Zak Mesyan

University of Colorado Colorado Springs USA

July 11, 2023

Coauthor: Roozbeh Hazrat

• Given a group Γ , a (unital associative) ring R is Γ -graded if

$$R = \bigoplus_{\alpha \in \Gamma} R_{\alpha},$$

where each R_{α} is an additive subgroup of R (called the *degree* α *component*), and $R_{\alpha}R_{\beta} \subseteq R_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$ (with $R_{\alpha}R_{\beta}$ consisting of all sums of elements of the form rp, for $r \in R_{\alpha}$ and $p \in R_{\beta}$).

• Given a group Γ , a (unital associative) ring R is Γ -graded if

$$R = \bigoplus_{\alpha \in \Gamma} R_{\alpha},$$

where each R_α is an additive subgroup of R (called the *degree* α *component*), and R_αR_β ⊆ R_{αβ} for all α, β ∈ Γ (with R_αR_β consisting of all sums of elements of the form *rp*, for r ∈ R_α and p ∈ R_β).
In this situation, R is *strongly* Γ-graded if R_αR_β = R_{αβ} for all α, β ∈ Γ.

• Given a group Γ , a (unital associative) ring R is Γ -graded if

$$R = \bigoplus_{\alpha \in \Gamma} R_{\alpha},$$

where each R_{α} is an additive subgroup of R (called the *degree* α *component*), and $R_{\alpha}R_{\beta} \subseteq R_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$ (with $R_{\alpha}R_{\beta}$ consisting of all sums of elements of the form rp, for $r \in R_{\alpha}$ and $p \in R_{\beta}$). In this cituation, P is strength Γ graded if P, $P_{\alpha} = P$, for all $\alpha, \beta \in \Gamma$.

• In this situation, R is strongly Γ -graded if $R_{\alpha}R_{\beta} = R_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$.

Examples

1 For any group Γ , any ring R is *trivially* Γ -graded, via letting $R_{\varepsilon} = R$ and $R_{\alpha} = 0$ for all $\alpha \in \Gamma \setminus \{\varepsilon\}$, where ε is the identity element of Γ .

• Given a group Γ , a (unital associative) ring R is Γ -graded if

$$R = \bigoplus_{\alpha \in \Gamma} R_{\alpha},$$

where each R_{α} is an additive subgroup of R (called the *degree* α *component*), and $R_{\alpha}R_{\beta} \subseteq R_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$ (with $R_{\alpha}R_{\beta}$ consisting of all sums of elements of the form rp, for $r \in R_{\alpha}$ and $p \in R_{\beta}$). In this cituation, P is strength Γ graded if P, $P_{\alpha} = P$, for all $\alpha, \beta \in \Gamma$.

In this situation, R is strongly Γ -graded if $R_{\alpha}R_{\beta} = R_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$.

Examples

- **1** For any group Γ , any ring R is *trivially* Γ -graded, via letting $R_{\varepsilon} = R$ and $R_{\alpha} = 0$ for all $\alpha \in \Gamma \setminus \{\varepsilon\}$, where ε is the identity element of Γ .
- **2** For any ring R and any group Γ , the group ring $R\Gamma$ is strongly Γ -graded, via setting $(R\Gamma)_{\alpha} = R\alpha$ for all $\alpha \in \Gamma$.

• Given a group Γ , a (unital associative) ring R is Γ -graded if

$$R = \bigoplus_{\alpha \in \Gamma} R_{\alpha},$$

where each R_α is an additive subgroup of R (called the *degree* α *component*), and R_αR_β ⊆ R_{αβ} for all α, β ∈ Γ (with R_αR_β consisting of all sums of elements of the form *rp*, for r ∈ R_α and p ∈ R_β).
In this situation, R is *strongly* Γ-graded if R_αR_β = R_{αβ} for all α, β ∈ Γ.

Examples

- **I** For any group Γ , any ring R is *trivially* Γ -graded, via letting $R_{\varepsilon} = R$ and $R_{\alpha} = 0$ for all $\alpha \in \Gamma \setminus \{\varepsilon\}$, where ε is the identity element of Γ .
- 2 For any ring R and any group Γ, the group ring RΓ is strongly Γ-graded, via setting (RΓ)_α = Rα for all α ∈ Γ.
- B For any ring R and set X (of commuting or non-commuting variables), the polynomial ring R[X] is Z-graded, via letting R[X]_n be the set of homogeneous polynomials of degree n.

Let K be a field and $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ a directed graph (with E^0 the vertex set, E^1 the edge set, and $\mathbf{s}, \mathbf{r} : E^1 \to E^0$ the source and functions).

