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AR B Eea e § A A SIS SENA BN RN LT

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 3/28



Motivations

Model how the individuals change their mind J
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Settings

@ Two products: |_ N +1; ® v 1
@ Nindividuals
@ x; € [—1,1]: opinion of the individual i-th, i=1,... /N
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Settings

@ Two products: |_ N +1; ® v 1
@ Nindividuals
@ x; € [—1,1]: opinion of the individual i-th, i=1,... /N

Evolution of the opinion for each individual x;, i=1,... N

N
X0 =3 a(x(t) — xi(1))  + Pit)(1 — xi(t)) — Mi(t)(1 + xi(t))
Jj=1

. . C external factorsE
mterachons@ individuals

(e.g. advertising)
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Model

Interactions between individuals:
N
(1) = a;(x(t) — xi(t));
j=1

with A = (a;) matrix, a; # aj
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Model

Interactions between individuals:
_ N N . /
(1) = a;(x(t) — xi(t)); e
j=1 /N

with A = (a;) matrix, a; # aj

External factors:

xi(t) = Pi(1)(1 = x;(t)) — Mi(1)(1 + x;(1));

P;i(t), Mi(t) € [0,1]:
P leads the individuals toward +1, M leads the individuals toward —1
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Optimal control

Aim
try to understand the best strategy that a seller should have in order to
maximize his sales
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Optimal control

Aim
try to understand the best strategy that a seller should have in order to
maximize his sales

@ M;(t) known (strategy), T > 0 fixed final time
o Find (t) : [0, T] — [0, 1] such that [ SN, ui(t)dt < C

Zau (1) = x (1)) + ui(t) (1 = xi()) = Mi(H)(1 + xi(t))
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Optimal control

Aim
try to understand the best strategy that a seller should have in order to
maximize his sales

@ M;(t) known (strategy), T > 0 fixed final time
o Find uj(t) : [0, T] — [0, 1] such that ] SN, u(t)at < C

Za,, Xi(t) = xi(1)) + ui(1)(1 = xi(2)) = Mi(t)(1 + x;(1))

Goal
to maximize the nuwber of individuals in 1 and minimize the cost:

T N
min$ (1 — x(T))? + / S u(ty2at
i=1 0 =1
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Optimal control theory

L. Pontryagln R. Bellman

@ Developed in 1950s
@ It is an extension of the calculus of variations

@ It deals with systems that can be controlled, i.e. whose evolution
can be influenced by some external agent
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Definitions

Let x(t) = f(x(t), u(t), t), x(0) = Xo (1)
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Definitions

Let x(t) = f(x(1), u(t), t), x(0) = Xo (1)

@ x(1): state
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Definitions

Let x(t) = f(x(t), u(t),t), x(0) = Xo (1)

@ x(1): state

@ u(t) e U = {u(-) measurable, u(t) € U c R™ compact}: control
» open-loop strategy: u = u(t)
» closed-loop or feedback strategy: u = u(x, t)
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Definitions

Let x(t) = f(x(t), u(t),t), x(0)=xo (1)
@ x(1): state
@ u(t) e U = {u(-) measurable, u(t) € U c R™ compact}: control

» open-loop strategy: u = u(t)
» closed-loop or feedback strategy: u = u(x, t)

@ Q open subset of R x R”, f: Q x U — R" continuous in all
variables and continuously differentiable w.r.t x

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 8/28



Definitions

Let x(t) = f(x(t), u(t),t), x(0)=xo (1)
@ x(1): state
@ u(t) e U = {u(-) measurable, u(t) € U c R™ compact}: control

» open-loop strategy: u = u(t)
» closed-loop or feedback strategy: u = u(x, t)
@ Q open subset of R x R”, f: Q x U — R" continuous in all
variables and continuously differentiable w.r.t x

for each initial point xo there are many trajectories depending on the
choice of the control parameter u
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Hypothesis

What we need:
@ set points that can be reached (controllability)

If controllability to find a final point x; is granted then one can try to
reach x; minimizing some cost,
thus defining an optimal control problem: min W(u)
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Hypothesis

