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Cahn-Hilliard equation

@ It has been proposed in 1958 by [Cahn, Hilliard 1958, Cahn
1961]

@ It describes the process of phase separation (spinodal

decomposition) in binary alloys (iron-nickel)
@ Phase field model u € [0, 1] (vs sharp interface model u € {0,1})
@ It has a variety of applications:

» image processing [Capuzzo Dolcetta, Finzi Vita, March 2002]

population dynamics [Cohen, Murray 1981]
formation of Saturn rings [Tremaine 2003]
tumour growth [Colli, Garcke, Gilardi, Lam, Rocca, Sprekels,
Scala ...]
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Settings

u € RR: real valued function representing the local concentration of one
of the two components

u=0,u=1:pure phases

Two species A, B with
concentrations ¢4 and

cg = 1 — ¢4 at each point.
Then u(x,t) =1 — ca(x, t) and:
u =1~ pure phase B;

u =0 ~» pure phase A.

Source of the picture: Wikipedia
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Local Cahn-Hilliard

Free energy functional

ECH(U):/Q(T;VU|2+F(U)) dx

where

@ 7: small positive parameter related to the transition region
thickness

@ F: double well potential with two global minima in the pure phases

@ |Vul?: reflects intermolecular interactions (penalising the creation
of interfaces)
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Local Cahn-Hilliard

Corresponding evolution problem (4" order PDE):

ou
ot +V.-Joy =0,
Jon = —u(u)Vven,
E
VeH = 75 ?ZI(U) = —TZAU+ F/(U)

where
@ 12 mobility (constant = 1)

_ JE. ; ;
@ v = §;: chemical potential

S. Melchionna, H. Ranetbauer, L.Trussardi From nonlocal to local Cahn-Hilliard equation 6/26



Nonlocal Cahn-Hilliard

Proposed by [Giacomin, Lebowitz 1997]

Free energy functional

Eni(u) = / / K(x.y)(u(x) — u(y))2dxdy + /Q Fu(x))dx,

where
@ K(x,y): positive and symmetric convolution kernel
@ F: double well potential with two global minima in the pure phases
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Nonlocal Cahn-Hilliard

Corresponding evolution problem (2" order PDE):

ou
E +V-dy =0,
Ine = —u(U)Vng,
_ SEn(u)
ou

VNL :(K*1)U—K*U—|—F/(U)
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Nonlocal Cahn-Hilliard

Corresponding evolution problem (2" order PDE):

ou
Fl +V-dy =0,
Ine = —u(U)Vng,
VnL = 55’;2(“) = (K« 1)u—K=xu+ F(u)

Goal: prove the convergence of solutions of the nonlocal Cahn-Hilliard
equation to solutions of the local version in a periodic setting.
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Local vs nonlocal

@ They share fundamental features: underlying gradient flow
structure, lack of comparison principle, separation from the pure
phases,. ..

@ Both energy functionals allow the same I'-limit for vanishing
interface thickness [Gal, Grasselli, Miranville, Rocca,...]

@ Pointwise convergence is of little use due to non convexity and
lack of coercivity of the nonlocal energy functional Ey; in H'.

@ There exists -convergence for the energy functionals [Ponce
2004] but it is not trivial to prove convergence for solutions of the
corresponding dynamic problems using [Sandier, Serfaty 2011]
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Overview of known results and properties

‘ Eq ‘ F ‘ m Existence ‘ Separation Long time ‘

pol | non-deg
deg

CH | log | non-deg
deg

pol | non-deg
deg

NLCH | |og | non-deg
deg
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Hypothesis

H1 Q d-dimensional flat torus with d < 3
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o === ()

with J : R — R sufficiently smooth nonnegative function with

compact support and

1 2 2
- — 1
3 [ Jz)iz oz
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H3 F € C?(R) double well potential with two global minima at 0 and 1
such that F”(s) > 0 for s € (—o0, —a] U [a, +o0) with a
nonnegative, and C;(|ul® + 1) < F'(u) < Cy(Jul® + 1) for
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Hypothesis

H1 Q d-dimensional flat torus with d < 3
H2 Family of convolution kernels parametrised by a parameter ¢:

o === ()

with J : R — R sufficiently smooth nonnegative function with

compact support and

1 2 2
= -1
3 [ Jz)iz oz

H3 F € C?(R) double well potential with two global minima at 0 and 1
such that F”(s) > 0 for s € (—o0, —a] U [a, +o0) with a
nonnegative, and C(|u|® + 1) < F'(u) < Cy(|ul]® + 1) for
C/, C,>0

H4 wup. € L2(Q2) converges strongly in L2(Q) to the limit up € H'(Q)
and satisfies E.(up ), E(ug) < Cp for some constant Cy > 0
independent of ¢
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Definition of solutions

Definition (Weak solution to the nonlocal Cahn-Hilliard equation)

