A generalized notion of cross number and applications to monoids of weighted zero-sum sequences

Wolfgang Schmid, joint with Kamil Merito and Oscar Ordaz

LAGA, Université Paris 8

July 12th, 2023
Rings and Factorizations 2023, Graz

Outline

Zero-sum sequences

Weighted zero-sum sequences

Cross number of a sequence

Arithmetic results for (plus-minus) weighted zero-sum sequences

A notion of cross number for certain C-monoids

Zero-sum sequences

For a (finite) abelian group ($G,+, 0$) and a sequences S of elements $g_{1} \ldots g_{k}$ from G one says that S is a zero-sum sequence if

$$
g_{1}+\cdots+g_{k}=0 \in G
$$

Given two zero-sum sequences S and T their concatenation is again a zero-sum sequences. Thus zero-sum sequences form a monoid. One can study the arithemtic of these monoids (Baginski, Chapman, Gao, Geroldinger, Grynkiewicz, Halter-Koch, Zhong, etc).
Usually one identifies sequences that differ only in the ordering of the terms. I.e., sequences are in fact elements of the free commutative monoid over G or multisets.

The monoid of zero-sum sequences, aka the block monoid, $\mathcal{B}\left(G_{0}\right)$

Let $(G,+, 0)$ be a (finite) abelian group. Let $G_{0} \subset G$. A sequence S over G_{0} is an element of $\mathcal{F}\left(G_{0}\right)$ the free abelian monoid with basis G_{0}.
Thus a sequences is a (formal, commutative) product

$$
S=\prod_{i=1}^{l} g_{i}=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)}
$$

The sequence S is called a zero-sum sequence if its sum

$$
\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G_{0}} \mathrm{v}_{g}(S) g \in G
$$

equals 0 .
The monoid of zero-sum sequences over G_{0} is defined as

$$
\mathcal{B}\left(G_{0}\right)=\left\{S \in \mathcal{F}\left(G_{0}\right): \sigma(S)=0\right\}
$$

Study the arithmetic: sets of lengths

A monoid H (commutative, cancellative), for example the multiplicative monoid of a domain, is called atomic if each non-zero element a is the product (of finitely many) irreducible elements.
If

$$
a=a_{1} \ldots a_{n}
$$

with irreducible a_{i}, then n is called a length of a.

$$
\mathrm{L}(a)=\{n: n \text { is a length }\} .
$$

For a invertible set $L(a)=\{0\}$.
The system of sets of lengths is

$$
\mathcal{L}(H)=\{L(a): a \in H\} .
$$

In general, sets of lengths can be infinite. Yet often they are finite. The property is called BF (bounded factorization). We only discuss BF.
If all sets of lengths are singletons, the structure is called half-factorial (Zaks, 1976).

Applications of monoids of zero-sum sequences

Various monoids and domains of interest admit a transfer-homorphism to monoids of zero-sum sequences (or other auxiliary monoids).
Let H and \mathcal{B} be monoids. A monoid homomorphism $\Theta: H \rightarrow \mathcal{B}$ is called a transfer homorphism when it has the following two properties:

$$
\begin{aligned}
& \text { T1 } \mathcal{B}=\Theta(H) \mathcal{B}^{\times} \text {and } \Theta^{-1}\left(\mathcal{B}^{\times}\right)=H^{\times} . \\
& \text {T2 If } u \in H \text { and } b, c \in \mathcal{B} \text { with } \Theta(u)=b c \text {, then there exist } \\
& \quad v, w \in H \text { such that } u=v w, \Theta(v) \simeq b \text { and } \Theta(w) \simeq c \text {. }
\end{aligned}
$$

They preserve sets of lengths.

Sets of lengths via block monoids

For a Krull monoid H sets of lengths just depend on the class group $\mathcal{C}(H)=G$ and the set G_{0} of classes containing primes (the distribution of prime v-ideals).
More precisely, there exists a monoid epimorphism (the block homomorphism)

$$
\beta: H \rightarrow \mathcal{B}\left(G_{0}\right)
$$

such that

$$
\mathrm{L}_{H}(a)=\mathrm{L}_{\mathcal{B}\left(G_{0}\right)}(\beta(a))
$$

for each $a \in H$.
More specifically, $\beta(a)=\left[p_{1}\right] \ldots\left[p_{k}\right]$ where $\phi(a)=p_{1} \ldots p_{k}$ (essentially unique!).

