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Graded Rings

Given a group Γ, a (unital associative) ring R is Γ-graded if

R =
󰁐

α∈Γ
Rα,

where each Rα is an additive subgroup of R (called the degree α
component), and RαRβ ⊆ Rαβ for all α,β ∈ Γ (with RαRβ consisting of
all sums of elements of the form rp, for r ∈ Rα and p ∈ Rβ).
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󰁐

α∈Γ
Rα,

where each Rα is an additive subgroup of R (called the degree α
component), and RαRβ ⊆ Rαβ for all α,β ∈ Γ (with RαRβ consisting of
all sums of elements of the form rp, for r ∈ Rα and p ∈ Rβ).
In this situation, R is strongly Γ-graded if RαRβ = Rαβ for all α,β ∈ Γ.

Examples

1 For any group Γ, any ring R is trivially Γ-graded, via letting Rε = R and
Rα = 0 for all α ∈ Γ \ {ε}, where ε is the identity element of Γ.

2 For any ring R and any group Γ, the group ring RΓ is strongly Γ-graded,
via setting (RΓ)α = Rα for all α ∈ Γ.

3 For any ring R and set X (of commuting or non-commuting variables),
the polynomial ring R[X ] is Z-graded, via letting R[X ]n be the set of
homogeneous polynomials of degree n.
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Each element of LK (E ) is of the form
󰁓n

i=1 aipiq
−1
i , for some ai ∈ K and

paths pi , qi in E , where (e1 · · · en)−1 = e−1
n · · · e−1

1 for e1, . . . , en ∈ E 1 and
v−1 = v for v ∈ E 0.
LK (E ) is Z-graded, via setting

LK (E )n =
󰁱󰁛

i

aipiq
−1
i ∈ LK (E )

󰀏󰀏 |pi |− |qi | = n
󰁲
,

where |e1 · · · en| = n is the length of the path e1 · · · en (e1, . . . , en ∈ E 0).
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Each of the (nontrivial) examples above (RΓ, R[X ], LK (E )) happens to
be either a semigroup ring or a quotient of a semigroup ring, and
acquires its grading from the semigroup structure (base group,
monomials, products of paths).

Can one gain a unifying perspective on such objects by studying the
effects of the gradings on the underlying semigroups?

B. Steinberg (2019) introduced “graded” semigroups in the process of
studying how to recover the underlying groupoid from a Steinberg
algebra.

Similar constructions have appeared elsewhere, e.g., J. M. Howie’s
“semigroups with length”, papers of E. Ilić-Georgijević.

There is also literature on graded groupoids, which are related to
semigroups.

But no systematic treatment of graded semigroups had been performed
before.



Definition

Let S be semigroup (with zero) and Γ a group. Then S is Γ-graded if

S =
󰁞

α∈Γ
Sα,

where Sα ⊆ S and SαSβ ⊆ Sαβ for all α,β ∈ Γ, and Sα ∩ Sβ = {0} for all
distinct α,β ∈ Γ.



Definition

Let S be semigroup (with zero) and Γ a group. Then S is Γ-graded if

S =
󰁞

α∈Γ
Sα,

where Sα ⊆ S and SαSβ ⊆ Sαβ for all α,β ∈ Γ, and Sα ∩ Sβ = {0} for all
distinct α,β ∈ Γ.

We say that S is strongly Γ-graded if SαSβ = Sαβ for all α,β ∈ Γ.



Definition

Let S be semigroup (with zero) and Γ a group. Then S is Γ-graded if

S =
󰁞

α∈Γ
Sα,

where Sα ⊆ S and SαSβ ⊆ Sαβ for all α,β ∈ Γ, and Sα ∩ Sβ = {0} for all
distinct α,β ∈ Γ.

We say that S is strongly Γ-graded if SαSβ = Sαβ for all α,β ∈ Γ.

Equivalently, S is Γ-graded if there is a map φ : S \ {0} → Γ such that
φ(st) = φ(s)φ(t), whenever st ∕= 0. Here Sα = φ−1(α) ∪ {0} for each α ∈ Γ.
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2 Let F be a free semigroup (with zero). Then F is Z-graded, since
F =

󰁖
n∈N Fn, where Fn is the set of words of length n (including 0).

3 Let Γ be a group, S = 〈xi | rk = sk〉 a semigroup defined by generators
and relations, and φ : {xi} → Γ any function such that φ(rk) = φ(sk)
(extending φ to words in the xi by concatenation). Then S is Γ-graded.

4 Let Γ be a group, X a set with a distinguished element 0X ∈ X ,
φ : X\{0X} → Γ a map, and T (X ) the semigroup of all functions
ψ : X → X such that ψ(0X ) = 0X . For all α ∈ Γ let Xα = φ−1(α)∪ {0X}
and T (X )α =

󰀋
ψ ∈ T (X ) | ψ(Xβ) ⊆ Xαβ ∀β ∈ Γ

󰀌
. Then

T gr(X ) =
󰁞

α∈Γ
T (X )α

is a Γ-graded subsemigroup of T (X ) (which is strongly Γ-graded if and
only if |Xα| = |Xβ | for all α,β ∈ Γ), and every Γ-graded semigroup
embeds in such a semigroup.
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where (e1 · · · en)−1 = e−1
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S(E ) is an inverse semigroup, with (pq−1)−1 = qp−1 for all paths p, q. (A
semigroup S is an inverse semigroup if for each s ∈ S there is a unique t ∈ S
satisfying sts = s and tst = t.)