What we need:
@ set points that can be reached (controllability)

If controllability to find a final point x; is granted then one can try to
reach x; minimizing some cost,
thus defining an optimal control problem: min W(u)

@ final time T fixed or free
@ set of admissible controls and set of admissible trajectories

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 9/28



Definitions

Given a final time T > 0, find a control v : [0, T] — [0, o] (eventually
with some constraints) which minimize the pay-off functional W:

W(x, u) = / L(t, x(t), u(t))dt

under the constraint x = f(x, u, ).
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Definitions

Given a final time T > 0, find a control v : [0, T] — [0, o] (eventually
with some constraints) which minimize the pay-off functional W:

W(x, u) = / L(t, x(t), u(t))dt

@ d(x(T)) terminal pay-off

under the constraint x = f(x, u, ).
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Definitions

Given a final time T > 0, find a control v : [0, T] — [0, o] (eventually
with some constraints) which minimize the pay-off functional W:
T

V(x,u) = <1>(X(T))+/0 L(t,x(t),u(t))dt

@ &(x(T)) terminal pay-off
@ L(t, x(t),u(t)) running cost

under the constraint x = f(x, u, ).
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Definitions

Given afinal time T > 0, find a control v : [0, T] — [0, co] (eventually
with some constraints) which minimize the pay-off functional W:

V(x, u) / L(t,x(t),u(t))adt
@ &(x(T)) terminal pay-off
@ L(t,x(t), u(t)) running cost

under the constraint x = f(x, u, t).

If L = 0: Mayer problem; if L # 0: otherwise Bolza problem.

)
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Example 1: unitary mass on a 1D-line

@ Point of unitary mass moving on a one dimensional line
@ Control an external bounded force

@ x position of the point

@ u control

x=u, xeR/|u<C
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Example 1: unitary mass on a 1D-line

@ Point of unitary mass moving on a one dimensional line
@ Control an external bounded force

@ x position of the point

@ u control

x=u, xeR/|u<C

X1 = X, X2:).(1
X1 =Xe, Xo=U

Goal: Drive the point to the origin with zero velocity in minimum time
from the original position (x?, x9)
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Example 2: reproductive strategies in social insects’

Let T be the length of the season
@ w(t): number of workers at time ¢
@ g(t): number of queens at time t
@ u(t): fraction of colony effort devoted to increasing work force
@ s(t): known rate at which each worker contributes to the bee

economy
w(t) = —vw(t) + bs(Hu(t)w(t), w(0) = wy
q(t) = —vq(t) + c(1 — u(t))s(t)w(t), q(0) = qo

Goal: maximize the number of the queens: W(u(-)) = q(T)

'Caste and Ecology in Social Insects, by G. Oster and E. O. Wilson
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Basic problem

Find u* which minimize the pay-off, i.e.
V(ur()) < w(u()
forall u e U.

Questions:
@ does an optimal control u* exist?
@ how can we characterize an optimal control mathematically?
@ how can we construct an optimal control?
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Legendre Transformation

Standard problem in Calculus of Variations: find a curve x* which
minimize

]
() = [ L) 50t x(0) = x0.X(T) = x

where L, smooth function, is the Lagrangian.

If a C2 minimizer x*(-) exists, it satisfies the Euler Lagrange equations
(EL)

doL, ., » 0L

&aT(,-(X (1), x*(t)) = 87)(,-()( (1), x*(t))
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Legendre Transformation

Standard problem in Calculus of Variations: find a curve x* which
minimize

= /TL(x(t),)'((t))dt, x(0) = xo,X(T) = Xt
0

where L, smooth function, is the Lagrangian.

