A generalized notion of cross number and applications to monoids of weighted zero-sum sequences

Wolfgang Schmid, joint with Kamil Merito and Oscar Ordaz

LAGA, Université Paris 8

July 12th, 2023 Rings and Factorizations 2023, Graz Zero-sum sequences

Weighted zero-sum sequences

Cross number of a sequence

Arithmetic results for (plus-minus) weighted zero-sum sequences

A notion of cross number for certain C-monoids

For a (finite) abelian group (G, +, 0) and a sequences *S* of elements $g_1 \dots g_k$ from *G* one says that *S* is a zero-sum sequence if

$$g_1+\dots+g_k=\mathsf{0}\in G$$

Given two zero-sum sequences S and T their concatenation is again a zero-sum sequences. Thus zero-sum sequences form a monoid. One can study the arithemtic of these monoids (Baginski, Chapman, Gao, Geroldinger, Grynkiewicz, Halter-Koch, Zhong, etc).

Usually one identifies sequences that differ only in the ordering of the terms. I.e., sequences are in fact elements of the free *commutative* monoid over *G* or multisets.

The monoid of zero-sum sequences, aka the block monoid, $\mathcal{B}(G_0)$

Let (G, +, 0) be a (finite) abelian group. Let $G_0 \subset G$. A sequence S over G_0 is an element of $\mathcal{F}(G_0)$ the free abelian monoid with basis G_0 .

Thus a sequences is a (formal, commutative) product

$$S=\prod_{i=1}^l g_i=\prod_{g\in G_0}g^{{\sf v}_g(S)}.$$

The sequence S is called a zero-sum sequence if its sum

$$\sigma(\mathcal{S}) = \sum_{i=1}^l g_i = \sum_{g \in G_0} \mathsf{v}_g(\mathcal{S})g \in G$$

equals 0.

The monoid of zero-sum sequences over G_0 is defined as

$$\mathcal{B}(G_0) = \{ S \in \mathcal{F}(G_0) \colon \sigma(S) = 0 \}.$$

Study the arithmetic: sets of lengths

A monoid H (commutative, cancellative), for example the multiplicative monoid of a domain, is called *atomic* if each non-zero element a is the product (of finitely many) irreducible elements.

lf

$$a = a_1 \dots a_n$$

with irreducible a_i , then *n* is called a length of *a*.

 $L(a) = \{n: n \text{ is a length } \}.$

For a invertible set $L(a) = \{0\}$. The system of sets of lengths is

$$\mathcal{L}(H) = \{ \mathsf{L}(a) \colon a \in H \}.$$

In general, sets of lengths can be infinite. Yet often they are *finite*. The property is called BF (bounded factorization). We only discuss BF.

If all sets of lengths are singletons, the structure is called half-factorial (Zaks, 1976).

Various monoids and domains of interest admit a transfer-homorphism to monoids of zero-sum sequences (or other auxiliary monoids).

Let *H* and *B* be monoids. A monoid homomorphism $\Theta : H \to B$ is called a transfer homorphism when it has the following two properties:

T1
$$\mathcal{B} = \Theta(\mathcal{H})\mathcal{B}^{\times}$$
 and $\Theta^{-1}(\mathcal{B}^{\times}) = \mathcal{H}^{\times}$.

T2 If $u \in H$ and $b, c \in B$ with $\Theta(u) = bc$, then there exist $v, w \in H$ such that u = vw, $\Theta(v) \simeq b$ and $\Theta(w) \simeq c$.

They preserve sets of lengths.

For a Krull monoid *H* sets of lengths just depend on the class group C(H) = G and the set G_0 of classes containing primes (the distribution of prime *v*-ideals).

