From nonlocal to local Cahn-Hilliard equation

Stefano Melchionna Helene Ranetbauer Lara Trussardi

Uni Wien (Austria)

September 18, 2018

Index

- Introduction
- 2 Local CH
- Nonlocal CH
- Main result

Cahn-Hilliard equation

- It has been proposed in 1958 by [Cahn, Hilliard 1958, Cahn 1961]
- It describes the process of phase separation (spinodal decomposition) in binary alloys (iron-nickel)
- Phase field model $u \in [0, 1]$ (vs sharp interface model $u \in \{0, 1\}$)
- It has a variety of applications:
 - image processing [Capuzzo Dolcetta, Finzi Vita, March 2002]
 - population dynamics [Cohen, Murray 1981]
 - formation of Saturn rings [Tremaine 2003]
 - tumour growth [Colli, Garcke, Gilardi, Lam, Rocca, Sprekels, Scala...]

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

$$u = 0, u = 1$$
: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

u = 0, u = 1: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

u = 0, u = 1: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

 $u \in \mathbb{R}$: real valued function representing the local concentration of one of the two components

u = 0, u = 1: pure phases

Two species A, B with concentrations c_A and $c_B = 1 - c_A$ at each point. Then $u(x,t) = 1 - c_A(x,t)$ and: $u \equiv 1 \rightsquigarrow$ pure phase B; $u \equiv 0 \rightsquigarrow$ pure phase A.

Local Cahn-Hilliard

Free energy functional

$$E_{CH}(u) = \int_{\Omega} \left(\frac{\tau^2}{2} |\nabla u|^2 + F(u)\right) dx$$

where

- \bullet τ : small positive parameter related to the transition region thickness
- F: double well potential with two global minima in the pure phases
- $|\nabla u|^2$: reflects intermolecular interactions (penalising the creation of interfaces)

Local Cahn-Hilliard

Corresponding evolution problem (4th order PDE):

$$egin{aligned} rac{\partial u}{\partial t} +
abla \cdot J_{CH} &= 0, \\ J_{CH} &= -\mu(u)
abla v_{CH}, \\ v_{CH} &= rac{\delta E_{CH}(u)}{\delta u} &= - au^2 \Delta u + F'(u) \end{aligned}$$

where

- μ : mobility (constant = 1)
- $v = \frac{\delta E}{\delta u}$: chemical potential

Nonlocal Cahn-Hilliard

Proposed by [Giacomin, Lebowitz 1997]

Free energy functional

$$E_{NL}(u) = \frac{1}{4} \int_{\Omega} \int_{\Omega} K(x, y) (u(x) - u(y))^2 dx dy + \int_{\Omega} F(u(x)) dx,$$

where

- K(x, y): positive and symmetric convolution kernel
- F: double well potential with two global minima in the pure phases

Nonlocal Cahn-Hilliard

Corresponding evolution problem (2nd order PDE):

$$\begin{aligned} \frac{\partial u}{\partial t} + \nabla \cdot J_{NL} &= 0, \\ J_{NL} &= -\mu(u) \nabla v_{NL}, \\ v_{NL} &= \frac{\delta E_{NL}(u)}{\delta u} = (K*1)u - K*u + F'(u) \end{aligned}$$

Nonlocal Cahn-Hilliard

Corresponding evolution problem (2nd order PDE):

$$\frac{\partial u}{\partial t} + \nabla \cdot J_{NL} = 0,$$

$$J_{NL} = -\mu(u)\nabla v_{NL},$$

$$v_{NL} = \frac{\delta E_{NL}(u)}{\delta u} = (K*1)u - K*u + F'(u)$$

Goal: prove the convergence of solutions of the nonlocal Cahn-Hilliard equation to solutions of the local version in a periodic setting.

Local vs nonlocal

- They share fundamental features: underlying gradient flow structure, lack of comparison principle, separation from the pure phases,...
- Both energy functionals allow the same Γ-limit for vanishing interface thickness [Gal, Grasselli, Miranville, Rocca,...]
- Pointwise convergence is of little use due to non convexity and lack of coercivity of the nonlocal energy functional E_{NL} in H^1 .
- There exists Γ-convergence for the energy functionals [Ponce 2004] but it is not trivial to prove convergence for solutions of the corresponding dynamic problems using [Sandier, Serfaty 2011]