S(E ) is Z-graded via, via setting

S(E )n =
󰀋
pq−1 ∈ S(E )

󰀏󰀏 |p|− |q| = n
󰀌
.
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Given a field K and a directed graph E , the (contracted) semigroup ring
K [S(E )] is called the Cohn path K-algebra CK (E ) of E , and the ring

K [S(E )]
󰀑󰁇

v −
󰁛

e∈s−1(v)

ee−1
󰀏󰀏 v ∈ E 0 is regular

󰁈
,

is the Leavitt path K-algebra LK (E ) of E .
The Z-grading on LK (E ) is induced by the Z-grading on S(E ) (where
each LK (E )n consists of K -linear combinations of elements of S(E )n).

Theorem (Finite Graph Case)

Let E be a finite nonempty graph. Then the following are equivalent.

1 E has no sinks (i.e., vertices that emit no edges).

2 LK (E ) is strongly graded in the natural Z-grading, for any field K .

3 S(E ) is locally strongly graded in the natural Z-grading. (I.e., for all
n,m ∈ Z and s ∈ S(E )n+m \ {0}, there exists t ∈ S(E )nS(E )m \ {0}
such that t = su for some idempotent u ∈ S(E )).
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Given a ring R and a semigroup S , we denote by R[S ] the contracted
semigroup ring (where the zero of S is identified with the zero of RS).
An arbitrary element of R[S ] is of the form

󰁓
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and all but finitely many of the r (s) are zero.
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for each α ∈ Γ.

Proposition

Let Γ be a group, S a Γ-graded semigroup, and R a ring. Then S is a strongly
Γ-graded semigroup if and only if R[S ] is a strongly Γ-graded ring (in the
induced grading).
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A significant portion of the theory of graded rings is devoted their
modules and graded modules.

Given a group Γ and a Γ-graded ring R , a left R-module M is Γ-graded if
M =

󰁏
α∈ΓMα, where the Mα are additive subgroups of M, and

RαMβ ⊆ Mαβ for all α,β ∈ Γ.

For a Γ-graded ring R , we denote the category of (unital) left R-modules
by R-Mod, and the category of Γ-graded (unital) left R-modules (with
graded homomorphisms as morphisms) by R-Gr.

Theorem (E. Dade, 1980)

Let Γ be a group and R a Γ-graded ring. Then R is strongly Γ-graded if and
only if R-Gr is naturally equivalent to Rε-Mod.

Theorem (M. Cohen & S. Montgomery, 1984)

Let Γ be a group and R a Γ-graded ring. Then R-Gr is isomorphic to
R#Γ-Mod, where R#Γ is the smash product of R and Γ.
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For left S-sets X and Y , a function φ : X → Y is an S-map if
φ(sx) = sφ(x) for all s ∈ S and x ∈ X . For Γ-graded left S-sets X and
Y , an S-map φ : X → Y is graded if φ(Xα) ⊆ Yα for all α ∈ Γ.
We denote by S-Mod the category of unital pointed left S-sets, with
S-maps as morphisms, and by S-Gr the category of Γ-graded unital
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Theorem

Let Γ be a group and S a Γ-graded inverse semigroup. Then S is strongly
graded if and only if S-Gr is naturally equivalent to Sε-Mod.
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Theorem

Let Γ be a group and S a Γ-graded semigroup with local units (i.e., for every
s ∈ S there exist idempotents u, v ∈ S such that us = s = sv). Then S#Γ is
a semigroup, and S-Gr is isomorphic to S#Γ-Mod.

Proposition

Let Γ be a group, S a Γ-graded semigroup, and R a ring. Then
R[S#Γ] ∼= R[S ]#Γ.
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circumstances under which R-Gr and T -Gr are graded-equivalent, for
two Γ-graded rings R and T .

There is also extensive literature on Morita theory in semigroups with
local units and inverse semigroups, which parallels Morita theory for rings.

S. Talwar (1990s) proved that for semigroups S and T with local units,
there is a 6-tuple Morita context between S and T if and only if S-FAct
is equivalent to T -FAct (where S-FAct is the subcategory of S-Mod of
“fixed” S-sets). M. V. Lawson (2011) gave other equivalent conditions.

If S is a monoid (or has common local units), then S-FAct = S-Mod.

One can define graded versions of S-FAct and of S-set category
equivalence.

Theorem

Let Γ be a group, and S and T be Γ-graded semigroups with local units. If S
and T are graded Morita equivalent, then they are Morita equivalent.



Thank you!


