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Zero-sum sequences

For a (finite) abelian group (G,+,0) and a sequences S of
elements g1 . . . gk from G one says that S is a zero-sum
sequence if

g1 + · · ·+ gk = 0 ∈ G

Given two zero-sum sequences S and T their concatenation is
again a zero-sum sequences. Thus zero-sum sequences form
a monoid. One can study the arithemtic of these monoids
(Baginski, Chapman, Gao, Geroldinger, Grynkiewicz,
Halter-Koch, Zhong, etc).
Usually one identifies sequences that differ only in the ordering
of the terms. I.e., sequences are in fact elements of the free
commutative monoid over G or multisets.



The monoid of zero-sum sequences, aka the block
monoid, B(G0)

Let (G,+,0) be a (finite) abelian group. Let G0 ⊂ G. A
sequence S over G0 is an element of F(G0) the free abelian
monoid with basis G0.
Thus a sequences is a (formal, commutative) product

S =
l∏

i=1

gi =
∏

g∈G0

gvg(S).

The sequence S is called a zero-sum sequence if its sum

σ(S) =
l∑

i=1

gi =
∑

g∈G0

vg(S)g ∈ G

equals 0.
The monoid of zero-sum sequences over G0 is defined as

B(G0) = {S ∈ F(G0) : σ(S) = 0}.



Study the arithmetic: sets of lengths

A monoid H (commutative, cancellative), for example the
multiplicative monoid of a domain, is called atomic if each
non-zero element a is the product (of finitely many) irreducible
elements.
If

a = a1 . . . an

with irreducible ai , then n is called a length of a.

L(a) = {n : n is a length }.
For a invertible set L(a) = {0}.
The system of sets of lengths is

L(H) = {L(a) : a ∈ H}.
In general, sets of lengths can be infinite. Yet often they are
finite. The property is called BF (bounded factorization). We
only discuss BF.
If all sets of lengths are singletons, the structure is called
half-factorial (Zaks, 1976).



Applications of monoids of zero-sum sequences

Various monoids and domains of interest admit a
transfer-homorphism to monoids of zero-sum sequences (or
other auxiliary monoids).
Let H and B be monoids. A monoid homomorphism Θ : H → B
is called a transfer homorphism when it has the following two
properties:
T1 B = Θ(H)B× and Θ−1(B×) = H×.
T2 If u ∈ H and b, c ∈ B with Θ(u) = bc, then there exist

v ,w ∈ H such that u = vw , Θ(v) ' b and Θ(w) ' c.
They preserve sets of lengths.



Sets of lengths via block monoids

For a Krull monoid H sets of lengths just depend on the class
group C(H) = G and the set G0 of classes containing primes
(the distribution of prime v -ideals).
More precisely, there exists a monoid epimorphism (the block
homomorphism)

β : H → B(G0)

such that
LH(a) = LB(G0)(β(a))

for each a ∈ H.
More specifically, β(a) = [p1] . . . [pk ] where φ(a) = p1 . . . pk
(essentially unique!).



A classical special case from number theory

Let K be a number field with class group G. There is a transfer
homomorphism β from O∗K to B(G), the monoid of zero-sum
sequences over the class group of K .
More specifically, β(a) = [p1] . . . [pk ] where (a) = p1 . . . pk is the
factorization into prime ideals (essentially unique!).



Weighted zero-sum sequences

Let (G,+,0) be a (finite) abelian group. Let G0 ⊂ G. Let Ω be
“a set of weights.” Let S =

∏l
i=1 gi be a sequence.

Then any elements of the form

l∑
i=1

ωigi

with ωi ∈ Ω is called an Ω-weighted sum of S.
What do we take as set of weights?

1. Subset of the integers, or of {0,1, . . . , exp(G)− 1}.
2. Subset of the endomorhisms of End(G) (more general).
3. One can also generalize further for example subset of

hom(G,G′) for some other groups G′.
Let σΩ(S) denote the set of all elements that are an Ω-weighted
sum of S.
We say that S is a Ω-weighted zero-sum sequence.
Note: The sequences is not ‘weighted’, the sum is.



Weighted zero-sum sequences, II

There are plenty of papers on weighted zero-sum constants
(Adhikari and many others).
Davenport constant with weights: What is the smallest integer l
such that each sequence S over G of lenght l has a
subsequence that is an Ω-weighted zero-sum sequence.
Erdős–Ginzburg–Ziv constant with weights: What is the
smallest integer l such that each sequence S over G of lenght l
has a subsequence of length exp(G) that is an Ω-weighted
zero-sum sequence.
Etc.
The purpose of this talk is to talk about something else though
namely the monoid of Ω-weighted zero-sum sequences over
G0, which is defined as

BΩ(G0) = {S ∈ F(G0) : σΩ(S) 3 0}.



Recap: the monoid of Ω-weighted zero-sum
sequences

BΩ(G) = {S ∈ F(G) : 0 ∈ σΩ(S)} ⊂ F(G)

be the set of all sequences that have zero as a Ω-weighted
sum.
BΩ(G) is a submonoid of F(G).
Moreover B(G) ⊂ BΩ(G).