Overview of known results and properties

Eq	F	μ	Existence	Separation	Long time
СН	pol	non-deg	Garcke '00, Temam	probably false	Temam '88
	log	deg	Elliott Garcke '96	?	?
		non-deg	Elliott Luckhaus '91	Miranville Zelik '04	Cherfils Zelik Miranville '11
		deg	Elliott Garcke '96	?	Debussche Dettori '95
NLCH	pol	non-deg	Bates Han '04	probably false	Gal Grasselli '17
	log	deg	?	?	?
		non-deg	Gal Giorgini Grasselli '17	Gal Giorgini Grasselli '17	Gal Giorgini Grasselli '17
		deg	Gajewski Zacharias '03	Londen Petzeltova '11	Londen Petzeltova '11

H1 Ω *d*-dimensional flat torus with $d \leq 3$

- H1 Ω *d*-dimensional flat torus with $d \leq 3$
- H2 Family of convolution kernels parametrised by a parameter ε :

$$K_{\varepsilon}(x,y) = \varepsilon^{-d-2}J\left(\left|\frac{x-y}{\varepsilon}\right|^2\right)$$

with $J: \mathbb{R} \to \mathbb{R}$ sufficiently smooth nonnegative function with compact support and

$$\frac{1}{d}\int_{\Omega}J(|z|^2)|z|^2\,\mathrm{d}z=1$$

- H1 Ω *d*-dimensional flat torus with $d \leq 3$
- H2 Family of convolution kernels parametrised by a parameter ε :

$$K_{\varepsilon}(x,y) = \varepsilon^{-d-2}J\left(\left|\frac{x-y}{\varepsilon}\right|^2\right)$$

with $J: \mathbb{R} \to \mathbb{R}$ sufficiently smooth nonnegative function with compact support and

$$\frac{1}{d}\int_{\Omega}J(|z|^2)|z|^2\,\mathrm{d}z=1$$

H3 $F \in C^2(\mathbb{R})$ double well potential with two global minima at 0 and 1 such that $F''(s) \geq 0$ for $s \in (-\infty, -a] \cup [a, +\infty)$ with a nonnegative, and $C_l(|u|^3 + 1) \leq F'(u) \leq C_u(|u|^3 + 1)$ for $C_l, C_u > 0$

- H1 Ω *d*-dimensional flat torus with $d \leq 3$
- H2 Family of convolution kernels parametrised by a parameter ε :

$$K_{\varepsilon}(x,y) = \varepsilon^{-d-2}J\left(\left|\frac{x-y}{\varepsilon}\right|^2\right)$$

with $J: \mathbb{R} \to \mathbb{R}$ sufficiently smooth nonnegative function with compact support and

$$\frac{1}{d}\int_{\Omega}J(|z|^2)|z|^2\,\mathrm{d}z=1$$

- H3 $F \in C^2(\mathbb{R})$ double well potential with two global minima at 0 and 1 such that $F''(s) \geq 0$ for $s \in (-\infty, -a] \cup [a, +\infty)$ with a nonnegative, and $C_l(|u|^3+1) \leq F'(u) \leq C_u(|u|^3+1)$ for $C_l, C_{ll} > 0$
- H4 $u_{0,\varepsilon} \in L^2(\Omega)$ converges strongly in $L^2(\Omega)$ to the limit $u_0 \in H^1(\Omega)$ and satisfies $E_{\varepsilon}(u_{0,\varepsilon}), E(u_0) \leq C_0$ for some constant $C_0 > 0$ independent of ε

Definition of solutions

Definition (Weak solution to the nonlocal Cahn-Hilliard equation)

Let $\varepsilon>0$ and T>0 be fixed. We define u_ε to be a *weak solution* to the **nonlocal** Cahn-Hilliard equation on [0,T] associated with the initial datum $u_{0,\varepsilon}\in L^2(\Omega)$ if

$$u_{\varepsilon} \in H^{1}(0, T; (H^{1}(\Omega))^{*}) \cap L^{2}(0, T; H^{1}(\Omega)),$$

satisfies

$$\langle \partial_t u_{\varepsilon}, \varphi \rangle_{(H^1(\Omega))^*, H^1(\Omega)} + \int_{\Omega} \nabla [(K_{\varepsilon} * 1)u_{\varepsilon} - K_{\varepsilon} * u_{\varepsilon} + F'(u_{\varepsilon})] \cdot \nabla \varphi \, \mathrm{d}x = 0$$

for all
$$\varphi \in H^1(\Omega)$$
, and $u_{\varepsilon}(0) = u_{0,\varepsilon}$.