More precisely, there exists a monoid epimorphism (the block homomorphism)

$$\beta: H \to \mathcal{B}(G_0)$$

such that

$$\mathsf{L}_{H}(a) = \mathsf{L}_{\mathcal{B}(G_0)}(\beta(a))$$

for each $a \in H$. More specifically, $\beta(a) = [p_1] \dots [p_k]$ where $\phi(a) = p_1 \dots p_k$ (essentially unique!). Let *K* be a number field with class group *G*. There is a transfer homomorphism β from \mathcal{O}_{K}^{*} to $\mathcal{B}(G)$, the monoid of zero-sum sequences over the class group of *K*. More specifically, $\beta(a) = [p_1] \dots [p_k]$ where $(a) = p_1 \dots p_k$ is the factorization into prime ideals (essentially unique!).

Weighted zero-sum sequences

Let (G, +, 0) be a (finite) abelian group. Let $G_0 \subset G$. Let Ω be "a set of weights." Let $S = \prod_{i=1}^{l} g_i$ be a sequence. Then any elements of the form

 $\sum_{i=1}^{l} \omega_i g_i$

with $\omega_i \in \Omega$ is called an Ω -weighted sum of *S*. What do we take as set of weights?

- 1. Subset of the integers, or of $\{0, 1, \ldots, \exp(G) 1\}$.
- 2. Subset of the endomorhisms of End(G) (more general).
- 3. One can also generalize further for example subset of hom(*G*, *G*') for some other groups *G*'.

Let $\sigma_{\Omega}(S)$ denote the set of all elements that are an Ω -weighted sum of *S*.

We say that *S* is a Ω -weighted zero-sum sequence.

Note: The sequences is not 'weighted', the sum is.

There are plenty of papers on weighted zero-sum constants (Adhikari and many others).

Davenport constant with weights: What is the smallest integer *I* such that each sequence *S* over *G* of lenght *I* has a subsequence that is an Ω -weighted zero-sum sequence. Erdős–Ginzburg–Ziv constant with weights: What is the smallest integer *I* such that each sequence *S* over *G* of lenght *I* has a subsequence of length $\exp(G)$ that is an Ω -weighted zero-sum sequence.

Etc.

The purpose of this talk is to talk about something else though namely the *monoid* of Ω -weighted zero-sum sequences over G_0 , which is defined as

$$\mathcal{B}_{\Omega}(\mathcal{G}_0) = \{ \mathcal{S} \in \mathcal{F}(\mathcal{G}_0) \colon \sigma_{\Omega}(\mathcal{S}) \ni \mathbf{0} \}.$$

Recap: the monoid of Ω -weighted zero-sum sequences

$$\mathcal{B}_{\Omega}(\mathcal{G}) = \{ \mathcal{S} \in \mathcal{F}(\mathcal{G}) \colon \mathbf{0} \in \sigma_{\Omega}(\mathcal{S}) \} \subset \mathcal{F}(\mathcal{G})$$

be the set of all sequences that have zero as a $\Omega\text{-weighted}$ sum.

 $\mathcal{B}_{\Omega}(G)$ is a submonoid of $\mathcal{F}(G)$. Moreover $\mathcal{B}(G) \subset \mathcal{B}_{\Omega}(G)$. Let K denote a Galois number field. Let \mathcal{O}_K denote its ring of algebraic integers.

Let $N:\mathcal{O}_{\mathcal{K}}^{*}\rightarrow\mathbb{N}$ denote the absolute norm.

Then $N(\mathcal{O}_{K}^{*})$ is a submonoid of (\mathbb{N}^{*}, \cdot) . We want to study the arithmetic of that monoid.

Again, one wants to use uniqueness of factorization into prime ideals. A complication is that different prime ideals can have the same norm. To treat this problem one needs 'weighted' zero-sum sequences (initially noted by Halter-Koch).

Theorem (Boukheche, Merito, Ordaz, S.)

Let *K* be a Galois number field with Galois group Γ and class group *G*. There is a transfer homomorphism from $N(\mathcal{O}_K^*)$, the monoid of absolute norms of non-zero algebraic integers of *K*, to $\mathcal{B}_{\Gamma}(G)$, the monoid of Γ -weighted zero-sum sequences over the class group of *K*.

