{2 n}\left(2 e_{4}\right)^{2 n}
$$

It is easy to see that T has no innerly joint zero-sum subsequences of length $2 n$. Therefore $\mathrm{s}^{*}(G) \geq|T|+1=4 n+7$. Let S be a sequence over G^{\bullet} of length $|S|=4 n+7$. We need to show that S has two innerly joint zero-sum subsequences of length $2 n$. Assume to the contrary that S has no innerly joint zero-sum subsequences of length $2 n$. Let t be maximal such that S_{1}, \ldots, S_{t} are S-innerly disjoint zero-sum subsequences of length $\left|S_{i}\right|=2 n$ for $i \in[1, t]$, where $t \in \mathbb{N}_{0}$. Then $S_{1} \cdot \ldots \cdot S_{t} \mid S$. For every $i \in[1, t]$, we choose a term g_{i} of S_{i}. It follows that $\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S$ has no zero-sum subsequence of length $2 n$, whence $\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S\right| \leq \mathrm{s}(G)-1=4 n+4$ by Lemma 2.9.3. Then $t=|S|-\left|\left(g_{1} \cdot \ldots \cdot g_{t}\right)^{-1} S\right| \geq 3$ and hence

$$
4 n+7=|S| \geq\left|S_{1} \cdot \ldots \cdot S_{t}\right| \geq 6 n
$$

a contradiction to $n \geq 36$. Therefore $\mathrm{s}^{*}(G)=4 n+7$.
6. If $a=1$, then the assertion follows from Lemma 4.2. Suppose $a \geq 2$. Then by Lemma 2.6.1 $C_{2^{a}}^{r}$ has Property D and hence by Lemma 4.19 that $\mathrm{s}^{*}(G)=2^{r+a}+1$.

Theorem 4.21. Let $G=C_{3}^{r}$. Then

$$
\mathrm{s}^{* *}(G)=\mathrm{s}^{N}(G)=\mathrm{s}^{*}(G)=\frac{3(\mathrm{~s}(G)-1)}{2}+1
$$

Proof. By Lemma 4.19 and $G=C_{3}^{r}$ has property D, we have $\mathrm{s}^{*}(G)=\frac{3(\mathrm{~s}(G)-1)}{2}+1$. It suffices to show that $\mathrm{s}^{* *}(G) \leq \frac{3(\mathbf{s}(G)-1)}{2}+1$. Let $S \in \mathcal{F}(G)$ be a sequence of length $|S|=\frac{3(\mathrm{~s}(G)-1)}{2}+1$ such that $\mathrm{v}_{0}(S) \leq 3$. We need to show that S has two innerly non-zero-sum-joint zero-sum subsequences of length 3 . We distinguish two cases.

Case 1. $\mathrm{v}_{0}(S) \geq 1$.
Let $S^{\prime}=\left(0^{\mathrm{v}_{0}(S)}\right)^{-1} S$. Then $\left|S^{\prime}\right| \geq|S|-3=\frac{3(\eta(G)-1)}{2}+1=\eta^{*}(G)$ by Lemma 3.1, whence there exist two S^{\prime}-innerly non-zero-sum-joint short zero-sum subsequences T_{1}
and T_{2}. Let Y be the non-zero-sum S^{\prime}-inner common divisor. Since $\min \left\{\left|T_{1}\right|,\left|T_{2}\right|\right\} \geq 2$, we have $\max \left\{3-\left|T_{1}\right|, 3-\left|T_{2}\right|\right\} \leq 1$, whence $0^{3-\left|T_{1}\right|} T_{1}$ and $0^{3-\left|T_{2}\right|} T_{2}$ are two zero-sum subsequences of S of length 3 and have a non-zero-sum S-inner common divisor $0^{t} Y$, where $t \leq \min \left\{3-\left|T_{1}\right|, 3-\left|T_{2}\right|\right\}$.