Definition of solutions

Definition (Weak solution to the local Cahn-Hilliard equation)

Let T > 0 be fixed. We define u to be a *weak solution* to the Cahn-Hilliard equation on [0, T] associated with the initial datum $u_0 \in H^1(\Omega)$ if

$$u \in H^1(0, T; (H^1(\Omega))^*) \cap L^2(0, T; H^2(\Omega)),$$

satisfies

$$\langle \partial_t u, \varphi \rangle_{(H^1(\Omega))^*, H^1(\Omega)} + \int_{\Omega} \Delta u \Delta \varphi \, \mathrm{d}x - \int_{\Omega} F'(u) \Delta \varphi \, \mathrm{d}x = 0$$

for all $\varphi \in H^2(\Omega)$, and $u(0) = u_0$.

Main result

Remark:

- existence and uniqueness of weak solutions to both problems are well known with different choices for the boundary conditions
- both systems have been largely studied (qualitative properties, numerical aspects, long-time behaviour, asymptotics with different kinds of boundary conditions and different potentials)

Main result

Remark:

- existence and uniqueness of weak solutions to both problems are well known with different choices for the boundary conditions
- both systems have been largely studied (qualitative properties, numerical aspects, long-time behaviour, asymptotics with different kinds of boundary conditions and different potentials)

Theorem

Let u_{ε} be a solution of the nonlocal CH with periodic boundary conditions and kernel $K_{\varepsilon}(x, y)$.

Then $u_{\varepsilon} \to u$ in $L^2(0,T;H^1(\Omega)) \cap H^1(0,T;H^{-1}(\Omega))$ where u is a solution of the local CH.

Some comments

- Note that in the Neumann case CH has two boundary conditions (one for u and one for the chemical potential), while NLCH has just one (for the chemical potential v).
- The mobility can be annoying for the estimates on the chemical potential.

Some comments

- Note that in the Neumann case CH has two boundary conditions (one for u and one for the chemical potential), while NLCH has just one (for the chemical potential v).
- The mobility can be annoying for the estimates on the chemical potential.

Idea: use advantage of the dynamic structure: for every fixed ε , $u_{\varepsilon} \in H^1$

Proof: uniform estimates

$$\textstyle \langle \partial_t u_\varepsilon, \varphi \rangle_{(H^1(\Omega))^*, H^1(\Omega)} + \int_{\Omega} \nabla [(K_\varepsilon * 1) u_\varepsilon - K_\varepsilon * u_\varepsilon + F'(u_\varepsilon)] \cdot \nabla \varphi \, \mathrm{d}x = 0$$

Test function: $\varphi = \mathbf{u}_{\varepsilon}$

$$0 = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|u_{\varepsilon}\|_{L^{2}(\Omega)}^{2} + \int_{\Omega} \nabla \left[(K_{\varepsilon} * 1)u_{\varepsilon} - K_{\varepsilon} * u_{\varepsilon} + F'(u_{\varepsilon}) \right] \cdot \nabla u_{\varepsilon} \, \mathrm{d}x$$

$$\langle \partial_t u_{\varepsilon}, \varphi \rangle_{(H^1(\Omega))^*, H^1(\Omega)} + \int_{\Omega} \nabla [(K_{\varepsilon} * 1) u_{\varepsilon} - K_{\varepsilon} * u_{\varepsilon} + F'(u_{\varepsilon})] \cdot \nabla \varphi \, \mathrm{d}x = 0$$

Test function: $\varphi = \mathbf{u}_{\varepsilon}$

$$0 = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| u_{\varepsilon} \|_{L^{2}(\Omega)}^{2} + \int_{\Omega} \nabla \left[(K_{\varepsilon} * 1) u_{\varepsilon} - K_{\varepsilon} * u_{\varepsilon} + F'(u_{\varepsilon}) \right] \cdot \nabla u_{\varepsilon} \, \mathrm{d}x$$

$$0 = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \| u_{\varepsilon} \|_{L^{2}(\Omega)}^{2} + \int_{\Omega} \left[\underbrace{(K_{\varepsilon} * 1) |\nabla u_{\varepsilon}|^{2} - (K_{\varepsilon} * \nabla u_{\varepsilon}) \cdot \nabla u_{\varepsilon}}_{\frac{1}{2} \int_{\Omega} \int_{\Omega} K_{\varepsilon}(x, y) |\nabla u_{\varepsilon}(x) - \nabla u_{\varepsilon}(y)|^{2} \, \mathrm{d}x \, \mathrm{d}y} + F''(u_{\varepsilon}) |\nabla u_{\varepsilon}|^{2} \right] \mathrm{d}x$$