Recall that the Galois group acts on the class group; thus it makes sense to talk about Γ -weighted zero-sum sequences over the class group of K.

Further developed by Geroldinger, Halter-Koch, Zhong.

For a sequences *S* of elements $g_1 \dots g_k$ from *G* one says that the length of *S* is *k*, denoted |S|. It is a monoid homorphism from $\mathcal{F}(G)$ to \mathbb{N}_0 . This is a simple but useful invariant of the sequence.

- For example if $S \in \mathcal{B}(G)$ then obviously $\max L(S) \le |S|$.
- If S does not contain 0, then even $\max L(S) \le |S|/2$.

For a sequences *S* of elements $g_1 \dots g_k$ from *G* one says that the cross number of *S* is

$$\sum_{i=1}^k \frac{1}{\operatorname{ord} g_i}$$

denoted k(S). It is a monoid homorphism from $\mathcal{F}(G)$ to $\mathbb{Q}_{\geq 0}$. Introduced by Skula, Słiwa, Zaks independently (1976).

Theorem

For a subset $G_0 \subset G$ one has that $\mathcal{B}(G_0)$ is half-factorial if and only if k(A) = 1 for each $A \in \mathcal{A}(\mathcal{B}(G_0))$.

Early contribution by Krause (who introduced the name cross number).

Proof

Suppose all atoms have cross number 1.

If $S = A_1 \dots A_k = U_1 \dots U_l$ with atoms A_i, U_j , then k(S) = k and k(S) = l, so k = l.

Conversely assume there is some $A = g_1 \dots g_r$ with $k(A) \neq 1$. We have

$$\mathcal{A}^{\exp(G)} = \prod_{i=1}^r (\mathcal{G}_i^{\operatorname{ord} \mathcal{G}_i})^{\exp(G)/\operatorname{ord} \mathcal{G}_i}$$

On the right this is a factorization of length $\exp(G)k(A) \neq \exp(G)$. Observation: For an atom *A* one has $\{\exp(G), \exp(G)k(A)\} \subset L(A^{\exp(G)})$. Recall: sets of lengths If

 $a = a_1 \dots a_n$

with irreducible a_i , then *n* is called a length of *a*.

 $L(a) = \{n: n \text{ is a length } \}.$

For a invertible set $L(a) = \{0\}$. The system of sets of lengths is

$$\mathcal{L}(H) = \{ \mathsf{L}(a) \colon a \in H \}.$$

If each set is a singleton we say the monoid is half-factorial. Otherwise $\mathcal{L}(H)$ contains arbitrarily large sets.

For $A \subseteq \mathbb{Z}$, we denote by $\Delta(A)$ the set of (successive) distances of A, that is the set of all $d \in \mathbb{N}$ for which there exists $\ell \in A$ such that $A \cap [\ell, \ell + d] = \{\ell, \ell + d\}$. Clearly, $\Delta(A) \subseteq \{d\}$ if and only if A is an arithmetical progression with difference d. For a monoid H we set $\Delta(H) = \bigcup_{a \in H} \Delta(L(a))$ the set of

distances,

and $\Delta^*(H) = \{\min \Delta(H') : H' \subset H \text{ divisor-closed, and not HF} \}$ the set of minmal distances.

Introduced by Gao and Geroldinger (2000).

It is known that $\min \Delta(H) = \operatorname{gcd} \Delta(H)$. (Geroldinger)

Lemma

Let G_0 be a subset of a finite abelian group.

 $\min \Delta(\mathcal{B}(G_0)) \mid \gcd\{\exp(G)(\mathsf{k}(A)-1) \colon A \in \mathcal{A}(\mathcal{B}(G_0))\}$

Also true for non abelian groups (Geroldinger, Grynkiewicz, Oh, Zhong, 2022)

A few arithmetic results for weighted zero-sum sequences

We present some similar results with weights.