Factorizations in monoids of norms

Let K denote a Galois number field. Let OK denote its ring of
algebraic integers.
Let N : O∗K → N denote the absolute norm.
Then N(O∗K ) is a submonoid of (N∗, ·). We want to study the
arithmetic of that monoid.
Again, one wants to use uniqueness of factorization into prime
ideals. A complication is that different prime ideals can have
the same norm. To treat this problem one needs ‘weighted’
zero-sum sequences (initially noted by Halter-Koch).



Factorizations in monoids of norms, II

Theorem (Boukheche, Merito, Ordaz, S.)

Let K be a Galois number field with Galois group Γ and class
group G. There is a transfer homomorphism from N(O∗K ), the
monoid of absolute norms of non-zero algebraic integers of K ,
to BΓ(G), the monoid of Γ-weighted zero-sum sequences over
the class group of K .

Recall that the Galois group acts on the class group; thus it
makes sense to talk about Γ-weighted zero-sum sequences
over the class group of K .
Further developed by Geroldinger, Halter-Koch, Zhong.



Length of a sequence

For a sequences S of elements g1 . . . gk from G one says that
the length of S is k , denoted |S|.
It is a monoid homorphism from F(G) to N0.
This is a simple but useful invariant of the sequence.
I For example if S ∈ B(G) then obviously max L(S) ≤ |S|.
I If S does not contain 0, then even max L(S) ≤ |S|/2.



The cross number of a sequence

For a sequences S of elements g1 . . . gk from G one says that
the cross number of S is

k∑
i=1

1
ord gi

denoted k(S).
It is a monoid homorphism from F(G) to Q≥0.
Introduced by Skula, Słiwa, Zaks independently (1976).

Theorem
For a subset G0 ⊂ G one has that B(G0) is half-factorial if and
only if k(A) = 1 for each A ∈ A(B(G0)).

Early contribution by Krause (who introduced the name cross
number).



Proof

Suppose all atoms have cross number 1.
If S = A1 . . .Ak = U1 . . .Ul with atoms Ai ,Uj , then k(S) = k and
k(S) = l , so k = l .
Conversely assume there is some A = g1 . . . gr with k(A) 6= 1.
We have

Aexp(G) =
r∏

i=1

(gord gi
i )exp(G)/ ord gi

On the right this is a factorization of length
exp(G)k(A) 6= exp(G).
Observation: For an atom A one has
{exp(G), exp(G)k(A)} ⊂ L(Aexp(G)).



Sets of lengths

Recall: sets of lengths
If

a = a1 . . . an

with irreducible ai , then n is called a length of a.

L(a) = {n : n is a length }.

For a invertible set L(a) = {0}.
The system of sets of lengths is

L(H) = {L(a) : a ∈ H}.

If each set is a singleton we say the monoid is half-factorial.
Otherwise L(H) contains arbitrarily large sets.



Sets of lengths, II

For A ⊆ Z, we denote by ∆(A) the set of (successive) distances
of A, that is the set of all d ∈ N for which there exists ` ∈ A such
that A ∩ [`, `+ d ] = {`, `+ d}. Clearly, ∆(A) ⊆ {d} if and only if
A is an arithmetical progression with difference d .
For a monoid H we set ∆(H) =

⋃
a∈H ∆(L(a)) the set of

distances,
and ∆∗(H) = {min ∆(H ′) : H ′ ⊂ H divisor-closed, and not HF}
the set of minmal distances.
Introduced by Gao and Geroldinger (2000).



A fundamental lemma

It is known that min ∆(H) = gcd ∆(H). (Geroldinger)

Lemma
Let G0 be a subset of a finite abelian group.

min ∆(B(G0)) | gcd{exp(G)(k(A)− 1) : A ∈ A(B(G0))}

Also true for non abelian groups (Geroldinger, Grynkiewicz, Oh,
Zhong, 2022)



A few arithmetic results for weighted zero-sum
sequences

We present some similar results with weights.



The (ir-)reducible elements of BΩ(G)

A non-empty/non-invertible S ∈ BΩ(G) is reducible if there are
two non-empty elements S1,S2 ∈ BΩ(G) such that S = S1S2.
That is, S can be decomposed into two non-empty Ω-weighted
zero-sum sequences S1 and S2.
That is, S = S1S2 with 0 ∈ σΩ(S1) and 0 ∈ σΩ(S2).
Note: Contrary to the case without weights, it does not suffice
that there exist some proper divisor S1 of S with 0 ∈ σΩ(S1),
because 0 + a = 0 implies a = 0, but 0 ∈ A1 and 0 ∈ A1 + A2
does not imply 0 ∈ A2.
We denote by A(BΩ(G)) the set of irreducible Ω-weighted
zero-sum sequences.
These monoids are usually not Krull, but are C-monoids (see
later).



A direct consequence of the previous considerations

It is not hard to see that minimal weighted zero-sum sequencs
cannot get arbitrarily long. Thus the monoid is finitely
generated. As BΩ(G) is finitely generated, various arithmetical
finiteness results hold.



