TWO TIME DISCRETIZAZIONS FOR GRADIENT FLOWS EXACTLY REPLICATING ENERGY DISSIPATION

Ansgar Jüngel¹, Ulisse Stefanelli², Lara Trussardi²

¹ TU Wien, Austria ² University of Vienna, Austria

Gradient flows

 $u'(t) + D\phi(u(t)) = 0$, for a.e. $t \in (0, T)$, $u(0) = u_0$ (1)

- $t \mapsto u(t) \in H$: trajectory in a Hilbert space H
- ϕ : given potential
- $D(\phi)$: Fréchet differential (for ϕ smooth)
- u_0 : prescribed initial datum

For all $[s, t] \subset [0, T]$, solutions to (1) fullfill the energy equality

$$\phi(u(t)) + \int_{s}^{t} ||u'(r)||^{2} dr = \phi(u(s))$$
(2)

and this can be rewritten as

$$\phi(u(t)) + \frac{1}{2} \int_{s}^{t} ||u'(r)||^{2} dr + \frac{1}{2} \int_{s}^{t} ||D\phi(u(r))||^{2} dr = \phi(u(s)).$$
 (3)

Observe: $(1) \Leftrightarrow (3) \rightleftarrows (2)$

Discretization of (1)

Let a partition $\{0 = t_0 < t_1 < \dots < t_N = T\}$ be given and indicate by $\tau_i = t_i - t_{i-1}$ its time steps.

Implicit Euler Scheme

Given u_0 , solve

$$\frac{u_i - u_{i-1}}{\tau_i} + D\phi(u_i) = 0$$
 for $i = 1, ..., N$.

which can be equivalenty reformulated in variational terms as:

$$u_i \in \underset{u \in H}{\operatorname{arg\,min}} \left(\phi(u) + \frac{\tau_i}{2} \left\| \frac{u - u_{i-1}}{\tau_i} \right\|^2 \right) \quad \text{for } i = 1, \dots, N.$$

Scheme A

Given u_0 , let $u_i = u_{i-1}$ if $D\phi(u_{i-1}) = 0$ or

$$\frac{u_i - u_{i-1}}{\tau_i} + D\phi(u_i) + (\phi(u_i) - \phi(u_{i-1}) - (D\phi(u_i), u_i - u_{i-1})) \frac{u_i - u_{i-1}}{\|u_i - u_{i-1}\|^2} = 0 \quad \text{if } D\phi(u_{i-1}) \neq 0.$$
for $i = 1, ..., N$

which can be equivalenty formulated as:

$$\phi(u_i) + \tau_i \left\| \frac{u_i - u_{i-1}}{\tau_i} \right\|^2 = \phi(u_{i-1}) \text{ and } D\phi(u_i) \text{ is parallel to } u_i - u_{i-1}.$$

Scheme B

Given u_0 , solve

$$\phi(u_i) + \frac{\tau_i}{2} \left\| \frac{u_i - u_{i-1}}{\tau_i} \right\|^2 + \frac{\tau_i}{2} \|D\phi(u_i)\|^2 - \phi(u_{i-1}) = 0 \quad \text{for } i = 1, \dots, N$$

which is a discrete version of (3).

Scheme A

Existence Let $\phi \in C^1(\mathbb{R}^d)$ be bounded from below and let $D\phi(u_{i-1}) \neq 0$. Then there exists $u_i \in \mathbb{R}^d \setminus \{u_{i-1}\}$ solving the scheme A.

Convergence Let $\phi \in C^1(\mathbb{R}^d)$ be bounded from below.

- (i) There exists a subsequence which is not relabeled such that $\widehat{u}^n \to u$ weakly in $H^1(0,T;\mathbb{R}^d)$ as $n \to \infty$, where u solves (1).
- (ii) Let $\phi \in C^{1,1}_{loc}(\mathbb{R}^d)$. Then the whole sequence (\widehat{u}^n) converges strongly in $W^{1,\infty}(0,T;\mathbb{R}^d)$ and the error bound is $||u \widehat{u}^n||_{W^{1,\infty}(0,T;\mathbb{R}^d)} \leq C\tau^n$.

(iii) Let $\phi \in C^3(\mathbb{R}^d)$ and assume that the condition

$$D^2\phi(v)w$$
 is parallel to w for any $v, w \in \mathbb{R}^d$ (4)

holds. Then $||u - \widehat{u}^n||_{W^{1,\infty}(0,T;\mathbb{R}^d)} \le C(\tau^n)^2$.

If (4) holds, in one dimension, the second-order convergence is optimal.

If (4) does not hold, the first order convergence is optimal.

Scheme B

We look for $u_i \in D(\partial \phi)$ such that

$$\phi(u_i) + \frac{\tau_i}{2} \left\| \frac{u_i - u_{i-1}}{\tau_i} \right\|^2 + \frac{\tau_i}{2} \|\partial \phi(u_i)\|^2 = \phi(u_{i-1}) + \rho_i$$
 (5)

where ρ_i the residual is nonpositive or small.

