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Motivations

Model how the individuals change their mind
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Settings

Two products: P 7→ +1; M 7→ −1
N individuals
xi ∈ [−1,1]: opinion of the individual i-th, i = 1, . . . ,N

Evolution of the opinion for each individual xi , i = 1, . . .N

ẋi(t) =
N∑

j=1

aij(xj(t)− xi(t)) + Pi(t)(1− xi(t))−Mi(t)(1 + xi(t))

interactions between individuals
external factors
(e.g. advertising)
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Model

Interactions between individuals:

ẋi(t) =
N∑

j=1

aij(xj(t)− xi(t)); •
xi

xj1

xj2

xj3

xj4

with A = (aij) matrix, aij 6= aji

External factors:

ẋi(t) = Pi(t)(1− xi(t))−Mi(t)(1 + xi(t));

Pi(t),Mi(t) ∈ [0,1]:
P leads the individuals toward +1, M leads the individuals toward −1
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Optimal control

Aim
try to understand the best strategy that a seller should have in order to

maximize his sales

Mi(t) known (strategy), T > 0 fixed final time
Find ui(t) : [0,T ]→ [0,1] such that

∫ T
0
∑N

i=1 ui(t)dt ≤ C1

ẋi(t) =
N∑

j=1

aij(xj(t)− xi(t)) + ui(t)(1− xi(t))−Mi(t)(1 + xi(t))

Goal
to maximize the number of individuals in 1 and minimize the cost:

min
N∑

i=1

(1− xi(T ))2 +

∫ T

0

N∑
i=1

ui(t)2dt
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Optimal control theory

L. Pontryagin R. Bellman

Developed in 1950s
It is an extension of the calculus of variations
It deals with systems that can be controlled, i.e. whose evolution
can be influenced by some external agent
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Definitions

Let ẋ(t) = f (x(t),u(t), t), x(0) = x0 (1)

x(t): state
u(t) ∈ U = {u(·) measurable,u(t) ∈ U ⊂ Rm compact}: control

I open-loop strategy: u = u(t)
I closed-loop or feedback strategy: u = u(x , t)

Ω open subset of R× Rn, f : Ω× U → Rn continuous in all
variables and continuously differentiable w.r.t x

for each initial point x0 there are many trajectories depending on the
choice of the control parameter u
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Hypothesis

What we need:
set points that can be reached (controllability)

If controllability to find a final point xf is granted then one can try to
reach xf minimizing some cost,

thus defining an optimal control problem: min Ψ(u)

final time T fixed or free
set of admissible controls and set of admissible trajectories
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Definitions

Given a final time T > 0, find a control u : [0,T ]→ [0,∞] (eventually
with some constraints) which minimize the pay-off functional Ψ:

Ψ(x ,u) = Φ(x(T )) +

∫ T

0
L(t , x(t),u(t))dt

Φ(x(T )) terminal pay-off
L(t , x(t),u(t)) running cost

under the constraint ẋ = f (x ,u, t).

If L = 0: Mayer problem; if L 6= 0: otherwise Bolza problem.
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Example 1: unitary mass on a 1D-line

Point of unitary mass moving on a one dimensional line
Control an external bounded force
x position of the point
u control

ẍ = u, x ∈ R, |u| ≤ C

x1 = x , x2 = ẋ1

ẋ1 = x2, ẋ2 = u

Goal: Drive the point to the origin with zero velocity in minimum time
from the original position (x0

1 , x
0
2 )
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Example 2: reproductive strategies in social insects1

Let T be the length of the season
w(t): number of workers at time t
q(t): number of queens at time t
u(t): fraction of colony effort devoted to increasing work force
s(t): known rate at which each worker contributes to the bee
economy

ẇ(t) = −νw(t) + bs(t)u(t)w(t), w(0) = w0

q̇(t) = −νq(t) + c(1− u(t))s(t)w(t), q(0) = q0

Goal: maximize the number of the queens: Ψ(u(·)) = q(T )

1Caste and Ecology in Social Insects, by G. Oster and E. O. Wilson
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Basic problem

Find u∗ which minimize the pay-off, i.e.