If a C2 minimizer x*(-) exists, it satisfies the Euler Lagrange equations
(EL)

doL, . . .. oL .

g 05 (0) = (1), 5 (1)

Difficulty: second order ODEs
Solution: transform the (EL) into a system of ODEs (Hamiltonian
equations) via the Legendre transform i.e. decouple the problem to the
corresponding level sets
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Hamiltonian equations

Steps:
@ reduce the system (EL) into a system of 2n first order ODEs
introducing u := x
@ change coordinates (x, u) — (x, p), pj = % =: d;(x, U)
= pd~

@ define the Hamiltonian H(x, p) 1(x,p) — L(x, o~ 1(x, p))
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Hamiltonian equations

Steps:

@ reduce the system (EL) into a system of 2n first order ODEs
introducing u := x

@ change coordinates (x, u) — (x,p), pi = = =: ;(x, u)

= pd~

@ define the Hamiltonian H(x, p) 1(x,p) — L(x, o~ 1(x, p))
We get (H)
oH . oH

oo PT T ox

a solution for (EL) is a solution for (H) and t — H(x(t), p(t)) is
constant J
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Generalization of Classical Calculus of Variations

.
min/ L(x(t), x(t)dt, x(0) = xo,x(T) = X¢
0

@ with non-holonomic constrains of the kind x = f(x,u),u € U
@ the Lagrangian L is a function of (x, u) instead of (x, x)
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Generalization of Classical Calculus of Variations

.
min/ L(x(t), x(t)dt, x(0) = xo,x(T) = X¢
0

@ with non-holonomic constrains of the kind x = f(x,u),u € U
@ the Lagrangian L is a function of (x, u) instead of (x, x)

Tool: Pontryagin maximum principle (PMP) )

@ it generalizes the Euler- Lagrange equation and the Weierstrass
condition of Calculus of Variation to variational problem with
non-holonomic constraints

@ it provides a pseudo-Hamiltonian formulation of the variational
problem in the case when the standard Lagrange transformation is
not well-defined
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Constraints and Lagrange multipliers

If u* is an optimal control, then there exists a function p*, called the
costate, that satisfies a certain maximization principle.

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 17/28



Constraints and Lagrange multipliers

If u* is an optimal control, then there exists a function p*, called the
costate, that satisfies a certain maximization principle.

Setup:
@ ODE x(t) = f(x(t), u(t), 1), x(0) = xg
@ Payoff functional: W(x(T,u)) = ®(x(T)) + fOT L(x(t), u(t))dt

The Pontryagin Maximum Principle asserts the existence of a function
p*(t), which together with the optimal trajectory x*(t), satisfies an
analogue of Hamilton’s ODE, given by
H(x,p,u) = f(x,u) - p+ L(x(t),u(t))
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Pontryagin Maximum Principle

Find the optimal solution to the problem
min V(x(T,u)) = min d(x / Lat
ueld

subject to x = f(¢t, x(t), u(t)), x(0) = xo.

Theorem

Assume u* is optimal and x* is the corresponding trajectory. Then
there exists a function p* : [0, T| — R" such that

(0) = S0P (0,0 (1)
B() =~ S (1), p(2),u ¢ (1)

and H(x*(t), p*(t), u*(t)) = minyey H(x*(t), p*(t), u). In addition the
mapping t — H(x*(t), p*(t), u*(t)) is constant. And the terminal
condition is p*(T) = V&(x*(T)).
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Example 3: control of production and consumption

x(t): output produced at time t > 0 by a given factory
u(t): fraction of output reinvested at time t > 0

x = ku(t)x(t), x(0)=xp
with k >0 modelling the growth rate of our reinvestment.

Payoff functional:

)
W(u() = /O (1 - u(t)x(t)et

Goal: maximize the total consumption of the output )

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 19/28



Pontryagin maximum principle

Difficulties:
@ the maximization condition not always provide a unique solution

@ PMP gives two-points boundary value problem with some
boundary condition given at initial time (state) and some at final
time (covector)

@ integrate a pseudo-Hamiltonian system

@ even if one is able to find all the solutions to the PMP, it remains
the problem of selecting among them the optimal trajectory
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Pontryagin maximum principle

Difficulties:
@ the maximization condition not always provide a unique solution
@ PMP gives two-points boundary value problem with some
boundary condition given at initial time (state) and some at final
time (covector)
@ integrate a pseudo-Hamiltonian system
@ even if one is able to find all the solutions to the PMP, it remains
the problem of selecting among them the optimal trajectory
Advantages:
@ necessary optimality condition: sometimes sufficient (convex
problems)