A classical special case from number theory

Let K be a number field with class group G. There is a transfer homomorphism β from \mathcal{O}_{K}^{*} to $\mathcal{B}(G)$, the monoid of zero-sum sequences over the class group of K. More specifically, $\beta(a)=\left[p_{1}\right] \ldots\left[p_{k}\right]$ where $(a)=p_{1} \ldots p_{k}$ is the factorization into prime ideals (essentially unique!).

Weighted zero-sum sequences

Let $(G,+, 0)$ be a (finite) abelian group. Let $G_{0} \subset G$. Let Ω be "a set of weights." Let $S=\prod_{i=1}^{l} g_{i}$ be a sequence.
Then any elements of the form

$$
\sum_{i=1}^{\prime} \omega_{i} g_{i}
$$

with $\omega_{i} \in \Omega$ is called an Ω-weighted sum of S.
What do we take as set of weights?

1. Subset of the integers, or of $\{0,1, \ldots, \exp (G)-1\}$.
2. Subset of the endomorhisms of $\operatorname{End}(G)$ (more general).
3. One can also generalize further for example subset of hom $\left(G, G^{\prime}\right)$ for some other groups G^{\prime}.
Let $\sigma_{\Omega}(S)$ denote the set of all elements that are an Ω-weighted sum of S.
We say that S is a Ω-weighted zero-sum sequence.
Note: The sequences is not 'weighted', the sum is.

Weighted zero-sum sequences, II

There are plenty of papers on weighted zero-sum constants (Adhikari and many others).
Davenport constant with weights: What is the smallest integer / such that each sequence S over G of lenght / has a subsequence that is an Ω-weighted zero-sum sequence. Erdős-Ginzburg-Ziv constant with weights: What is the smallest integer / such that each sequence S over G of lenght / has a subsequence of length $\exp (G)$ that is an Ω-weighted zero-sum sequence.
Etc.
The purpose of this talk is to talk about something else though namely the monoid of Ω-weighted zero-sum sequences over G_{0}, which is defined as

$$
\mathcal{B}_{\Omega}\left(G_{0}\right)=\left\{S \in \mathcal{F}\left(G_{0}\right): \sigma_{\Omega}(S) \ni 0\right\} .
$$

Recap: the monoid of Ω-weighted zero-sum

sequences

$$
\mathcal{B}_{\Omega}(G)=\left\{S \in \mathcal{F}(G): 0 \in \sigma_{\Omega}(S)\right\} \subset \mathcal{F}(G)
$$

be the set of all sequences that have zero as a Ω-weighted sum.
$\mathcal{B}_{\Omega}(G)$ is a submonoid of $\mathcal{F}(G)$.
Moreover $\mathcal{B}(G) \subset \mathcal{B}_{\Omega}(G)$.

Factorizations in monoids of norms

Let K denote a Galois number field. Let \mathcal{O}_{K} denote its ring of algebraic integers.
Let $\mathrm{N}: \mathcal{O}_{K}^{*} \rightarrow \mathbb{N}$ denote the absolute norm.
Then $\mathrm{N}\left(\mathcal{O}_{K}^{*}\right)$ is a submonoid of $\left(\mathbb{N}^{*}, \cdot\right)$. We want to study the arithmetic of that monoid.
Again, one wants to use uniqueness of factorization into prime ideals. A complication is that different prime ideals can have the same norm. To treat this problem one needs 'weighted' zero-sum sequences (initially noted by Halter-Koch).

Factorizations in monoids of norms, II

Theorem (Boukheche, Merito, Ordaz, S.)

Let K be a Galois number field with Galois group Γ and class group G. There is a transfer homomorphism from $\mathrm{N}\left(\mathcal{O}_{K}^{*}\right)$, the monoid of absolute norms of non-zero algebraic integers of K, to $\mathcal{B}_{\Gamma}(G)$, the monoid of Γ-weighted zero-sum sequences over the class group of K.

Recall that the Galois group acts on the class group; thus it makes sense to talk about Γ-weighted zero-sum sequences over the class group of K.
Further developed by Geroldinger, Halter-Koch, Zhong.

Length of a sequence

For a sequences S of elements $g_{1} \ldots g_{k}$ from G one says that the length of S is k, denoted $|S|$.
It is a monoid homorphism from $\mathcal{F}(G)$ to \mathbb{N}_{0}.
This is a simple but useful invariant of the sequence.