Let $\phi = \phi_1 + \phi_2$ have compact sublevels, $\phi_1 : H \to (-\infty, \infty]$ be convex, proper, lower semicontinuous with $\partial \phi_1$ being single-valued, and $\phi_2 \in C^{1,\alpha}_{loc}(H)$ for $\alpha \in (0,1]$. Furthermore, let $u_{i-1} \in D(\partial \phi)$ be given with $\partial \phi(u_{i-1}) \neq 0$.

Existence Then there exists $u_i \in D(\partial \phi)$ with $u_i \neq u_{i-1}$ and

$$G_i(u_i, u_{i-1}) \le \frac{L}{1+\alpha} ||u_i - u_{i-1}||^{1+\alpha},$$

where L is the Hölder constant of $D\phi_2$. In particular, (5) can be solved with $\rho_i \le L \|u_i - u_{i-1}\|^{1+\alpha}/(1+\alpha)$. In case ϕ is convex, namely $\phi_2 = 0$, and $\|\partial\phi\|$ is strongly continuous along segments in $D(\partial\phi)$, one can find u_i such that $G_i(u_i, u_{i-1}) = 0$.

Convergence Let $u_i^n \in D(\partial \phi)$ be such that $u_0^n = u_0$ and

$$\sum_{i=1}^{N^n} G_i^n(u_i^n, u_{i-1}^n)^+ \to 0 \text{ as } n \to \infty.$$

Then $\widehat{u}^n \to u$ converges strongly in $H^1(0,T;H)$, where u solves the gradient-flow problem (1).

Error control Let $\phi \in C^2(\mathbb{R}^d)$ be bounded from below and u_i , v_i fulfill $u_0 = v_0$, $G_i(u_i, u_{i-1}) = 0$ and $v_i \in \arg\min G_i(\cdot, v_i)$ respectively. Then for all i = 1, ..., N we have

$$||u(t_i) - v_i|| \le C\tau$$
 and $||u(t_i) - u_i|| \le C\tau^{1/2}$

where u is the unique solution of (1).

Extensions of scheme B

For all the following nonlinear evolution equations is it possible to write a scheme B and prove the convergence.

Generalized gradient flows

Let $\psi: H \times H \to [0, \infty)$, such that $\forall u \in H: \psi(u, \cdot)$ is convex and lower semicontinuous, the mapping $H \times H \times H \to \mathbb{R}$, $(u, v, w) \mapsto \psi(u, v) + \psi^*(u, w)$ is weakly lower semicontinuous, $\exists c > 0, p > 1, \forall u, v, w \in H: \psi(u, v) + \psi^*(u, w) \geq c \|v\|^p + c \|w\|^{p'}$:

$$\partial \psi(u, u') + \partial \phi(u) \ni 0$$
 for a.e. $t \in (0, T)$, $u(0) = u_0$.

The scheme B reads

$$G_i(u,v) := \phi(u) + \tau_i \psi\left(v, \frac{u-v}{\tau_i}\right) + \tau_i \psi^*(v, -\partial \phi(u)) - \phi(v) = 0.$$

GENERIC flows

$$u' = LDE(u) - K\partial\phi(u)$$
 for a.e. $t \in (0,T)$, $u(0) = u_0$.

The equivalent of (3) is

$$\phi(u(t)) + \int_0^t \psi(u' - LDE(u)) dr + \int_0^t \psi^*(-\partial \phi(u)) dr = \phi(u_0)$$

and the scheme B can be extended by considering the functional

$$\overline{G}_i(u,v) := \phi(u) + \tau_i \psi \left(\frac{u-v}{\tau_i} - LDE(u) \right) + \tau_i \psi^*(-\partial \phi(u)) - \phi(v) = 0.$$

Curves of maximal slope

Let (X, d) be a complete metric space and $\phi: X \to [0, \infty]$ be lower semicontinuous. A curve of maximal slope u for the functional ϕ is such that $\phi \circ u$ is nonincreasing, $u(0) = u_0$ and

$$\phi(u(t)) + \frac{1}{2} \int_0^t |u'|^2(s) ds + \frac{1}{2} \int_0^t |\partial \phi|^2(u(s)) ds = \phi(u_0) \text{ for all } t \in [0, T].$$

The scheme B is defined as

$$\widehat{G}_{i}(u,v) = \phi(u) + \frac{1}{2\tau_{i}}d^{2}(u,v) + \frac{\tau_{i}}{2}|\partial\phi|^{2}(u) - \phi(v) = 0.$$

Reference

A. Jüngel, U. Stefanelli, L.Trussardi, Two time discretizations for gradient flows exactly replicating energy dissipation, submitted (2018)