Case 2. $\mathrm{v}_{0}(S)=0$.
Then every zero-sum subsequence of S of length 3 is minimal. Suppose $S=T_{1}$. $\ldots \cdot T_{r} T_{0}$, where T_{1}, \ldots, T_{r} are zero-sum subsequences of S of length 3 and T_{0} has no zero-sum subsequence of length 3 . Then $r \leq\left\lfloor\frac{|S|}{3}\right\rfloor=\frac{\mathrm{s}(G)-1}{2}$. Choose a term $g_{i} \mid T_{i}$ for each $i \in[1, r]$ and let $S^{\prime}=\left(g_{1} \cdot \ldots \cdot g_{r}\right)^{-1} S$. Thus $\left|S^{\prime}\right| \geq|S|-r \geq \mathrm{s}(G)$, whence S^{\prime} has a zero-sum subsequence T of length 3 . Since T_{0} has no zero-sum subsequence of length 3, there exists $i \in[1, r]$ such that T_{i} and T have a non-zero-sum S-inner common divisor Y, where Y is a nontrivial subsequence of $g_{i}^{-1} T_{i}$.

Proposition 4.22. Suppose that $G=C_{5}^{r}$ has Property D. Then

$$
\mathrm{s}^{N}(G)=\mathrm{s}^{*}(G)=\frac{5(\mathrm{~s}(G)-1)}{4}+1
$$

Proof. By Lemma 4.19 and that $G=C_{5}^{r}$ has property D, we have $\mathrm{s}^{*}(G)=\frac{5(\mathrm{~s}(G)-1)}{4}+1$. Next we need to prove that $\mathrm{s}^{N}(G) \leq \frac{5(\mathrm{~s}(G)-1)}{4}+1$. Let S be a sequence over $G \bullet$ of length $|S|=\frac{5(\mathrm{~s}(G)-1)}{4}+1$. We need to show that S has two innerly non-zero-sum-joint zero-sum subsequences of length 5 . Assume to the contrary that S has no innerly non-zero-sumjoint zero-sum subsequences of length 5 . By Lemma 4.1.1, if T is a zero-sum subsequence of S of length 5 , then $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)$ for every $g \in \operatorname{supp}(T)$.

Suppose $S=S_{1} \cdot \ldots \cdot S_{r} S_{0}$, where $r \in \mathbb{N}, S_{1}, \ldots, S_{r}$ are S-innerly disjoint zero-sum subsequences of length $\left|S_{1}\right|=\ldots=\left|S_{r}\right|=5$, and S_{0} has no zero-sum subsequence of length 5 . Thus $r \leq\lfloor|S| / 5\rfloor=\frac{\mathbf{s}(G)-1}{4}$.

Let $i \in[1, r]$. If S_{i} is not a minimal zero-sum sequence, then $S_{i}=T_{i} T_{i}^{\prime}$, where T_{i}, T_{i}^{\prime} are minimal zero-sum subsequences such that $\left|T_{i}\right|=3$ and $\left|T_{i}^{\prime}\right|=2$, whence there exist an element $g_{i} \in \operatorname{supp}\left(T_{i}^{\prime}\right) \backslash \operatorname{supp}\left(T_{i}\right)$ such that $g_{i}^{-1} S_{i}$ has no zero-sum subsequence of length 2 and an element $h_{i} \in \operatorname{supp}\left(T_{i}\right) \backslash \operatorname{supp}\left(T_{i}^{\prime}\right)$ such that $h_{i}^{-1} S_{i}$ has no zero-sum subsequence of length 3 . If S_{i} is a minimal zero-sum sequence, choose any two terms g_{i}, h_{i} of S_{i}.