@ invariant with respect to a broad class of transformations
(reformulations) of the problem

@ does not require prior evaluation of the pay-off functional
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Open-loop strategies with L' constraint

Given T > 0, find u: [0, T] — [0, 1] such that [} >, uj(t)dt < C
which minimizes V:

V(x, u) =d(x(T)) +s/th (t))dt

N
= > - x(Ty) +5/ S° ot
i=1 0 =

subject to

x(t) = Z a;(x;(t) — x;(1)) + u(t)(1 = xi(t)) — Mi()(1 + x;(1))
x;(0) = x,-o.

Optimal control for a multi-agents model DK Winter Workshop
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Existence of optimal solution

Under certain hypothesis on:

@ the set of admissible controls (compact)

@ the function f, the cost function and the running cost (continuous)
we get the existence of optimal solution.
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Existence of optimal solution

Under certain hypothesis on:

@ the set of admissible controls (compact)

@ the function f, the cost function and the running cost (continuous)
we get the existence of optimal solution.

Goal: derive necessary conditions in order that a trajectory
x*(t) = x*(t, u*(t)) be optimal where u* is a bounded admissible
control
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Pontryagin maximum principle

Theorem

Let f and L be continuous in all variables and continuously

differentiable w.r.t. t, x. Let the bounded control u* : [0, T] — U be

optimal. Then there exists a nontrivial adjoint vector p = (p1, ..., Pn)

and constants \g, A with A\g > 0 such that, for almost every t € [0, T]
N

DB (1" (8), 0 (1) — Ao o (8, X" (1), (1)
i=1 ! %

and
p(t)f(t, x*(t), u*) 4+ AoL(t, x*(t), u*) =
_min {p(t)f(t, x*(t),w) + AoL(t, X7 (t), w)}
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Optimal control u*

N
min > [pi(i(D)(1 = X (1)) + Awi(t) + dgw ()]

wadm <
i=1
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Optimal control u*

N

min 7 (i1 =X (1)) + dwi(1) + dou?(1)]
i=1
If Ao = 0
U*(t) _ 0 if A > _pf( )( - Xl(t)) (1)
’ “A=pi( = xi(1) A< —p(t)(1 - x(1))
If Ao >0
. 0 ifA > —pi(H)(1 — x(1))
Y0 =1 ming e ,POGXOIAY i X < —pi()(1 = Xi(1)) @
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Numerical simulations

M = 0: only aggregation

0.5 . -ugy
£ R ° u,
S 0 T £05 u
=) S 2
& o u
-0.5 3
7)(0 VX‘ X2 r)(a
-1 0
0 0.07 0.14 0.21 0.28 0.35 0 0.175 0.35
time time
1 1
-u, ~ug
—Ll‘ VU‘
S u ° u
e 2 =4 2
€05 Uy €05 u,
8 8
0 0
0 0.1 0.2 0.3 0.4 0 0.25 0.5
time time
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Numerical simulations

M = exp~1/35
1 1
05 o
%) 35 Yy
c =] u
S 0 £05 2
< 8 U
-0.5
,XO —X‘ X2 —Xa ;
-1 0 -
0 0.07 0.14 0.21 0.28 0.35 0 0.175 0.35
time time
1 1
~ug Yo
U, -uy
3_2 Up ;? Uz
205 ) E05[
(8] o
0 0 ‘
0 0.1 0.2 0.3 0.4 0 0.25 0.5
time time
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Numerical simulations

c c
©w o o o

agents
c

2.5 5
time
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Numerical simulations

c c
w N = o

agents

25 5
time
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Outlook and open questions

@ Uniqueness of u

@ Individuals in —1, +1 do not change their mind
@ Feedback strategies: u; = u;(t, x)

@ Two controls: differential games
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Outlook and open questions

@ Uniqueness of u

@ Individuals in —1, +1 do not change their mind
@ Feedback strategies: u; = u;(t, x)

@ Two controls: differential games

Thanks for your attention
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