- For example if $S \in \mathcal{B}(G)$ then obviously $\max \mathrm{L}(S) \leq|S|$.
- If S does not contain 0 , then even $\max \mathrm{L}(S) \leq|S| / 2$.

The cross number of a sequence

For a sequences S of elements $g_{1} \ldots g_{k}$ from G one says that the cross number of S is

$$
\sum_{i=1}^{k} \frac{1}{\operatorname{ord} g_{i}}
$$

denoted $\mathrm{k}(S)$.
It is a monoid homorphism from $\mathcal{F}(G)$ to $\mathbb{Q} \geq 0$. Introduced by Skula, Stiwa, Zaks independently (1976).

Theorem

For a subset $G_{0} \subset G$ one has that $\mathcal{B}\left(G_{0}\right)$ is half-factorial if and only if $\mathrm{k}(A)=1$ for each $A \in \mathcal{A}\left(\mathcal{B}\left(G_{0}\right)\right)$.

Early contribution by Krause (who introduced the name cross number).

Proof

Suppose all atoms have cross number 1.
If $S=A_{1} \ldots A_{k}=U_{1} \ldots U_{l}$ with atoms A_{i}, U_{j}, then $\mathrm{k}(S)=k$ and $\mathrm{k}(S)=l$, so $k=l$.
Conversely assume there is some $A=g_{1} \ldots g_{r}$ with $\mathrm{k}(A) \neq 1$. We have

$$
A^{\exp (G)}=\prod_{i=1}^{r}\left(g_{i}^{\operatorname{ord} g_{i}}\right)^{\exp (G) / \operatorname{ord} g_{i}}
$$

On the right this is a factorization of length $\exp (G) \mathrm{k}(A) \neq \exp (G)$.
Observation: For an atom A one has $\{\exp (G), \exp (G) k(A)\} \subset L\left(A^{\exp (G)}\right)$.

Sets of lengths

Recall: sets of lengths
If

$$
a=a_{1} \ldots a_{n}
$$

with irreducible a_{i}, then n is called a length of a.

$$
\mathrm{L}(a)=\{n: n \text { is a length }\} .
$$

For a invertible set $L(a)=\{0\}$.
The system of sets of lengths is

$$
\mathcal{L}(H)=\{\mathrm{L}(a): a \in H\} .
$$

If each set is a singleton we say the monoid is half-factorial. Otherwise $\mathcal{L}(H)$ contains arbitrarily large sets.

Sets of lengths, II

For $A \subseteq \mathbb{Z}$, we denote by $\Delta(A)$ the set of (successive) distances of A, that is the set of all $d \in \mathbb{N}$ for which there exists $\ell \in A$ such that $A \cap[\ell, \ell+d]=\{\ell, \ell+d\}$. Clearly, $\Delta(A) \subseteq\{d\}$ if and only if A is an arithmetical progression with difference d.
For a monoid H we set $\Delta(H)=\bigcup_{a \in H} \Delta(L(a))$ the set of distances,
and $\Delta^{*}(H)=\left\{\min \Delta\left(H^{\prime}\right): H^{\prime} \subset H\right.$ divisor-closed, and not HF $\}$ the set of minmal distances. Introduced by Gao and Geroldinger (2000).

A fundamental lemma

It is known that $\min \Delta(H)=\operatorname{gcd} \Delta(H)$. (Geroldinger)

Lemma

Let G_{0} be a subset of a finite abelian group.

$$
\min \Delta\left(\mathcal{B}\left(G_{0}\right)\right) \mid \operatorname{gcd}\left\{\exp (G)(\mathrm{k}(A)-1): A \in \mathcal{A}\left(\mathcal{B}\left(G_{0}\right)\right)\right\}
$$

Also true for non abelian groups (Geroldinger, Grynkiewicz, Oh, Zhong, 2022)

A few arithmetic results for weighted zero-sum sequences

We present some similar results with weights.