We consider the sequence $S^{\prime}:=\left(g_{1} \cdot \ldots \cdot g_{r}\right)^{-1} S$. If S^{\prime} has no zero-sum subsequence of length 5 , then $\left|S^{\prime}\right|=\frac{5(\mathrm{~s}(G)-1)}{4}+1-r \leq \mathrm{s}(G)-1$, whence $r \geq \frac{\mathrm{s}(G)+1}{4}$, a contradiction. Thus we may assume that S^{\prime} has a zero-sum subsequence T of length 5 . Since S_{0} has no zero-sum subsequence of length 5 , there exists $i_{0} \in[1, r]$ such that T and $S_{i_{0}}$ have a nontrivial S-inner common divisor Y, where Y is a subsequence of $g_{i_{0}}^{-1} S_{i}$. By our assumption, Y is zero-sum. It follows that $S_{i_{0}}$ is not a minimal zero-sum sequence, $Y=T_{i_{0}}, Y^{-1} T$ is a minimal zero-sum subsequence of length 2 , and $Y^{-1} T$ divides $S_{0} \prod_{j \in[1, r] \backslash\left\{i_{0}\right\}} g_{j}^{-1} S_{j}$. Assume that there exists $j \in[1, r] \backslash\left\{i_{0}\right\}$ such that $Y^{-1} T$ and $g_{j}^{-1} S_{j}$ are $S_{0} \prod_{j \in[1, r] \backslash\left\{i_{0}\right\}} S_{j}$-innerly joint. Then the inner common divisor is not
zero-sum and hence T and S_{j} have a non-zero-sum S-inner common divisor, a contradiction. Therefore $Y^{-1} T$ and $\prod_{j \in[1, r] \backslash\left\{i_{0}\right\}} g_{j}^{-1} S_{j}$ are not $S_{0} \prod_{j \in[1, r] \backslash\left\{i_{0}\right\}} S_{j}$-innerly joint, whence $Y^{-1} T$ divides S_{0}, i.e., S_{0} has a zero-sum subsequence $U=Y^{-1} T$ of length 2 .

Now we consider the sequence $S^{\prime \prime}:=\left(h_{1} \cdot \ldots \cdot h_{r}\right)^{-1} S$ and similarly as above we can show S_{0} has a zero-sum subsequence V of length 3 . If U and V are S_{0}-innerly disjoint, then $U V$ is a zero-sum subsequence of S_{0} of length 5 , a contradiction. If U and V have a S_{0}-inner common divisor Y_{1}, then $\left|Y_{1}\right|=1$ and hence Y_{1} is not zero-sum. It follows that $T=U T_{i_{0}}$ and $V T_{i_{0}}^{\prime}$ are zero-sum subsequences of S of length 5 and have a non-zero-sum S-inner common divisor Y_{1}, a contradiction.
4.4. Concluding remarks. Let $G=C_{n}^{2}$. If $n \in[3,10]$, then G has property D by Lemma 2.6.6, whence Lemma 4.19 implies that $\mathrm{s}^{*}(G)=4 n+1$. It follows from Theorem 4.21 and Proposition 4.22 that $\mathrm{s}^{N}\left(C_{n}^{2}\right)=4 n+1$ for $n=3$ or 5 . Let $m \geq \frac{7 p^{3}+p^{2}+2 p}{2}$ for some prime $p \geq 47$. Then Theorem 4.18 implies that $\mathrm{s}^{N}\left(C_{p m}^{2}\right)=4 p m+1$. All these results support the following conjecture.

Conjecture 4.23. Let $G=C_{n}^{2}$, where $n \geq 3$. Then $\mathbf{s}^{N}(G)=4 n+1$.
Acknowledgements. We would like to thank the referee for his or her valuable suggestions which helped improving the readability and the presentation of the paper. This work was supported in part by the Austrian Science Fund FWF (Project P36852-N), National Natural Science Foundation of China (Grant No. 12001331, 12071344), the PCSIRT Project of the Ministry of Science and Technology, and also in part by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (Grant No. RGPIN 2017-03903).