Let *K* be a field and $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ a directed graph (with E^0 the vertex set, E^1 the edge set, and $\mathbf{s}, \mathbf{r} : E^1 \to E^0$ the source and functions). The *Leavitt path K-algebra* $L_K(E)$ of *E* is the *K*-algebra generated by $\{v \mid v \in E^0\} \cup \{e, e^{-1} \mid e \in E^1\}$, subject to the relations: (V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$, (E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$, (E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$, (CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$, (CK2) $v = \sum_{e \in \mathbf{s}^{-1}(v)} ee^{-1}$ for every regular vertex $v \in E^0$.

Let K be a field and $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ a directed graph (with E^0 the vertex set, E^1 the edge set, and $\mathbf{s}, \mathbf{r} : E^1 \to E^0$ the source and functions). The Leavitt path K-algebra $L_{K}(E)$ of E is the K-algebra generated by $\{v \mid v \in E^0\} \cup \{e, e^{-1} \mid e \in E^1\}$, subject to the relations: (V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$. (E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$, (E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$, (CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$, (CK2) $v = \sum_{e \in \mathbf{s}^{-1}(v)} e^{-1}$ for every regular vertex $v \in E^0$. Each element of $L_K(E)$ is of the form $\sum_{i=1}^n a_i p_i q_i^{-1}$, for some $a_i \in K$ and paths p_i , q_i in E, where $(e_1 \cdots e_n)^{-1} = e_n^{-1} \cdots e_1^{-1}$ for $e_1, \ldots, e_n \in E^1$ and $v^{-1} = v$ for $v \in E^0$.

Let K be a field and $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$ a directed graph (with E^0 the vertex set, E^1 the edge set, and $\mathbf{s}, \mathbf{r} : E^1 \to E^0$ the source and functions). The Leavitt path K-algebra $L_K(E)$ of E is the K-algebra generated by $\{v \mid v \in E^0\} \cup \{e, e^{-1} \mid e \in E^1\}$, subject to the relations: (V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$. (E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$, (E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$, (CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$, (CK2) $v = \sum_{e \in s^{-1}(v)} ee^{-1}$ for every regular vertex $v \in E^0$. Each element of $L_K(E)$ is of the form $\sum_{i=1}^n a_i p_i q_i^{-1}$, for some $a_i \in K$ and paths p_i , q_i in E, where $(e_1 \cdots e_n)^{-1} = e_n^{-1} \cdots e_1^{-1}$ for $e_1, \ldots, e_n \in E^1$ and $v^{-1} = v$ for $v \in E^0$. $L_{\kappa}(E)$ is \mathbb{Z} -graded, via setting

$$L_{\mathcal{K}}(E)_n = \Big\{\sum_i a_i p_i q_i^{-1} \in L_{\mathcal{K}}(E) \mid |p_i| - |q_i| = n \Big\},$$

where $|e_1 \cdots e_n| = n$ is the *length* of the path $e_1 \cdots e_n$ $(e_1, \ldots, e_n \in E^0)$.

■ Each of the (nontrivial) examples above (RΓ, R[X], L_K(E)) happens to be either a semigroup ring or a quotient of a semigroup ring, and acquires its grading from the semigroup structure (base group, monomials, products of paths).

- Each of the (nontrivial) examples above (RΓ, R[X], L_K(E)) happens to be either a semigroup ring or a quotient of a semigroup ring, and acquires its grading from the semigroup structure (base group, monomials, products of paths).
- Can one gain a unifying perspective on such objects by studying the effects of the gradings on the underlying semigroups?

- Each of the (nontrivial) examples above (RΓ, R[X], L_K(E)) happens to be either a semigroup ring or a quotient of a semigroup ring, and acquires its grading from the semigroup structure (base group, monomials, products of paths).
- Can one gain a unifying perspective on such objects by studying the effects of the gradings on the underlying semigroups?
- B. Steinberg (2019) introduced "graded" semigroups in the process of studying how to recover the underlying groupoid from a Steinberg algebra.

- Each of the (nontrivial) examples above (RΓ, R[X], L_K(E)) happens to be either a semigroup ring or a quotient of a semigroup ring, and acquires its grading from the semigroup structure (base group, monomials, products of paths).
- Can one gain a unifying perspective on such objects by studying the effects of the gradings on the underlying semigroups?
- B. Steinberg (2019) introduced "graded" semigroups in the process of studying how to recover the underlying groupoid from a Steinberg algebra.
- Similar constructions have appeared elsewhere, e.g., J. M. Howie's "semigroups with length", papers of E. Ilić-Georgijević.