Change of variable $\frac{x-y}{\varepsilon} =: z$

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|u_{\varepsilon}\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \int_{\Omega} \int_{\Omega} J(|z|^{2}) \left| \frac{\nabla u_{\varepsilon}(y + \varepsilon z) - \nabla u_{\varepsilon}(y)}{\varepsilon} \right|^{2} \mathrm{d}y \, \mathrm{d}z \\
= - \int_{\Omega} F''(u_{\varepsilon}) |\nabla u_{\varepsilon}|^{2} \, \mathrm{d}x \le B_{1} \|\nabla u_{\varepsilon}\|_{L^{2}(\Omega)}^{2}.$$

Change of variable $\frac{x-y}{\varepsilon} =: z$

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \|u_{\varepsilon}\|_{L^{2}(\Omega)}^{2} + \frac{1}{2} \int_{\Omega} \int_{\Omega} J(|z|^{2}) \left| \frac{\nabla u_{\varepsilon}(y + \varepsilon z) - \nabla u_{\varepsilon}(y)}{\varepsilon} \right|^{2} \mathrm{d}y \, \mathrm{d}z \\
= - \int_{\Omega} F''(u_{\varepsilon}) |\nabla u_{\varepsilon}|^{2} \, \mathrm{d}x \le B_{1} \|\nabla u_{\varepsilon}\|_{L^{2}(\Omega)}^{2}.$$

Aim: estimate the blue term with $\|\nabla u_{\varepsilon}\|^2$

Key idea: [Ponce 2004], Poincaré type inequality

Key idea

 $\Omega \in \mathbb{R}^N$ with $N \ge 1$, bounded domain with Lipschitz boundary, $1 \le p < \infty$

Poincaré

It exist $C_p > 0$ s.t.

$$\int_{\Omega} |f - f_{\Omega}|^{p} \leq C_{p} \int_{\Omega} |Df|^{p}, \quad \forall f \in W^{1,p}(\Omega)$$

Let $(\rho_n) \subset L^1(\mathbb{R}^N)$ be a sequence of radial functions satisfying:

$$ho_n \geq 0$$
 a.e. in \mathbb{R}^N
$$\int_{\mathbb{R}^N} \rho_n = 1 \qquad \forall n \geq 1$$

$$\lim_{n \to \infty} \int_{|h| > \delta} \rho_n(h) dh = 0 \qquad \forall \delta > 0$$

Theorem 1

Let $(\rho_n) \subset L^1(\mathbb{R}^N)$ be a sequence of radial functions as defined before. Given $\delta > 0$, there exists $n_0 \ge 1$ sufficiently large, such that

$$\int_{\Omega} |f - f_{\Omega}|^{p} \leq \left(\frac{C_{p}}{K_{p,N}} + \delta\right) \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^{p}}{|x - y|^{p}} \rho_{n}(|x - y|) dx dy$$

for every $f \in L^p(\Omega)$ and $n \ge n_0$.

Theorem 1

Let $(\rho_n) \subset L^1(\mathbb{R}^N)$ be a sequence of radial functions as defined before. Given $\delta > 0$, there exists $n_0 \geq 1$ sufficiently large, such that

$$\int_{\Omega} |f - f_{\Omega}|^{p} \leq \left(\frac{C_{p}}{K_{p,N}} + \delta\right) \int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^{p}}{|x - y|^{p}} \rho_{n}(|x - y|) dx dy$$

for every $f \in L^p(\Omega)$ and $n \ge n_0$.

Observe: this formulation is stronger than Poincaré. It is easy to see that

$$\int_{\Omega} \int_{\Omega} \frac{|f(x) - f(y)|^p}{|x - y|^p} \rho_n(|x - y|) \, \mathrm{d}x \, \mathrm{d}y \le \int_{\mathbb{R}^N} |Df|^p \le C \int_{\Omega} |Df|^p$$

Theorem 2 – compactness

If $(f_n) \subset L^p(\mathbb{R}^n)$ is a bounded sequence such that

$$\int_{\Omega} \int_{\Omega} \frac{|f_n(x) - f_n(y)|^p}{|x - y|^p} \rho_n(|x - y|) dx dy \leq B, \quad \forall n \geq 1$$

then (f_n) is relatively compact in L^p .