References

[B07] J. Bass, Improving the Erdôs-Ginzburg-Ziv theorem for some non-abelian groups, J. Number Theory 126(2) (2007), 217-236.
[BGH20] J. Bitz, C. Griffith, and X. He, Exponential lower bounds on the generalized Erdốs-Ginzburg-Ziv constant, Discrete Math. 343(12) (2020): 112083.
[CDS18] K. Cziszter, M. Domokos, and I. Szöllősi, The Noether numbers and the Davenport constants of the groups of order less than 32, J. Algebra 510 (2018), 513-541.
[EEGKR07] Y. Edel, C. Elsholtz, A. Geroldinger, S. Kubertin, and L. Rackham, Zerosum problems in finite abelian groups and affine caps, Q. J. Math. 58 (2007), 159-186.
[E69] P. van Emde Boas, A combinatorial problem on finite abelian groups. II, Math. Centrum, Amsterdam Afd. Zuivere Wisk. 1969, ZW-007, 60 pp.
[FGZ11] Y. Fan, W. Gao, and Q. Zhong, On the Erdös-Ginzburg-Ziv constant of finite abelian groups of high rank, J. Number Theory 131(10) (2011), 1864-1874.
[FZ16] Y. Fan and Q. Zhong, On the Erdốs-Ginzburg-Ziv constant of groups of the form $C_{2}^{r} \oplus C_{n}$, Int. J. Number Theory 12(4) (2016), 913-943.
[G97] W. Gao, On a combinatorial problem connected with factorizations, Colloq. Math. 72(2) (1997), 251-268.
[G00] W. Gao, On Davenport's constant of finite abelian groups with rank three, Discrete Math. 222(1-3) (2000), 111-124.
[Ga00] W. Gao, Two zero sum problems and multiple properties, J. Number Theory 81(2) (2000), 254-265.
[GG06] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups : a survey, Expo. Math. 24(4) (2006), 337-369.
[GGS07] W. Gao, A. Geroldinger, and W. Schmid, Inverse zero-sum problems, Acta Arith. 128 (2007), 245-279.
[GGW11] W. Gao, A. Geroldinger, and Q. Wang, A quantitative aspect of non-unique factorizations: the Narkiewicz constants, Int. J. Number Theory 7(6) (2011), 14631502.
[GHPS14] W. Gao, D. Han, J. Peng, and F. Sun, On zero-sum subsequences of length $k \exp (G)$, J. Combin. Theory Ser. A 125 (2014), 240-253.
[GHHLYZ21] W. Gao, S. Hong, W. Hui, X. Li, Q. Yin and P. Zhao, Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group, Period Math. Hung. 85(1) (2021), 52-71.
[GHLYZ20] W. Gao, S. Hong, X. Li, Q. Yin, and P. Zhao, Long sequences having no two nonempty zero-sum subsequences of distinct lengths, Acta Arith. 196(4) (2020), 329-347.
[GHST07] W. Gao, Q. Hou, W. Schmid, and R. Thangadurai, On short zero-sum subsequences II, Integers 7 (2007), Paper A21, 22 pp.
[GL10] W. Gao and Y. Li, The Erdốs-Ginzburg-Ziv theorem for finite solvable groups, J. Pure Appl. Algebra 214(6) (2010), 898-909.
[GLP11] W. Gao, Y. Li, and J. Peng, A quantitative aspect of non-unique factorizations: the Narkiewicz constants II, Colloq. Math. 124(2) (2011), 205-218.
[GLPW18] W. Gao, Y. Li, J. Peng, and G. Wang, A unifying look at zero-sum invariants, Int. J. Number Theory 14(3) (2018), 705-711.
[GLZZ16] W. Gao, Y. Li, P. Zhao, and J. Zhuang, On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths, Colloq. Math. 144(1), (2016), 31-44.
[GL08] W. Gao and Z. Lu, The Erdö́s-Ginzburg-Ziv theorem for dihedral groups, J. Pure Appl. Algebra 212(2) (2008), 311-319.
[GPZ13] W. Gao, J. Peng, and Q. Zhong, A quantitative aspect of non-unique factorizations: the Narkiewicz constants III, Acta Arith. 158(3) (2013), 271-285.
[GT03] W. Gao and R. Thangadurai, On the structure of sequences with forbidden zerosum subsequences, Colloq. Math. 98(2) (2003), 213-222.
[GZZ15] W. Gao, P. Zhao, and J. Zhuang, Zero-sum subsequences of distinct lengths, Int. J. Number Theory 11(7) (2015), 2141-2150.
[GH06] A. Geroldinger and F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics, vol. 278, Chapman \& Hall/CRC, 2006.
[G12] B. Girard, On the existence of zero-sum subsequences of distinct lengths, Rocky Mountain J. Math. 42(2) (2012), 583-596.
[GS19] B. Girard and W. Schmid, Direct zero-sum problems for certain groups of rank three, J. Number Theory 197 (2019), 297-316.
[G13] D. Grynkiewicz, Structural Additive Theory, Developments in Mathematics 30, Springer, Cham, 2013.
[H92] F. Halter-Koch, A generalization of Davenport's constant and its arithmetical applications, Colloq. Math. 63(2) (1992), 203-210.
[Ha92] F. Halter-Koch, Chebotarev formations and quantitative aspects of non-unique factorizations, Acta Arith. 62(2) (1992), 173-206.
[Ha93] F. Halter-Koch, Relative types and their arithmetical applications, Pure Math. Appl. Ser. A 3(1-2) (1993), 81-92.
[Hal92] F. Halter-Koch, Typenhalbgruppen und Faktorisierungsprobleme, Results Math. $22(1-2)(1992), 545-559$.
[H15] D. Han, The Erdôs-Ginzburg-Ziv Theorem for finite nilpotent groups, Arch. Math. (Basel) 104(4) (2015), 325-332.
[HZ19] D. Han and H. Zhang, Erdös-Ginzburg-Ziv Theorem and Noether number for $C_{m} \ltimes{ }_{\varphi} C_{m n}$, J. Number Theory 198 (2019), 159-175.
[H73] H. Harborth, Ein Extremal problem für Gitterpunkte, J. Reine Angew. Math. 262 (1973), 356-360.
[L20] C. Liu, On the lower bounds of Davenport constant, J. Combin. Theory Ser. A 171 (2020): 105162.
[N04] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer, 2004.
[N20] E. Naslund, Exponential bounds for the Erdös-Ginzburg-Ziv constant, J. Combin. Theory Ser. A 174 (2020): 105185.
[N96] M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, GTM 165, Springer, 1996.
[OZ20] J. Oh and Q. Zhong, On Erdôs-Ginzburg-Ziv inverse theorems for dihedral and dicyclic groups, Israel J. Math. 238(2) (2020), 715-743.
[OhZh20] J. Oh and Q. Zhong, On minimal product-one sequences of maximal length over dihedral and dicyclic groups, Commun. Korean Math. Soc. 35(1) (2020), 83-116.
[PS11] A. Plagne, W. Schmid, An application of coding theory to estimating Davenport constants, Des. Codes Cryptogr. 61 (2011), 105-118.
[R10] C. Reiher, A proof of the theorem according to which every prime number possesses Property B, doctoral thesis, University of Rostock, Germany, 2010.
[S20] A. Sidorenko, On generalized Erdös-Ginzburg-Ziv constants for \mathbb{Z}_{2}^{d}, J. Combin. Theory Ser. A 174 (2020): 105254.
[ST02] B. Sury and R. Thangadurai, Gao's conjecture on zero-sum sequences, Proc. Indian Acad. Sci. Math. Sci. 112(3) (2002), 399-414.