Lete > 0and T > 0 be fixed. We define u. to be a weak solution to the
nonlocal Cahn-Hilliard equation on [0, T] associated with the initial
datum up . € L2(Q) if

u. € H'(0, T; (H'(Q))) N L2(0, T; H'(Q)),

satisfies
<8tU5, (,0)(/_/1(9))*’/_/1(9) i /Q V[(Ka * 1)U5 — KS * Uz + F/(Ug)] o VQOdX =0

forall o ¢ H'(Q), and u-(0) = up..
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Definition of solutions

Definition (Weak solution to the local Cahn-Hilliard equation)

Let T > 0 be fixed. We define u to be a weak solution to the
Cahn-Hilliard equation on [0, T] associated with the initial datum
up € H'(Q) if

ue H' (0, T;(H'(Q))*)n L0, T; H*(Q)),

satisfies
<atU, 90>(H1(Q))*,H1(Q) +/QAUA(,0C1X—/QF/(U)AQOC1X =0

for all o ¢ H?(Q), and u(0) = wp.
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Main result

Remark:
@ existence and uniqueness of weak solutions to both problems are
well known with different choices for the boundary conditions

@ both systems have been largely studied (qualitative properties,
numerical aspects, long-time behaviour, asymptotics with different
kinds of boundary conditions and different potentials)
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Remark:

@ existence and uniqueness of weak solutions to both problems are
well known with different choices for the boundary conditions

@ both systems have been largely studied (qualitative properties,
numerical aspects, long-time behaviour, asymptotics with different
kinds of boundary conditions and different potentials)

Theorem

Let u. be a solution of the nonlocal CH with periodic boundary
conditions and kernel K.(x, y).
Then u. — u in L2(0, T; H'(Q)) N H'(0, T; H='(Q)) where u is a
solution of the local CH.
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Some comments

@ Note that in the Neumann case CH has two boundary conditions
(one for u and one for the chemical potential), while NLCH has
just one (for the chemical potential v).

@ The mobility can be annoying for the estimates on the chemical
potential.
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Some comments

@ Note that in the Neumann case CH has two boundary conditions
(one for u and one for the chemical potential), while NLCH has
just one (for the chemical potential v).

@ The mobility can be annoying for the estimates on the chemical
potential.

Idea: use advantage of the dynamic structure:
for every fixed ¢, u. € H'
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Proof: uniform estimates

<81‘U5, <10>(H‘(Q))*,H1(Q) + fQ V[(Kg * 1)U€ — Kg * Uz + F,(UE)] . V(,O dx =0

Test function: v = u.

1d
0 :f—||u€||f2(m + / V [(Ke* 1)Uz — K+ u: + F'(u:)] - Vuz dx
2dt Q
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Proof: uniform estimates

<81‘U5, ¢>(H‘(Q))*,H1(Q) + fQ V[(Kg * 1)U€ — Kg * Uz + F,(UE)] . V(,O dx =0

Test function: ¢ = u.

1d
0 :f—||u€||f2(m + / V [(Ke* 1)Uz — K+ u: + F'(u:)] - Vuz dx
2dt a

1d
0= 2dt||UEHL2 o)t

/Q[ (K. + 1)]VU5]2 (Ko % V) - Ve +F (1) Ve 2] dx

3 Jo Jo Ke(x.y)|Vue (%)= Ve (y) 2 dx dy
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Proof: uniform estimates

Change of variable * —: 7

1d > 1 5
5 atlel + 5 | [ 12

_ _/QF”(UE)VUEIZdX < By Ve o,

Vu.(y +ez) — Vu(y) 2
&

dydz
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Proof: uniform estimates

Change of variable * —: 7

1d > 1 5
5 atlel + 5 | [ 12

_ _/QF”(UE)VUEIZdX < By Ve o,

2

Vu.(y +ez) — Vu(y) dy dz

g

Aim: estimate the blue term with ||V u_||?
Key idea: [Ponce 2004], Poincaré type inequality
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Key idea

Q € RN with N > 1, bounded domain with Lipschitz boundary,
1<p<

Poincaré
It exist Cp > 0 s.t.

/ny_fgv’g Cp/Q|Df\p, vf € WP(Q)

Let (pn) C L'(RN) be a sequence of radial functions satisfying:

pn >0 a.e. inRY
/]RN pn - 1 Vn 2 1
lim / pn(h)dh =0 5 >0
n—oo |h|>5
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Theorem 1

Let (pn) c L'(RVN) be a sequence of radial functions as defined before.
Given 6 > 0, there exists ny > 1 sufficiently large, such that

Lir=tap < (o) [ [0 0 — yyaxay

for every f € [P(Q2) and n > np.
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Theorem 1

Let (pn) c L'(RVN) be a sequence of radial functions as defined before.
Given 6 > 0, there exists ny > 1 sufficiently large, such that

Lir=tap < (o) [ [0 0 — yyaxay

for every f € [P(Q2) and n > np.