- Each of the (nontrivial) examples above (RΓ, R[X], L_K(E)) happens to be either a semigroup ring or a quotient of a semigroup ring, and acquires its grading from the semigroup structure (base group, monomials, products of paths).
- Can one gain a unifying perspective on such objects by studying the effects of the gradings on the underlying semigroups?
- B. Steinberg (2019) introduced "graded" semigroups in the process of studying how to recover the underlying groupoid from a Steinberg algebra.
- Similar constructions have appeared elsewhere, e.g., J. M. Howie's "semigroups with length", papers of E. Ilić-Georgijević.
- There is also literature on graded groupoids, which are related to semigroups.

- Each of the (nontrivial) examples above (RΓ, R[X], L_K(E)) happens to be either a semigroup ring or a quotient of a semigroup ring, and acquires its grading from the semigroup structure (base group, monomials, products of paths).
- Can one gain a unifying perspective on such objects by studying the effects of the gradings on the underlying semigroups?
- B. Steinberg (2019) introduced "graded" semigroups in the process of studying how to recover the underlying groupoid from a Steinberg algebra.
- Similar constructions have appeared elsewhere, e.g., J. M. Howie's "semigroups with length", papers of E. Ilić-Georgijević.
- There is also literature on graded groupoids, which are related to semigroups.
- But no systematic treatment of graded semigroups had been performed before.

Let S be semigroup (with zero) and Γ a group. Then S is Γ -graded if

$$S = \bigcup_{\alpha \in \Gamma} S_{\alpha},$$

where $S_{\alpha} \subseteq S$ and $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$, and $S_{\alpha} \cap S_{\beta} = \{0\}$ for all distinct $\alpha, \beta \in \Gamma$.

Let S be semigroup (with zero) and Γ a group. Then S is Γ -graded if

$$S = \bigcup_{\alpha \in \Gamma} S_{\alpha}$$

where $S_{\alpha} \subseteq S$ and $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$, and $S_{\alpha} \cap S_{\beta} = \{0\}$ for all distinct $\alpha, \beta \in \Gamma$.

We say that S is strongly Γ -graded if $S_{\alpha}S_{\beta} = S_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$.

Let S be semigroup (with zero) and Γ a group. Then S is Γ -graded if

$$S = \bigcup_{\alpha \in \Gamma} S_{\alpha}$$

where $S_{\alpha} \subseteq S$ and $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$, and $S_{\alpha} \cap S_{\beta} = \{0\}$ for all distinct $\alpha, \beta \in \Gamma$.

We say that S is strongly Γ -graded if $S_{\alpha}S_{\beta} = S_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$.

Equivalently, S is Γ -graded if there is a map $\phi : S \setminus \{0\} \to \Gamma$ such that $\phi(st) = \phi(s)\phi(t)$, whenever $st \neq 0$. Here $S_{\alpha} = \phi^{-1}(\alpha) \cup \{0\}$ for each $\alpha \in \Gamma$.

Let Γ be a group and $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ a Γ -graded ring. Then $\bigcup_{\alpha \in \Gamma} R_{\alpha}$ is a Γ -graded (multiplicative) semigroup, which is strongly graded iff R is.

Let Γ be a group and R = ⊕_{α∈Γ} R_α a Γ-graded ring. Then ∪_{α∈Γ} R_α is a Γ-graded (multiplicative) semigroup, which is strongly graded iff R is.
 Let F be a free semigroup (with zero). Then F is Z-graded, since F = ∪_{n∈N} F_n, where F_n is the set of words of length n (including 0).

Let Γ be a group and R = ⊕_{α∈Γ} R_α a Γ-graded ring. Then ∪_{α∈Γ} R_α is a Γ-graded (multiplicative) semigroup, which is strongly graded iff R is.
 Let F be a free semigroup (with zero). Then F is Z-graded, since F = ∪_{n∈ℕ} F_n, where F_n is the set of words of length n (including 0).
 Let Γ be a group, S = ⟨x_i | r_k = s_k⟩ a semigroup defined by generators and relations, and φ : {x_i} → Γ any function such that φ(r_k) = φ(s_k) (extending φ to words in the x_i by concatenation). Then S is Γ-graded.