A non-empty/non-invertible $S \in \mathcal{B}_{\Omega}(G)$ is reducible if there are two non-empty elements $S_1, S_2 \in \mathcal{B}_{\Omega}(G)$ such that $S = S_1S_2$. That is, S can be decomposed into two non-empty Ω -weighted zero-sum sequences S_1 and S_2 .

That is, $S = S_1 S_2$ with $0 \in \sigma_{\Omega}(S_1)$ and $0 \in \sigma_{\Omega}(S_2)$.

Note: Contrary to the case without weights, it does not suffice that there exist some proper divisor S_1 of S with $0 \in \sigma_{\Omega}(S_1)$, because 0 + a = 0 implies a = 0, but $0 \in A_1$ and $0 \in A_1 + A_2$ does not imply $0 \in A_2$.

We denote by $\mathcal{A}(\mathcal{B}_{\Omega}(G))$ the set of irreducible Ω -weighted zero-sum sequences.

These monoids are usually not Krull, but are C-monoids (see later).

It is not hard to see that minimal weighted zero-sum sequencs cannot get arbitrarily long. Thus the monoid is finitely generated. As $\mathcal{B}_{\Omega}(G)$ is finitely generated, various arithmetical finiteness results hold.

Let *G* be a finite abelian group and let $G_0 \subseteq G$. Let $\Omega \subseteq End(G)$ be a set of weights. Let $H = B_{\Omega}(G_0)$.

- 1. We have that $\Delta(H)$ is finite.
- 2. There is some $M \in \mathbb{N}_0$ such that each set of lengths L of H with $|L| \ge 2$ is an almost arithmetical multiprogression with bound M and difference $d \in \Delta^*(H)$, that is, $L = y + (L_1 \cup L^* \cup L_2) \subset y + \mathcal{D} + d\mathbb{Z}$ with $y \in \mathbb{N}_{\not\vdash}$, $\{0, d\} \subset \mathcal{D} \subset [0, d], L_1, -L_2 \subset [1, M], \min L^* = 0$ and $L^* = [0, \max L^*] \cap \mathcal{D} + d\mathbb{Z}$.

We saw that sets of lengths are AAMPs. We might want to undertand their differences. To this end one needs to study minimal distances Δ^* . What are the divisor-closed submonoids? These are, as without weights, $\mathcal{B}_{\pm}(G_0)$ for $G_0 \subset G$. (Geroldinger, Halter-Koch, Zhong) Theorem (Merito, Ordaz, S.)

If |G| odd then $\max \Delta^*(\mathcal{B}_{\pm}(G)) = \exp(G) - 2$.

For comparison $\max \Delta^*(\mathcal{B}(G)) = \max\{\exp(G) - 2, r(G) - 1\}$ (Geroldinger, Zhong), but that's much harder to prove. In the case of groups of even order $\max \Delta^*(\mathcal{B}_{\pm}(G))$ can exceed $\max \Delta^*(\mathcal{B}(G))$, and can be as large as (the conjectured) $\max \Delta(\mathcal{B}(G))$).

Lemma

Let $A \in \mathcal{A}(\mathcal{B}_{\pm}(G))$ and $A \neq 0$. Then $\{2, |A|\} \subset L(A^2)$.

Proof: Let $A = g_1 \dots g_k$. Then

$$A^2 = g_1^2 \cdot g_2^2 \dots g_k^2$$

is a factorization as $0 = (+1)g_i + (-1)g_i$.

Lemma

Assume that the order of g is odd, then $g^{\text{ord}(g)} \in \mathcal{A}(\mathcal{B}_{\pm}(G))$.

Proof: While g^2 is an atom we cannot factor $g^{\operatorname{ord}(g)}$ into copies of g^2 , since $\operatorname{ord}(g)$ is odd. Basicailly the same situation as for the (numerical) semigroup $\langle 2, \operatorname{ord}(g) \rangle$.