Observe: this formulation is stronger than Poincaré.
It is easy to see that

_ p
[ [, - yhaxay < [ 0P <c [ orp
alJa XV RN Q@
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Theorem 2 — compactness

If (f,) € LP(R") is a bounded sequence such that

=R - ooy < B, vn= 1

then (f,) is relatively compact in LP.

Assume that f, — f in LP(Q) then
@ fe WIP(Q)if1 <p<oo
e feBV(Q)ifp=1
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Proof: uniform estimates
(OtUe, 0) (11 )y H' (@) T Jo VI(Ke * 1) Ue — Ko+ ue + F'(U:)] - Vpdx =0

Test function: ¢ = (—A) "U.
where
(—=2)" (H'(Q) = H'(Q)
is the map assigning to every v € (H'(Q))* the unique solution w of

the equation —Aw = v such that the mean value is zero, i.e. w = 0.
We define U, = u. — U..
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Proof: uniform estimates
(OtUe, 0) (11 )y H' (@) T Jo VI(Ke * 1) Ue — Ko+ ue + F'(U:)] - Vpdx =0

Test function: ¢ = (—A) "U.
where
(=8)7 (H'(Q)" = H'(Q)

is the map assigning to every v € (H'(Q))* the unique solution w of

the equation —Aw = v such that the mean value is zero, i.e. w = 0.
We define U, = u. — U..

_ Ud(y +e2) — U-(y)\ 2
o~ Tl < G | [ azze (FLE0=E0) ayaz < g

and

2

VUE(}/JF&Z)*VUE(}/) dde

elZ]

Vo~ T oy < G | [ J(1zP)i2f
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Uniform estimates

ey + 5 [ [ (2
sailelfee +3 ) | 027

Vug(y+sz) B vus(y) 2
IS

dydz < B; ||VU5||§2(Q)
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Uniform estimates

Vug(y+sz) B vus(y) 2
IS

1d 17/
5 aglvcle + 5 [ [ A2l dy dz < By |V B

1 1 1
STy + (56 = B ) IVl sy < 51OV

S. Melchionna, H. Ranetbauer, L.Trussardi From nonlocal to local Cahn-Hilliard equation 22/26



Uniform estimates

Vu.(y +ez) —Vu. 2
4 5) ¥) dydz < Bq ||VU€||§2(Q)

ey + 5 [ [ (2
sailelfee +3 ) | 027

1 1 1
EHUS(T)H%Z(Q) + (ch - B1> Hvus”i?(O,T;LZ(Q)) < EHUE(O)H%%Q)

2

€

/ ' YRR
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Proof: convergence

Goal: prove the limit u to be a weak solution
of the local Cahn-Hilliard equation

u.—u weakly in L2(0, T; H'(Q))
Ot — Opu weakly in L2(0, T; (H'(Q))*)
U. — u strongly in C([0, T]; L3(Q))

for some limit u € L2(0, T; H'(Q)) N H'(0, T; (H'(Q))*)
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Proof: convergence

Goal: prove the limit u to be a weak solution
of the local Cahn-Hilliard equation

u.—u weakly in L2(0, T; H'(Q))
Ot — Opu weakly in L2(0, T; (H'(Q))*)
U. — u strongly in C([0, T]; L3(Q))

for some limit u € L2(0, T; H'(Q)) N H'(0, T; (H'(Q))*)

[Ponce 2004] = ue [2(0, T; H3(Q)) ]
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Proof: convergence

Test function: ¢ € C>(Q

0= / /&ug godxdt—/ /F’ u:-)Apdxdt

1 / / [ Koy e00 = () Aplx) — Aply)) dy dxat

m

()—(I1): the growth conditions and continuity on F’ suffice to pass to the
limit
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Proof: convergence

Thanks to (H2):

;Hd_1(8d_1)/ J(r2)rd 1 dr =1
0

and by using the weak convergence:

2/ |zt

/ U-(y +e2) — u(y)) (Ap(y +e2) — Dp(y))
el 2| e|z|

2/ /Vu -VAp(y)dy dt

dy dzdt

Thus, the limit u satisfies

T T T
/ /(Otu)godxdt/ /Vu-VAgpdxdt/ /F’(u)Agodxdt:O.
0 Ja 0 Ja 0o Ja
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Outlook and open questions

@ Proved the convergence of weak solutions of the NLCH equation
to the weak solutions to the local one as the convolution kernel
approximates a Dirac delta (case with periodic boundary
conditions) using a compactness argument.

@ Dirichlet / Neumann boundary conditions?
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Thanks for your attention

_— E
I
Wi\e/rew sitat @

[ Melchionna S., Ranetbauer H. and T. L., From nonlocal to local
Cahn-Hilliard equation, submitted (2018)
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