1 Let Γ be a group and $R = \bigoplus_{\alpha \in \Gamma} R_{\alpha}$ a Γ -graded ring. Then $\bigcup_{\alpha \in \Gamma} R_{\alpha}$ is a Γ -graded (multiplicative) semigroup, which is strongly graded iff R is. **2** Let *F* be a free semigroup (with zero). Then *F* is \mathbb{Z} -graded, since $F = \bigcup_{n \in \mathbb{N}} F_n$, where F_n is the set of words of length *n* (including 0). **3** Let Γ be a group, $S = \langle x_i | r_k = s_k \rangle$ a semigroup defined by generators and relations, and $\phi: \{x_i\} \to \Gamma$ any function such that $\phi(r_k) = \phi(s_k)$ (extending ϕ to words in the x_i by concatenation). Then S is Γ -graded. **4** Let Γ be a group, X a set with a distinguished element $0_X \in X$, $\phi: X \setminus \{0_X\} \to \Gamma$ a map, and $\mathcal{T}(X)$ the semigroup of all functions $\psi: X \to X$ such that $\psi(0_X) = 0_X$. For all $\alpha \in \Gamma$ let $X_\alpha = \phi^{-1}(\alpha) \cup \{0_X\}$ and $\mathcal{T}(X)_{\alpha} = \{ \psi \in \mathcal{T}(X) \mid \psi(X_{\beta}) \subseteq X_{\alpha\beta} \forall \beta \in \Gamma \}$. Then

$$\mathcal{T}^{\mathrm{gr}}(X) = igcup_{lpha \in \mathsf{F}} \mathcal{T}(X)_{lpha}$$

is a Γ -graded subsemigroup of $\mathcal{T}(X)$ (which is strongly Γ -graded if and only if $|X_{\alpha}| = |X_{\beta}|$ for all $\alpha, \beta \in \Gamma$), and every Γ -graded semigroup embeds in such a semigroup.

Given a directed graph $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$, the graph inverse semigroup S(E)of E is the semigroup (with zero) generated by the vertex set E^0 and the edge set E^1 , together with $\{e^{-1} \mid e \in E^1\}$, satisfying the relations: (V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$, (E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$, (E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$, (CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$.

Given a directed graph $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$, the graph inverse semigroup S(E)of E is the semigroup (with zero) generated by the vertex set E^0 and the edge set E^1 , together with $\{e^{-1} \mid e \in E^1\}$, satisfying the relations: (V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$, (E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$, (E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$, (CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$.

Each nonzero element of $\mathcal{S}(E)$ is of the form pq^{-1} , for some paths p, q in E, where $(e_1 \cdots e_n)^{-1} = e_n^{-1} \cdots e_1^{-1}$ for $e_1, \ldots, e_n \in E^1$ and $v^{-1} = v$ for $v \in E^0$.

Given a directed graph $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$, the graph inverse semigroup S(E)of E is the semigroup (with zero) generated by the vertex set E^0 and the edge set E^1 , together with $\{e^{-1} \mid e \in E^1\}$, satisfying the relations: (V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$, (E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$, (E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$, (CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$.

Each nonzero element of $\mathcal{S}(E)$ is of the form pq^{-1} , for some paths p, q in E, where $(e_1 \cdots e_n)^{-1} = e_n^{-1} \cdots e_1^{-1}$ for $e_1, \ldots, e_n \in E^1$ and $v^{-1} = v$ for $v \in E^0$.

S(E) is an inverse semigroup, with $(pq^{-1})^{-1} = qp^{-1}$ for all paths p, q. (A semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique $t \in S$ satisfying sts = s and tst = t.)

Given a directed graph $E = (E^0, E^1, \mathbf{s}, \mathbf{r})$, the graph inverse semigroup S(E)of E is the semigroup (with zero) generated by the vertex set E^0 and the edge set E^1 , together with $\{e^{-1} \mid e \in E^1\}$, satisfying the relations: (V) $vw = \delta_{v,w}v$ for all $v, w \in E^0$, (E1) $\mathbf{s}(e)e = e\mathbf{r}(e) = e$ for all $e \in E^1$, (E2) $\mathbf{r}(e)e^{-1} = e^{-1}\mathbf{s}(e) = e^{-1}$ for all $e \in E^1$, (CK1) $e^{-1}f = \delta_{e,f}\mathbf{r}(e)$ for all $e, f \in E^1$.

Each nonzero element of $\mathcal{S}(E)$ is of the form pq^{-1} , for some paths p, q in E, where $(e_1 \cdots e_n)^{-1} = e_n^{-1} \cdots e_1^{-1}$ for $e_1, \ldots, e_n \in E^1$ and $v^{-1} = v$ for $v \in E^0$.

S(E) is an inverse semigroup, with $(pq^{-1})^{-1} = qp^{-1}$ for all paths p, q. (A semigroup S is an *inverse semigroup* if for each $s \in S$ there is a unique $t \in S$ satisfying sts = s and tst = t.)