Ψ(u∗(·)) ≤ Ψ(u(·))

for all u ∈ U .

Questions:
does an optimal control u∗ exist?
how can we characterize an optimal control mathematically?
how can we construct an optimal control?
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Legendre Transformation

Standard problem in Calculus of Variations: find a curve x∗ which
minimize

I(x(·)) =

∫ T

0
L(x(t), ẋ(t))dt , x(0) = x0, x(T ) = xT

where L, smooth function, is the Lagrangian.

If a C2 minimizer x∗(·) exists, it satisfies the Euler Lagrange equations
(EL)

d
dt
∂L
∂ẋi

(x∗(t), ẋ∗(t)) =
∂L
∂xi

(x∗(t), ẋ∗(t))

Difficulty: second order ODEs
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(EL)

d
dt
∂L
∂ẋi

(x∗(t), ẋ∗(t)) =
∂L
∂xi

(x∗(t), ẋ∗(t))

Difficulty: second order ODEs
Solution: transform the (EL) into a system of ODEs (Hamiltonian

equations) via the Legendre transform i.e. decouple the problem to the
corresponding level sets

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 14 / 28



Hamiltonian equations

Steps:
reduce the system (EL) into a system of 2n first order ODEs
introducing u := ẋ
change coordinates (x ,u)→ (x ,p), pi = ∂L

∂ui
=: Φi(x ,u)

define the Hamiltonian H(x ,p) := pΦ−1(x ,p)− L(x ,Φ−1(x ,p))

We get (H)

ẋ =
∂H
∂p

, ṗ = −∂H
∂x

a solution for (EL) is a solution for (H) and t 7−→ H(x(t),p(t)) is
constant
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Generalization of Classical Calculus of Variations

min
∫ T

0
L(x(t), ẋ(t))dt , x(0) = x0, x(T ) = xf

with non-holonomic constrains of the kind ẋ = f (x ,u),u ∈ U
the Lagrangian L is a function of (x ,u) instead of (x , ẋ)

Tool: Pontryagin maximum principle (PMP)

it generalizes the Euler- Lagrange equation and the Weierstrass
condition of Calculus of Variation to variational problem with
non-holonomic constraints
it provides a pseudo-Hamiltonian formulation of the variational
problem in the case when the standard Lagrange transformation is
not well-defined
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Constraints and Lagrange multipliers

If u∗ is an optimal control, then there exists a function p∗, called the
costate, that satisfies a certain maximization principle.

Setup:
ODE ẋ(t) = f (x(t),u(t), t), x(0) = x0

Payoff functional: Ψ(x(T ,u)) = Φ(x(T )) +
∫ T

0 L(x(t),u(t))dt

The Pontryagin Maximum Principle asserts the existence of a function
p∗(t), which together with the optimal trajectory x∗(t), satisfies an

analogue of Hamilton’s ODE, given by
H(x ,p,u) = f (x ,u) · p + L(x(t),u(t))
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Pontryagin Maximum Principle

Find the optimal solution to the problem

min
u∈U

Ψ(x(T ,u)) = min Φ(x(T )) +

∫ T

0
Ldt

subject to ẋ = f (t , x(t),u(t)), x(0) = x0.

Theorem
Assume u∗ is optimal and x∗ is the corresponding trajectory. Then
there exists a function p∗ : [0,T ]→ Rn such that

ẋ∗(t) =
∂H
∂p

(x∗(t),p∗(t),u ∗ (t))

ṗ∗(t) = −∂H
∂x

(x∗(t),p∗(t),u ∗ (t))

and H(x∗(t),p∗(t),u∗(t)) = minu∈U H(x∗(t),p∗(t),u). In addition the
mapping t 7−→ H(x∗(t),p∗(t),u∗(t)) is constant. And the terminal
condition is p∗(T ) = ∇Φ(x∗(T )).