Center for Applied Mathematics, Tianjin University, No. 92 Weijin Road, Tianjin 300072, P.R. China

Email address: wdgao1963@aliyun.com
Brock University, Department of Mathematics and Statistics, St. Catharines ON L2S 3A1, Canada

Email address: huiwanzhen@163.com
College of Science, Tianjin University of Commerce, Tianjin 300134, P.R. China Email address: lixue931006@163.com

Brock University, Department of Mathematics and Statistics, St. Catharines ON L2S
3A1, Canada
Email address: yli@brocku.ca
Luoyang Normal University, Dept Math, Luoyang 471934, P.R. China
Email address: quyongke@sohu.com
University of Graz, NAWI Graz, Institute for Mathematics and Scientific Computing, Heinrichstrasse 36, 8010 Graz, Austria \& School of Mathematics and statistics, Shandong University of Technology, Zibo, Shandong 255000, China

Email address: qinghai.zhong@uni-graz.at
URL: https://imsc.uni-graz.at/zhong/

[^0]: 2020 Mathematics Subject Classification. 11R27, 11B30, 11P70, 20 K 01.
 Key words and phrases. Davenport constant, EGZ constant, Narkiewicz constant, zero-sum sequence, non-unique factorization.
 *Corresponding author: Wanzhen Hui, Email: huiwanzhen@163.com.