A few conequencs of finitely generated

Let G be a finite abelian group and let G0 ⊆ G. Let Ω ⊆ End(G)
be a set of weights. Let H = BΩ(G0).

1. We have that ∆(H) is finite.
2. There is some M ∈ N0 such that each set of lengths L of H

with |L| ≥ 2 is an almost arithmetical multiprogression with
bound M and difference d ∈ ∆∗(H), that is,
L = y + (L1 ∪ L∗ ∪ L2) ⊂ y +D + dZ with y ∈ N0,
{0,d} ⊂ D ⊂ [0,d ], L1,−L2 ⊂ [1,M], min L∗ = 0 and
L∗ = [0,max L∗] ∩ D + dZ.



Minimal distances for B±(G)

We saw that sets of lengths are AAMPs. We might want to
undertand their differences. To this end one needs to study
minimal distances ∆∗.
What are the divisor-closed submonoids?
These are, as without weights, B±(G0) for G0 ⊂ G.
(Geroldinger, Halter-Koch, Zhong)



A result for groups of odd order

Theorem (Merito, Ordaz, S.)

If |G| odd then max ∆∗(B±(G)) = exp(G)− 2.

For comparison max ∆∗(B(G)) = max{exp(G)− 2, r(G)− 1}
(Geroldinger, Zhong), but that’s much harder to prove.
In the case of groups of even order max ∆∗(B±(G)) can exceed
max ∆∗(B(G)), and can be as large as (the conjectured)
max ∆(B(G))).



A simple lemma

Lemma
Let A ∈ A(B±(G)) and A 6= 0. Then {2, |A|} ⊂ L(A2).

Proof: Let A = g1 . . . gk . Then

A2 = g2
1 · g2

2 . . . g
2
k

is a factorization as 0 = (+1)gi + (−1)gi .



Another simple lemma

Lemma
Assume that the order of g is odd, then gord(g) ∈ A(B±(G)).

Proof: While g2 is an atom we cannot factor gord(g) into copies
of g2,
since ord(g) is odd.
Basicailly the same situation as for the (numerical) semigroup
〈2, ord(g)〉.



Somewhat stronger version of the result

Theorem
Let G be a finite abelian group exponent n and let H = B±(G).
Assume that n ≥ 3 is odd. Let D1 = {d − 2 : d | n ,d ≥ 3} and
let D2 = {d ′ | d : d ∈ D1}. Then D1 ⊆ ∆∗(H) ⊆ D2. In
particular, max ∆∗(H) = n − 2.



A consequence

Corollary

Let p be a prime such that p − 2 is prime. Then for G = Cr
p one

has ∆∗(B±(G)) = {1,p − 2}. In particular, for p = 3 one has
∆∗(B±(G)) = {1}.

Note that these results allow quite directly to characterize some
(most) of those groups via sets of lengths.
Note for p = 2 one has ∆∗(B±(G)) = {1,2, . . . , r − 1}.



What about the case of even exponent?

Basic construction

Lemma
Let G be a finite abelian group and let e1, . . . ,er be
independent elements of even order, say ord(ei) = 2mi .
Assume that m1 + · · ·+ mr ≥ 2. Let e0 = m1e1 + · · ·+ mr er ,
G0 = {e0,e1, . . . ,er} and H = B±(G0). Then
∆(H) = {m1 + · · ·+ mr − 1} and c(H) = m1 + · · ·+ mr + 1.

Proof: A = e0em1
1 . . . emr

r is an atom. The only other atoms are
e2

i . So L(A2) = {2, |A|}.



What about the case of even exponent? II

Note that m1 + · · ·+ mr − 1 can significantly exceed exp(G)− 2
and r(G).
Various results can be obtained but they are not really ready,
and I did not yet talk about a generalized cross number at all!



A notion of cross number for certain C-monoids

Let H be a finitely generated and reduced submonoid of a free
monoid F(P) such that for every p ∈ P there is an a ∈ H such
that vp(a) > 0 and such that for every a ∈ F(P) there is an
na ∈ N such that ana ∈ H. By a result of Cziszter, Domokos and
Geroldinger this means that H is a C-monoid.
Since P is finite there is an e such that pe in H for each p ∈ P,
for example we can take the least common multiples of the np
as defined above.
For p ∈ P let me,p ∈ LH(pe) and let me = (me,p)p∈P .
Let kme : F(P)→ (Q,+) be the monoid homomorphism
obtained by extension of kme (p) = me,p/e for each p ∈ P.



The basic use-case

Lemma
Let H be a monoid as specified above, then with the notations
introduced above the following holds. For each a ∈ A(H) we
have {e,ekme (a)} ⊂ LH(ae); moreover, we have

min ∆(H) | gcd{e(kme (a)− 1) : a ∈ A(H)}.



What does this mean for B±(G)?

For B±(G) we can take e = 2. Then me,g = 1 for g 6= 0 and
me,0 = 2.
Thus the cross number of a sequences S not containing 0 is
just |S|/2, and

|A| − 2 = e(k(A)− 1)
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