The (ir-)reducible elements of $\mathcal{B}_{\Omega}(G)$

A non-empty/non-invertible $S \in \mathcal{B}_{\Omega}(G)$ is reducible if there are two non-empty elements $S_{1}, S_{2} \in \mathcal{B}_{\Omega}(G)$ such that $S=S_{1} S_{2}$. That is, S can be decomposed into two non-empty Ω-weighted zero-sum sequences S_{1} and S_{2}. That is, $S=S_{1} S_{2}$ with $0 \in \sigma_{\Omega}\left(S_{1}\right)$ and $0 \in \sigma_{\Omega}\left(S_{2}\right)$.
Note: Contrary to the case without weights, it does not suffice that there exist some proper divisor S_{1} of S with $0 \in \sigma_{\Omega}\left(S_{1}\right)$, because $0+a=0$ implies $a=0$, but $0 \in A_{1}$ and $0 \in A_{1}+A_{2}$ does not imply $0 \in A_{2}$.
We denote by $\mathcal{A}\left(\mathcal{B}_{\Omega}(G)\right)$ the set of irreducible Ω-weighted zero-sum sequences.
These monoids are usually not Krull, but are C-monoids (see later).

A direct consequence of the previous considerations

It is not hard to see that minimal weighted zero-sum sequencs cannot get arbitrarily long. Thus the monoid is finitely generated. As $\mathcal{B}_{\Omega}(G)$ is finitely generated, various arithmetical finiteness results hold.

A few conequencs of finitely generated

Let G be a finite abelian group and let $G_{0} \subseteq G$. Let $\Omega \subseteq \operatorname{End}(G)$ be a set of weights. Let $H=\mathcal{B}_{\Omega}\left(G_{0}\right)$.

1. We have that $\Delta(H)$ is finite.
2. There is some $M \in \mathbb{N}_{0}$ such that each set of lengths L of H with $|L| \geq 2$ is an almost arithmetical multiprogression with bound M and difference $d \in \Delta^{*}(H)$, that is, $L=y+\left(L_{1} \cup L^{*} \cup L_{2}\right) \subset y+\mathcal{D}+d \mathbb{Z}$ with $y \in \mathbb{N}_{\varkappa}$, $\{0, d\} \subset \mathcal{D} \subset[0, d], L_{1},-L_{2} \subset[1, M], \min L^{*}=0$ and $L^{*}=\left[0, \max L^{*}\right] \cap \mathcal{D}+d \mathbb{Z}$.

Minimal distances for $\mathcal{B}_{ \pm}(G)$

We saw that sets of lengths are AAMPs. We might want to undertand their differences. To this end one needs to study minimal distances Δ^{*}.
What are the divisor-closed submonoids?
These are, as without weights, $\mathcal{B}_{ \pm}\left(G_{0}\right)$ for $G_{0} \subset G$.
(Geroldinger, Halter-Koch, Zhong)

A result for groups of odd order

Theorem (Merito, Ordaz, S.)

If $|G|$ odd then $\max \Delta^{*}\left(\mathcal{B}_{ \pm}(G)\right)=\exp (G)-2$.
For comparison $\max \Delta^{*}(\mathcal{B}(G))=\max \{\exp (G)-2, r(G)-1\}$ (Geroldinger, Zhong), but that's much harder to prove. In the case of groups of even order $\max \Delta^{*}\left(\mathcal{B}_{ \pm}(G)\right)$ can exceed $\max \Delta^{*}(\mathcal{B}(G))$, and can be as large as (the conjectured) $\max \Delta(\mathcal{B}(G)))$.

A simple lemma

Lemma

Let $A \in \mathcal{A}\left(\mathcal{B}_{ \pm}(G)\right)$ and $A \neq 0$. Then $\{2,|A|\} \subset L\left(A^{2}\right)$.
Proof: Let $A=g_{1} \ldots g_{k}$. Then

$$
A^{2}=g_{1}^{2} \cdot g_{2}^{2} \ldots g_{K}^{2}
$$

is a factorization as $0=(+1) g_{i}+(-1) g_{i}$.

Another simple lemma

Lemma

Assume that the order of g is odd, then $g^{\operatorname{ord}(g)} \in \mathcal{A}\left(\mathcal{B}_{ \pm}(G)\right)$.
Proof: While g^{2} is an atom we cannot factor $g^{\text {ord }(g)}$ into copies of g^{2},
since $\operatorname{ord}(g)$ is odd.
Basicailly the same situation as for the (numerical) semigroup $\langle 2, \operatorname{ord}(g)\rangle$.

Somewhat stronger version of the result

Theorem

Let G be a finite abelian group exponent n and let $H=\mathcal{B}_{ \pm}(G)$. Assume that $n \geq 3$ is odd. Let $D_{1}=\{d-2: d \mid n, d \geq 3\}$ and let $D_{2}=\left\{d^{\prime} \mid d: d \in D_{1}\right\}$. Then $D_{1} \subseteq \Delta^{*}(H) \subseteq D_{2}$. In particular, $\max \Delta^{*}(H)=n-2$.