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 18 / 28



Example 3: control of production and consumption

x(t): output produced at time t ≥ 0 by a given factory
u(t): fraction of output reinvested at time t ≥ 0

ẋ = ku(t)x(t), x(0) = x0

with k >0 modelling the growth rate of our reinvestment.

Payoff functional:

Ψ(u(·)) =

∫ T

0
(1− u(t))x(t)dt

Goal: maximize the total consumption of the output

Lara Trussardi Optimal control for a multi-agents model DK Winter Workshop 19 / 28



Pontryagin maximum principle

Difficulties:
the maximization condition not always provide a unique solution
PMP gives two-points boundary value problem with some
boundary condition given at initial time (state) and some at final
time (covector)
integrate a pseudo-Hamiltonian system
even if one is able to find all the solutions to the PMP, it remains
the problem of selecting among them the optimal trajectory

Advantages:
necessary optimality condition: sometimes sufficient (convex
problems)
invariant with respect to a broad class of transformations
(reformulations) of the problem
does not require prior evaluation of the pay-off functional
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Open-loop strategies with L1 constraint

Given T > 0, find u : [0,T ]→ [0,1] such that
∫ T

0
∑N

i=1 ui(t)dt ≤ C1
which minimizes Ψ:

Ψ(x ,u) =Φ(x(T )) + ε

∫ T

0
L(t , x(t),u(t))dt

=
1
N

N∑
i=1

(1− xi(T ))2 + ε

∫ T

0

N∑
i=1

u2
i dt

subject to

ẋ(t) =
N∑

j=1

aij(xj(t)− xi(t)) + ui(t)(1− xi(t))−Mi(t)(1 + xi(t))

xi(0) = x0
i .
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Existence of optimal solution

Under certain hypothesis on:
the set of admissible controls (compact)
the function f , the cost function and the running cost (continuous)

we get the existence of optimal solution.

Goal: derive necessary conditions in order that a trajectory
x∗(t) = x∗(t ,u∗(t)) be optimal where u∗ is a bounded admissible

control
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Pontryagin maximum principle

Theorem
Let f and L be continuous in all variables and continuously
differentiable w.r.t. t , x. Let the bounded control u∗ : [0,T ]→ U be
optimal. Then there exists a nontrivial adjoint vector p = (p1, . . . ,pn)
and constants λ0, λ with λ0 ≥ 0 such that, for almost every t ∈ [0,T ]

ṗi(t) = −
N∑

i=1

pj(t)
∂fj
∂xi

(t , x∗(t),u∗(t))− λ0
∂L
∂xi

(t , x∗(t),u∗(t))

and
p(t)f (t , x∗(t),u∗) + λ0L(t , x∗(t),u∗) =

min
ω adm

{p(t)f (t , x∗(t), ω) + λ0L(t , x∗(t), ω)}
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Optimal control u∗

min
ω adm

N∑
i=1

[
pi(t)ωi(t)(1− x∗i (t)) + λωi(t) + ελ0ω

2
i (t)

]

If λ0 = 0

u∗i (t) =

{
0 if λ ≥ −pi(t)(1− xi(t))

−λ− pi(t)(1− xi(t)) if λ < −pi(t)(1− xi(t))
(1)

If λ0 > 0

u∗i (t) =

{
0 if λ ≥ −pi(t)(1− xi(t))

min{C∞, −pi (t)(1−xi (t))−λ
2ελ0

} if λ < −pi(t)(1− xi(t))
(2)
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Numerical simulations

M = 0: only aggregation
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Numerical simulations

M = exp−t/25
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Numerical simulations

M = exp−t/25
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Outlook and open questions

Uniqueness of u
Individuals in −1, +1 do not change their mind
Feedback strategies: ui = ui(t , x)

Two controls: differential games

Thanks for your attention

SFB

P

D ME
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