Theorem

Let G be a finite abelian group exponent n and let $H = \mathcal{B}_{\pm}(G)$. Assume that $n \ge 3$ is odd. Let $D_1 = \{d - 2 : d \mid n, d \ge 3\}$ and let $D_2 = \{d' \mid d : d \in D_1\}$. Then $D_1 \subseteq \Delta^*(H) \subseteq D_2$. In particular, $\max \Delta^*(H) = n - 2$.

Corollary

Let p be a prime such that p - 2 is prime. Then for $G = C_p^r$ one has $\Delta^*(\mathcal{B}_{\pm}(G)) = \{1, p - 2\}$. In particular, for p = 3 one has $\Delta^*(\mathcal{B}_{\pm}(G)) = \{1\}$.

Note that these results allow quite directly to characterize some (most) of those groups via sets of lengths.

Note for p = 2 one has $\Delta^*(\mathcal{B}_{\pm}(G)) = \{1, 2, ..., r - 1\}.$

Basic construction

Lemma

Let G be a finite abelian group and let e_1, \ldots, e_r be independent elements of even order, say $\operatorname{ord}(e_i) = 2m_i$. Assume that $m_1 + \cdots + m_r \ge 2$. Let $e_0 = m_1e_1 + \cdots + m_re_r$, $G_0 = \{e_0, e_1, \ldots, e_r\}$ and $H = \mathcal{B}_{\pm}(G_0)$. Then $\Delta(H) = \{m_1 + \cdots + m_r - 1\}$ and $c(H) = m_1 + \cdots + m_r + 1$.

Proof: $A = e_0 e_1^{m_1} \dots e_r^{m_r}$ is an atom. The only other atoms are e_i^2 . So $L(A^2) = \{2, |A|\}$.

Note that $m_1 + \cdots + m_r - 1$ can significantly exceed $\exp(G) - 2$ and r(G).

Various results can be obtained but they are not really ready, and I did not yet talk about a generalized cross number at all!

Let *H* be a finitely generated and reduced submonoid of a free monoid $\mathcal{F}(P)$ such that for every $p \in P$ there is an $a \in H$ such that $v_p(a) > 0$ and such that for every $a \in \mathcal{F}(P)$ there is an $n_a \in \mathbb{N}$ such that $a^{n_a} \in H$. By a result of Cziszter, Domokos and Geroldinger this means that *H* is a *C*-monoid.

Since *P* is finite there is an *e* such that p^e in *H* for each $p \in P$, for example we can take the least common multiples of the n_p as defined above.

For $p \in P$ let $m_{e,p} \in L_H(p^e)$ and let $\overline{m}_e = (m_{e,p})_{p \in P}$. Let $k_{\overline{m}_e} : \mathcal{F}(P) \to (\mathbb{Q}, +)$ be the monoid homomorphism obtained by extension of $k_{\overline{m}_e}(p) = m_{e,p}/e$ for each $p \in P$.

Lemma

Let H be a monoid as specified above, then with the notations introduced above the following holds. For each $a \in \mathcal{A}(H)$ we have $\{e, ek_{\overline{m}_e}(a)\} \subset L_H(a^e)$; moreover, we have

 $\min \Delta(H) \mid \gcd\{e(k_{\overline{m}_e}(a)-1) \colon a \in \mathcal{A}(H)\}.$

For $\mathcal{B}_{\pm}(G)$ we can take e = 2. Then $m_{e,g} = 1$ for $g \neq 0$ and $m_{e,0} = 2$. Thus the cross number of a sequences *S* not containing 0 is just |S|/2, and

$$|A|-2=e(\mathsf{k}(A)-1)$$

A generalized notion of cross number and applications to monoids of weighted zero-sum sequences

Wolfgang Schmid, joint with Kamil Merito and Oscar Ordaz

LAGA, Université Paris 8

July 12th, 2023 Rings and Factorizations 2023, Graz