A consequence

Corollary

Let p be a prime such that $p-2$ is prime. Then for $G=C_{p}^{r}$ one has $\Delta^{*}\left(\mathcal{B}_{ \pm}(G)\right)=\{1, p-2\}$. In particular, for $p=3$ one has $\Delta^{*}\left(\mathcal{B}_{ \pm}(G)\right)=\{1\}$.

Note that these results allow quite directly to characterize some (most) of those groups via sets of lengths.
Note for $p=2$ one has $\Delta^{*}\left(\mathcal{B}_{ \pm}(G)\right)=\{1,2, \ldots, r-1\}$.

What about the case of even exponent?

Basic construction

Lemma

Let G be a finite abelian group and let e_{1}, \ldots, e_{r} be independent elements of even order, say ord $\left(e_{i}\right)=2 m_{i}$. Assume that $m_{1}+\cdots+m_{r} \geq 2$. Let $e_{0}=m_{1} e_{1}+\cdots+m_{r} e_{r}$, $G_{0}=\left\{e_{0}, e_{1}, \ldots, e_{r}\right\}$ and $H=\mathcal{B}_{ \pm}\left(G_{0}\right)$. Then $\Delta(H)=\left\{m_{1}+\cdots+m_{r}-1\right\}$ and $c(H)=m_{1}+\cdots+m_{r}+1$.

Proof: $A=e_{0} e_{1}^{m_{1}} \ldots e_{r}^{m_{r}}$ is an atom. The only other atoms are e_{i}^{2}. So $L\left(A^{2}\right)=\{2,|A|\}$.

What about the case of even exponent? II

Note that $m_{1}+\cdots+m_{r}-1$ can significantly $\operatorname{exceed} \exp (G)-2$ and $r(G)$.
Various results can be obtained but they are not really ready, and I did not yet talk about a generalized cross number at all!

A notion of cross number for certain C-monoids

Let H be a finitely generated and reduced submonoid of a free monoid $\mathcal{F}(P)$ such that for every $p \in P$ there is an $a \in H$ such that $v_{p}(a)>0$ and such that for every $a \in \mathcal{F}(P)$ there is an $n_{a} \in \mathbb{N}$ such that $a^{n_{a}} \in H$. By a result of Cziszter, Domokos and Geroldinger this means that H is a C -monoid. Since P is finite there is an e such that p^{e} in H for each $p \in P$, for example we can take the least common multiples of the n_{p} as defined above.
For $p \in P$ let $m_{e, p} \in \mathrm{~L}_{H}\left(p^{e}\right)$ and let $\bar{m}_{e}=\left(m_{e, p}\right)_{p \in P}$. Let $\mathrm{k}_{\bar{m}_{e}}: \mathcal{F}(P) \rightarrow(\mathbb{Q},+)$ be the monoid homomorphism obtained by extension of $\mathrm{k}_{\bar{m}_{e}}(p)=m_{e, p} / e$ for each $p \in P$.

The basic use-case

Lemma

Let H be a monoid as specified above, then with the notations introduced above the following holds. For each $a \in \mathcal{A}(H)$ we have $\left\{e, e \mathrm{k}_{\bar{m}_{e}}(a)\right\} \subset \mathrm{L}_{H}\left(a^{e}\right) ;$ moreover, we have

$$
\min \Delta(H) \mid \operatorname{gcd}\left\{e\left(\mathrm{k}_{\bar{m}_{e}}(a)-1\right): a \in \mathcal{A}(H)\right\} .
$$

What does this mean for $\mathcal{B}_{ \pm}(G)$?

For $\mathcal{B}_{ \pm}(G)$ we can take $e=2$. Then $m_{e, g}=1$ for $g \neq 0$ and $m_{e, 0}=2$.
Thus the cross number of a sequences S not containing 0 is just $|S| / 2$, and

$$
|A|-2=e(\mathrm{k}(A)-1)
$$

A generalized notion of cross number and applications to monoids of weighted zero-sum sequences

Wolfgang Schmid, joint with Kamil Merito and Oscar Ordaz

LAGA, Université Paris 8

July 12th, 2023
Rings and Factorizations 2023, Graz