 $\mathcal{S}(E)$ is \mathbb{Z} -graded via, via setting

$$\mathcal{S}(E)_n = \left\{ pq^{-1} \in \mathcal{S}(E) \, \big| \, |p| - |q| = n \right\}.$$

Connections with Leavitt Path Algebras

Given a field K and a directed graph E, the (contracted) semigroup ring K[S(E)] is called the Cohn path K-algebra $C_K(E)$ of E, and the ring

$$\mathcal{K}[\mathcal{S}(E)]/\Big\langle v - \sum_{e \in \mathbf{s}^{-1}(v)} ee^{-1} \mid v \in E^0 ext{ is regular} \Big
angle,$$

is the Leavitt path K-algebra $L_K(E)$ of E.

Connections with Leavitt Path Algebras

Given a field K and a directed graph E, the (contracted) semigroup ring K[S(E)] is called the Cohn path K-algebra $C_K(E)$ of E, and the ring

$$\mathcal{K}[\mathcal{S}(E)]/\Big\langle v - \sum_{e \in \mathbf{s}^{-1}(v)} ee^{-1} \mid v \in E^0 ext{ is regular} \Big
angle,$$

is the Leavitt path K-algebra $L_{K}(E)$ of E.

■ The Z-grading on L_K(E) is induced by the Z-grading on S(E) (where each L_K(E)_n consists of K-linear combinations of elements of S(E)_n).

Connections with Leavitt Path Algebras

Given a field K and a directed graph E, the (contracted) semigroup ring K[S(E)] is called the Cohn path K-algebra $C_K(E)$ of E, and the ring

$$\mathcal{K}[\mathcal{S}(E)] / \Big\langle v - \sum_{e \in \mathbf{s}^{-1}(v)} ee^{-1} \mid v \in E^0 ext{ is regular} \Big\rangle,$$

is the Leavitt path K-algebra $L_K(E)$ of E.

■ The Z-grading on L_K(E) is induced by the Z-grading on S(E) (where each L_K(E)_n consists of K-linear combinations of elements of S(E)_n).

Theorem (Finite Graph Case)

Let E be a finite nonempty graph. Then the following are equivalent.

- **1** *E* has no sinks (i.e., vertices that emit no edges).
- **2** $L_{\mathcal{K}}(E)$ is strongly graded in the natural \mathbb{Z} -grading, for any field \mathcal{K} .
- **3** $\mathcal{S}(E)$ is locally strongly graded in the natural \mathbb{Z} -grading. (I.e., for all $n, m \in \mathbb{Z}$ and $s \in \mathcal{S}(E)_{n+m} \setminus \{0\}$, there exists $t \in \mathcal{S}(E)_n \mathcal{S}(E)_m \setminus \{0\}$ such that t = su for some idempotent $u \in \mathcal{S}(E)$).

Semigroup Rings

Given a ring R and a semigroup S, we denote by R[S] the contracted semigroup ring (where the zero of S is identified with the zero of RS). An arbitrary element of R[S] is of the form ∑_{s∈S} r^(s)s, where r^(s) ∈ R, and all but finitely many of the r^(s) are zero.

Semigroup Rings

- Given a ring R and a semigroup S, we denote by R[S] the contracted semigroup ring (where the zero of S is identified with the zero of RS). An arbitrary element of R[S] is of the form ∑_{s∈S} r^(s)s, where r^(s) ∈ R, and all but finitely many of the r^(s) are zero.
- If Γ is a group and S is a Γ -graded semigroup, then R[S] is a Γ -graded ring, via setting

$$R[S]_{lpha} = \Big\{ \sum_{s \in S} r^{(s)}s \mid s \in S_{lpha} ext{ whenever } r^{(s)}
eq 0 \Big\},$$

for each $\alpha \in \Gamma$.

Semigroup Rings

- Given a ring R and a semigroup S, we denote by R[S] the contracted semigroup ring (where the zero of S is identified with the zero of RS). An arbitrary element of R[S] is of the form ∑_{s∈S} r^(s)s, where r^(s) ∈ R, and all but finitely many of the r^(s) are zero.
- If Γ is a group and S is a Γ -graded semigroup, then R[S] is a Γ -graded ring, via setting

$$R[S]_{lpha} = \Big\{ \sum_{s \in S} r^{(s)}s \mid s \in S_{lpha} ext{ whenever } r^{(s)}
eq 0 \Big\},$$

for each $\alpha \in \Gamma$.

Proposition

Let Γ be a group, S a Γ -graded semigroup, and R a ring. Then S is a strongly Γ -graded semigroup if and only if R[S] is a strongly Γ -graded ring (in the induced grading).

 A significant portion of the theory of graded rings is devoted their modules and *graded* modules.

- A significant portion of the theory of graded rings is devoted their modules and *graded* modules.
- Given a group Γ and a Γ -graded ring R, a left R-module M is Γ -graded if $M = \bigoplus_{\alpha \in \Gamma} M_{\alpha}$, where the M_{α} are additive subgroups of M, and $R_{\alpha}M_{\beta} \subseteq M_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$.