Assume that $f_n \to f$ in $L^p(\Omega)$ then

- $f \in W^{1,p}(\Omega)$ if 1
- $f \in BV(\Omega)$ if p = 1

$$\langle \partial_t u_{\varepsilon}, \varphi \rangle_{(H^1(\Omega))^*, H^1(\Omega)} + \int_{\Omega} \nabla [(K_{\varepsilon} * 1)u_{\varepsilon} - K_{\varepsilon} * u_{\varepsilon} + F'(u_{\varepsilon})] \cdot \nabla \varphi \, \mathrm{d}x = 0$$

Test function: $\varphi = (-\Delta)^{-1} U_{\varepsilon}$ where

$$(-\Delta)^{-1}:(H^1(\Omega))^* o H^1(\Omega)$$

is the map assigning to every $v \in (H^1(\Omega))^*$ the unique solution w of the equation $-\Delta w = v$ such that the mean value is zero, i.e. $\overline{w} = 0$. We define $U_{\varepsilon} = u_{\varepsilon} - \overline{u_{\varepsilon}}$.

$$\langle \partial_t u_{\varepsilon}, \varphi \rangle_{(H^1(\Omega))^*, H^1(\Omega)} + \int_{\Omega} \nabla [(K_{\varepsilon} * 1)u_{\varepsilon} - K_{\varepsilon} * u_{\varepsilon} + F'(u_{\varepsilon})] \cdot \nabla \varphi \, \mathrm{d}x = 0$$

Test function: $\varphi = (-\Delta)^{-1} U_{\varepsilon}$ where

$$(-\Delta)^{-1}:(H^1(\Omega))^*\to H^1(\Omega)$$

is the map assigning to every $v \in (H^1(\Omega))^*$ the unique solution w of the equation $-\Delta w = v$ such that the mean value is zero, i.e. $\overline{w} = 0$. We define $U_{\varepsilon} = u_{\varepsilon} - \overline{u_{\varepsilon}}$.

$$\|u_{\varepsilon} - \overline{u_{\varepsilon}}\|_{L^{2}(\Omega)}^{2} \leq C_{p} \int_{\Omega} \int_{\Omega} J(|z|^{2})|z|^{2} \left(\frac{U_{\varepsilon}(y + \varepsilon z) - U_{\varepsilon}(y)}{\varepsilon |z|}\right)^{2} dy dz \leq B_{2}|\Omega|$$

and

$$\|\nabla u_{arepsilon} - \overline{\nabla u_{arepsilon}}\|_{L^2(\Omega)}^2 \leq C_p \int_{\Omega} \int_{\Omega} J(|z|^2)|z|^2 \left| \frac{\nabla u_{arepsilon}(y + arepsilon z) - \nabla u_{arepsilon}(y)}{arepsilon |z|} \right|^2 dy dz,$$

Uniform estimates

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|u_{\varepsilon}\|_{L^{2}(\Omega)}^{2}+\frac{1}{2}\int_{\Omega}\int_{\Omega}J(|z|^{2})\left|\frac{\nabla u_{\varepsilon}(y+\varepsilon z)-\nabla u_{\varepsilon}(y)}{\varepsilon}\right|^{2}\,\mathrm{d}y\,\mathrm{d}z\leq B_{1}\|\nabla u_{\varepsilon}\|_{L^{2}(\Omega)}^{2}$$

Uniform estimates

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|u_\varepsilon\|_{L^2(\Omega)}^2 + \frac{1}{2}\int_\Omega\int_\Omega J(|z|^2) \left|\frac{\nabla u_\varepsilon(y+\varepsilon z) - \nabla u_\varepsilon(y)}{\varepsilon}\right|^2 \,\mathrm{d}y \,\mathrm{d}z \leq B_1\|\nabla u_\varepsilon\|_{L^2(\Omega)}^2$$

$$\frac{1}{2}\|u_{\varepsilon}(T)\|_{L^{2}(\Omega)}^{2} + \left(\frac{1}{2C_{\rho}} - B_{1}\right)\|\nabla u_{\varepsilon}\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} \leq \frac{1}{2}\|u_{\varepsilon}(0)\|_{L^{2}(\Omega)}^{2}$$

Uniform estimates

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|u_\varepsilon\|_{L^2(\Omega)}^2 + \frac{1}{2}\int_\Omega\int_\Omega J(|z|^2) \left|\frac{\nabla u_\varepsilon(y+\varepsilon z) - \nabla u_\varepsilon(y)}{\varepsilon}\right|^2 \,\mathrm{d}y \,\mathrm{d}z \leq B_1\|\nabla u_\varepsilon\|_{L^2(\Omega)}^2$$

$$\frac{1}{2}\|u_{\varepsilon}(T)\|_{L^{2}(\Omega)}^{2} + \left(\frac{1}{2C_{p}} - B_{1}\right)\|\nabla u_{\varepsilon}\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} \leq \frac{1}{2}\|u_{\varepsilon}(0)\|_{L^{2}(\Omega)}^{2}$$

$$\int_0^T \int_\Omega \int_\Omega J(|z|^2) \left| \frac{\nabla u_\varepsilon(y + \varepsilon z) - \nabla u_\varepsilon(y)}{\varepsilon} \right|^2 dy dz dt \le C$$