- A significant portion of the theory of graded rings is devoted their modules and *graded* modules.
- Given a group Γ and a Γ -graded ring R, a left R-module M is Γ -graded if $M = \bigoplus_{\alpha \in \Gamma} M_{\alpha}$, where the M_{α} are additive subgroups of M, and $R_{\alpha}M_{\beta} \subseteq M_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$.
- For a Γ-graded ring R, we denote the category of (unital) left R-modules by R-Mod, and the category of Γ-graded (unital) left R-modules (with graded homomorphisms as morphisms) by R-Gr.

- A significant portion of the theory of graded rings is devoted their modules and *graded* modules.
- Given a group Γ and a Γ -graded ring R, a left R-module M is Γ -graded if $M = \bigoplus_{\alpha \in \Gamma} M_{\alpha}$, where the M_{α} are additive subgroups of M, and $R_{\alpha}M_{\beta} \subseteq M_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$.
- For a Γ-graded ring R, we denote the category of (unital) left R-modules by R-Mod, and the category of Γ-graded (unital) left R-modules (with graded homomorphisms as morphisms) by R-Gr.

Theorem (E. Dade, 1980)

Let Γ be a group and R a Γ -graded ring. Then R is strongly Γ -graded if and only if R-Gr is naturally equivalent to R_{ε} -Mod.

- A significant portion of the theory of graded rings is devoted their modules and *graded* modules.
- Given a group Γ and a Γ -graded ring R, a left R-module M is Γ -graded if $M = \bigoplus_{\alpha \in \Gamma} M_{\alpha}$, where the M_{α} are additive subgroups of M, and $R_{\alpha}M_{\beta} \subseteq M_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$.
- For a Γ-graded ring R, we denote the category of (unital) left R-modules by R-Mod, and the category of Γ-graded (unital) left R-modules (with graded homomorphisms as morphisms) by R-Gr.

Theorem (E. Dade, 1980)

Let Γ be a group and R a Γ -graded ring. Then R is strongly Γ -graded if and only if R-Gr is naturally equivalent to R_{ε} -Mod.

Theorem (M. Cohen & S. Montgomery, 1984)

Let Γ be a group and R a Γ -graded ring. Then R-Gr is isomorphic to $R\#\Gamma$ -Mod, where $R\#\Gamma$ is the *smash product* of R and Γ .

• Let S a semigroup. A set X is a *left S-set* or *S-act*, if there is an action of S on X, such that s(tx) = (st)x for all $s, t \in S$ and $x \in X$.

- Let S a semigroup. A set X is a *left S-set* or *S-act*, if there is an action of S on X, such that s(tx) = (st)x for all $s, t \in S$ and $x \in X$.
- A left S-set X is unital if SX = X, and pointed if there is an element $0_X \in X$ such that $0_X = 0_X$ for all $x \in X$.

- Let S a semigroup. A set X is a *left S-set* or *S-act*, if there is an action of S on X, such that s(tx) = (st)x for all $s, t \in S$ and $x \in X$.
- A left S-set X is unital if SX = X, and pointed if there is an element $0_X \in X$ such that $0_X = 0_X$ for all $x \in X$.
- Suppose that S is Γ -graded. Then a left S-set X is Γ -graded if $X = \bigcup_{\alpha \in \Gamma} X_{\alpha}$, where $X_{\alpha} \subseteq X$ and $S_{\alpha}X_{\beta} \subseteq X_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$, and $X_{\alpha} \cap X_{\beta} = \{0_X\}$ for all distinct $\alpha, \beta \in \Gamma$.

- Let S a semigroup. A set X is a *left S-set* or *S-act*, if there is an action of S on X, such that s(tx) = (st)x for all $s, t \in S$ and $x \in X$.
- A left S-set X is unital if SX = X, and pointed if there is an element $0_X \in X$ such that $0_X = 0_X$ for all $x \in X$.
- Suppose that S is Γ -graded. Then a left S-set X is Γ -graded if $X = \bigcup_{\alpha \in \Gamma} X_{\alpha}$, where $X_{\alpha} \subseteq X$ and $S_{\alpha}X_{\beta} \subseteq X_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$, and $X_{\alpha} \cap X_{\beta} = \{0_X\}$ for all distinct $\alpha, \beta \in \Gamma$.
- For left S-sets X and Y, a function $\phi : X \to Y$ is an S-map if $\phi(sx) = s\phi(x)$ for all $s \in S$ and $x \in X$. For Γ -graded left S-sets X and Y, an S-map $\phi : X \to Y$ is graded if $\phi(X_{\alpha}) \subseteq Y_{\alpha}$ for all $\alpha \in \Gamma$.

- Let S a semigroup. A set X is a *left S-set* or *S-act*, if there is an action of S on X, such that s(tx) = (st)x for all $s, t \in S$ and $x \in X$.
- A left S-set X is unital if SX = X, and pointed if there is an element $0_X \in X$ such that $0_X = 0_X$ for all $x \in X$.
- Suppose that S is Γ -graded. Then a left S-set X is Γ -graded if $X = \bigcup_{\alpha \in \Gamma} X_{\alpha}$, where $X_{\alpha} \subseteq X$ and $S_{\alpha}X_{\beta} \subseteq X_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$, and $X_{\alpha} \cap X_{\beta} = \{0_X\}$ for all distinct $\alpha, \beta \in \Gamma$.
- For left S-sets X and Y, a function $\phi : X \to Y$ is an S-map if $\phi(sx) = s\phi(x)$ for all $s \in S$ and $x \in X$. For Γ -graded left S-sets X and Y, an S-map $\phi : X \to Y$ is graded if $\phi(X_{\alpha}) \subseteq Y_{\alpha}$ for all $\alpha \in \Gamma$.
- We denote by S-Mod the category of unital pointed left S-sets, with S-maps as morphisms, and by S-Gr the category of Γ-graded unital pointed left S-sets, with graded S-maps as morphisms.

- Let S a semigroup. A set X is a *left S-set* or *S-act*, if there is an action of S on X, such that s(tx) = (st)x for all $s, t \in S$ and $x \in X$.
- A left S-set X is unital if SX = X, and pointed if there is an element $0_X \in X$ such that $0_X = 0_X$ for all $x \in X$.
- Suppose that S is Γ -graded. Then a left S-set X is Γ -graded if $X = \bigcup_{\alpha \in \Gamma} X_{\alpha}$, where $X_{\alpha} \subseteq X$ and $S_{\alpha}X_{\beta} \subseteq X_{\alpha\beta}$ for all $\alpha, \beta \in \Gamma$, and $X_{\alpha} \cap X_{\beta} = \{0_X\}$ for all distinct $\alpha, \beta \in \Gamma$.
- For left S-sets X and Y, a function $\phi : X \to Y$ is an S-map if $\phi(sx) = s\phi(x)$ for all $s \in S$ and $x \in X$. For Γ -graded left S-sets X and Y, an S-map $\phi : X \to Y$ is graded if $\phi(X_{\alpha}) \subseteq Y_{\alpha}$ for all $\alpha \in \Gamma$.
- We denote by S-Mod the category of unital pointed left S-sets, with S-maps as morphisms, and by S-Gr the category of Γ-graded unital pointed left S-sets, with graded S-maps as morphisms.

Theorem

Let Γ be a group and S a Γ -graded inverse semigroup. Then S is strongly graded if and only if S-Gr is naturally equivalent to S_{ε} -Mod.

Smash Product

Given a group Γ and a Γ -graded semigroup S, define the smash product of S with Γ as

$$S\#\Gamma = \{sP_{\alpha} \mid s \in S \setminus \{0\}, \alpha \in \Gamma\} \cup \{0\}.$$

Also, define a binary operation on $S\#\Gamma$ by

$$(sP_{lpha})(tP_{eta}) = \left\{egin{array}{cc} stP_{eta} & ext{if } st
eq 0 ext{ and } t \in S_{lphaeta^{-1}} \\ 0 & ext{otherwise} \end{array}
ight.$$

and $0 = 0^2 = (sP_{\alpha})0 = 0(sP_{\alpha})$, for all $s, t \in S$ and $\alpha, \beta \in \Gamma$.

Smash Product

Given a group Γ and a Γ -graded semigroup S, define the smash product of S with Γ as

$$S\#\Gamma = \{sP_{\alpha} \mid s \in S \setminus \{0\}, \alpha \in \Gamma\} \cup \{0\}.$$

Also, define a binary operation on $S\#\Gamma$ by

$$(sP_lpha)(tP_eta) = \left\{egin{array}{cc} stP_eta & ext{if } st
eq 0 ext{ and } t \in S_{lphaeta^{-1}} \ 0 & ext{otherwise} \end{array}
ight.$$

and
$$0 = 0^2 = (sP_{\alpha})0 = 0(sP_{\alpha})$$
, for all $s, t \in S$ and $\alpha, \beta \in \Gamma$.

Theorem

Let Γ be a group and S a Γ -graded semigroup with local units (i.e., for every $s \in S$ there exist idempotents $u, v \in S$ such that us = s = sv). Then $S \# \Gamma$ is a semigroup, and S-Gr is isomorphic to $S \# \Gamma$ -Mod.