Goal: prove the limit *u* to be a weak solution of the local Cahn-Hilliard equation

$$egin{aligned} u_{arepsilon} & \to u & \text{weakly in } L^2(0,T;H^1(\Omega)) \ \partial_t u_{arepsilon} & o \partial_t u & \text{weakly in } L^2(0,T;(H^1(\Omega))^*) \ u_{arepsilon} & o u & \text{strongly in } C([0,T];L^2(\Omega)) \end{aligned}$$

for some limit $u \in L^2(0, T; H^1(\Omega)) \cap H^1(0, T; (H^1(\Omega))^*)$

Goal: prove the limit *u* to be a weak solution of the local Cahn-Hilliard equation

$$u_{\varepsilon} \to u$$
 weakly in $L^{2}(0, T; H^{1}(\Omega))$
 $\partial_{t}u_{\varepsilon} \to \partial_{t}u$ weakly in $L^{2}(0, T; (H^{1}(\Omega))^{*})$
 $u_{\varepsilon} \to u$ strongly in $C([0, T]; L^{2}(\Omega))$

for some limit $u \in L^2(0, T; H^1(\Omega)) \cap H^1(0, T; (H^1(\Omega))^*)$

[Ponce 2004] $\Rightarrow u \in L^2(0, T; H^2(\Omega))$

Test function: $\varphi \in C^{\infty}(\Omega)$

$$0 = \underbrace{\int_{0}^{T} \int_{\Omega} (\partial_{t} u_{\varepsilon}) \varphi \, dx \, dt}_{I} - \underbrace{\int_{0}^{T} \int_{\Omega} F'(u_{\varepsilon}) \Delta \varphi \, dx \, dt}_{II}$$

$$\underbrace{-\frac{1}{2} \int_{0}^{T} \int_{\Omega} \int_{\Omega} K_{\varepsilon}(x, y) (u_{\varepsilon}(x) - u_{\varepsilon}(y)) (\Delta \varphi(x) - \Delta \varphi(y)) \, dy \, dx \, dt}_{III}$$

(I)–(II): the growth conditions and continuity on F' suffice to pass to the limit

Thanks to (H2):

$$\frac{1}{d}\mathcal{H}^{d-1}(\mathcal{S}^{d-1})\int_0^\infty J(r^2)r^{d+1}\,\mathrm{d}r=1$$

and by using the weak convergence:

$$\frac{1}{2} \int_{0}^{T} \int_{\Omega} J(|z|^{2})|z|^{2}
\int_{\Omega} \frac{(u_{\varepsilon}(y + \varepsilon z) - u_{\varepsilon}(y))}{\varepsilon |z|} \frac{(\Delta \varphi(y + \varepsilon z) - \Delta \varphi(y))}{\varepsilon |z|} dy dz dt
\rightarrow \frac{1}{2} \int_{0}^{T} \int_{\Omega} \nabla u(y) \cdot \nabla \Delta \varphi(y) dy dt$$

Thus, the limit *u* satisfies

$$\int_0^T \int_{\Omega} (\partial_t u) \varphi \, dx \, dt - \int_0^T \int_{\Omega} \nabla u \cdot \nabla \Delta \varphi \, dx \, dt - \int_0^T \int_{\Omega} F'(u) \Delta \varphi \, dx \, dt = 0.$$

Outlook and open questions

- Proved the convergence of weak solutions of the NLCH equation to the weak solutions to the local one as the convolution kernel approximates a Dirac delta (case with periodic boundary conditions) using a compactness argument.
- Dirichlet / Neumann boundary conditions?

Outlook and open questions

- Proved the convergence of weak solutions of the NLCH equation to the weak solutions to the local one as the convolution kernel approximates a Dirac delta (case with periodic boundary conditions) using a compactness argument.
- Dirichlet / Neumann boundary conditions?

Thanks for your attention

Melchionna S., Ranetbauer H. and T. L., *From nonlocal to local Cahn-Hilliard equation*, submitted (2018)