Smash Product

Given a group Γ and a Γ -graded semigroup S, define the smash product of S with Γ as

$$S\#\Gamma = \{sP_{\alpha} \mid s \in S \setminus \{0\}, \alpha \in \Gamma\} \cup \{0\}.$$

Also, define a binary operation on $S\#\Gamma$ by

$$(sP_lpha)(tP_eta) = \left\{egin{array}{cc} stP_eta & ext{if } st
eq 0 ext{ and } t \in S_{lphaeta^{-1}} \ 0 & ext{otherwise} \end{array}
ight.$$

and
$$0 = 0^2 = (sP_{\alpha})0 = 0(sP_{\alpha})$$
, for all $s, t \in S$ and $\alpha, \beta \in \Gamma$.

Theorem

Let Γ be a group and S a Γ -graded semigroup with local units (i.e., for every $s \in S$ there exist idempotents $u, v \in S$ such that us = s = sv). Then $S \# \Gamma$ is a semigroup, and S-Gr is isomorphic to $S \# \Gamma$ -Mod.

Proposition

Let Γ be a group, S a Γ -graded semigroup, and R a ring. Then $R[S\#\Gamma] \cong R[S]\#\Gamma$.

 There is a graded Morita theory for rings, that describes the circumstances under which *R*-Gr and *T*-Gr are graded-equivalent, for two Γ-graded rings *R* and *T*.

- There is a graded Morita theory for rings, that describes the circumstances under which *R*-Gr and *T*-Gr are graded-equivalent, for two Γ-graded rings *R* and *T*.
- There is also extensive literature on Morita theory in semigroups with local units and inverse semigroups, which parallels Morita theory for rings.

- There is a graded Morita theory for rings, that describes the circumstances under which *R*-Gr and *T*-Gr are graded-equivalent, for two Γ-graded rings *R* and *T*.
- There is also extensive literature on Morita theory in semigroups with local units and inverse semigroups, which parallels Morita theory for rings.
- S. Talwar (1990s) proved that for semigroups S and T with local units, there is a 6-tuple *Morita context* between S and T if and only if S-FAct is equivalent to T-FAct (where S-FAct is the subcategory of S-Mod of "fixed" S-sets). M. V. Lawson (2011) gave other equivalent conditions.

- There is a graded Morita theory for rings, that describes the circumstances under which *R*-Gr and *T*-Gr are graded-equivalent, for two Γ-graded rings *R* and *T*.
- There is also extensive literature on Morita theory in semigroups with local units and inverse semigroups, which parallels Morita theory for rings.
- S. Talwar (1990s) proved that for semigroups S and T with local units, there is a 6-tuple *Morita context* between S and T if and only if S-FAct is equivalent to T-FAct (where S-FAct is the subcategory of S-Mod of "fixed" S-sets). M. V. Lawson (2011) gave other equivalent conditions.
- If S is a monoid (or has common local units), then S-FAct = S-Mod.

- There is a graded Morita theory for rings, that describes the circumstances under which *R*-Gr and *T*-Gr are graded-equivalent, for two Γ-graded rings *R* and *T*.
- There is also extensive literature on Morita theory in semigroups with local units and inverse semigroups, which parallels Morita theory for rings.
- S. Talwar (1990s) proved that for semigroups S and T with local units, there is a 6-tuple *Morita context* between S and T if and only if S-FAct is equivalent to T-FAct (where S-FAct is the subcategory of S-Mod of "fixed" S-sets). M. V. Lawson (2011) gave other equivalent conditions.
- If S is a monoid (or has common local units), then S-FAct = S-Mod.
- One can define graded versions of *S*-FAct and of *S*-set category equivalence.

- There is a graded Morita theory for rings, that describes the circumstances under which *R*-Gr and *T*-Gr are graded-equivalent, for two Γ-graded rings *R* and *T*.
- There is also extensive literature on Morita theory in semigroups with local units and inverse semigroups, which parallels Morita theory for rings.
- S. Talwar (1990s) proved that for semigroups S and T with local units, there is a 6-tuple *Morita context* between S and T if and only if S-FAct is equivalent to T-FAct (where S-FAct is the subcategory of S-Mod of "fixed" S-sets). M. V. Lawson (2011) gave other equivalent conditions.
- If S is a monoid (or has common local units), then S-FAct = S-Mod.
- One can define graded versions of *S*-FAct and of *S*-set category equivalence.

Theorem

Let Γ be a group, and S and T be Γ -graded semigroups with local units. If S and T are graded Morita equivalent, then they are Morita equivalent.

Thank you!