

On non-associative algebras generated by gyrogroups

Teerapong Suksumran

Department of Mathematics, Faculty of Science Chiang Mai University, Thailand

Conference on Rings and Factorizations 2023 University of Graz, Graz, Austria

July 10-14, 2023

Outline

Introduction

2 From groups to gyrogroups

A non-associative algebra generated by a gyrogroup

- Construction
- Properties

4 Acknowledgments

Concrete example of a gyrogroup: Möbius gyrogroup

Set $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$. Möbius addition [1], \oplus_M , is given by

$$a \oplus_M b = \frac{a+b}{1+\bar{a}b} \tag{1}$$

for all $a, b \in \mathbb{D}$.

- \oplus_M is a binary operation on \mathbb{D} .
- 0 is an identity of D.
- Given $a \in \mathbb{D}$, -a is an inverse of a.
- \oplus_M is non-associative and non-commutative.

T. Suksumran | CMU

^[1] A. Ungar, *The holomorphic automorphism group of the complex disk*, Aequationes Mathmematicae **47** (1994)

Concrete example of a gyrogroup: Möbius gyrogroup

• (\mathbb{D}, \oplus_M) satisfies a law similar to the associative law:

$$a \oplus_M (b \oplus_M c) = (a \oplus_M b) \oplus_M gyr[a, b]c$$

$$(a \oplus_M b) \oplus_M c = a \oplus_M (b \oplus_M gyr[b, a]c),$$

where gyr[a, b] is an automorphism of \mathbb{D} given by

$$gyr[a, b]z = \omega z, \quad z \in \mathbb{D},$$
(2)

and $\omega = \frac{1 + a\bar{b}}{1 + \bar{a}b}$ is a unit complex number for all $a, b \in \mathbb{D}$.

Gyrogroups: An axiom approach

Let *G* be a non-empty set with a binary operation \oplus . The pair (*G*, \oplus) is called a gyrogroup if the following conditions hold:

- $\exists e \in G \ \forall a \in G, a \oplus e = a = e \oplus a$
- 2 $\forall a \in G \exists b \in G, b \oplus a = e = a \oplus b$

(identity element) (inverse element)

- **③** $\forall a, b \in G \exists gyr[a, b], gyr[b, a] \in Aut(G, ⊕)$ such that
 - $a \oplus (b \oplus c) = (a \oplus b) \oplus gyr[a, b]c$
 - $(a \oplus b) \oplus c = a \oplus (b \oplus gyr[b, a]c)$

(left gyroassociative law) (right gyroassociative law)

- - $gyr[a \oplus b, b] = gyr[a, b]$
 - $gyr[a, b \oplus a] = gyr[a, b]$

(left loop property) (right loop property)

Groups and gyrogroups

Recall the gyroassociative law

 $a \oplus (b \oplus c) = (a \oplus b) \oplus gyr[a, b]c$ $(a \oplus b) \oplus c = a \oplus (b \oplus gyr[b, a]c)$

- Every group is a gyrogroup by defining gyr[*a*, *b*] to be the identity automorphism.
- Any gyrogroup with trivial gyroautomorphisms is a group.

Groups and gyrogroups

:

GROUP	GYROGROUP
group identity 1	gyrogroup identity e
inverse element a^{-1}	inverse element $\ominus a$
the associative law	the gyroassociative law
subgroup	subgyrogroup
normal subgroup	normal subgyrogroup
quotient group	quotient gyrogroup
group homomorphism	gyrogroup homomorphism
group isomorphism	gyrogroup isomorphism
abelian group	gyrocommutative gyrogroup

:

Construction of a gyrogroup algebra

Throughout the remaining of this talk, let $G = \{a_1, a_2, ..., a_n\}$ be a *finite* gyrogroup of order *n* with a_1 being the identity of *G*, and let \mathbb{F} be a field.

Define $\mathbb{F}[G]$ to be the set of all finite formal sums of elements of *G* with coefficients from \mathbb{F} , that is,

$$\mathbb{F}[G] = \left\{ \sum_{i=1}^{n} \lambda_i a_i \colon \lambda_i \in \mathbb{F}, i = 1, 2, \dots, n \right\}.$$
(3)

Construction of a gyrogroup algebra

Define the following operations on $\mathbb{F}[G]$:

$$\begin{pmatrix} \sum_{i=1}^{n} \alpha_{i} a_{i} \end{pmatrix} + \begin{pmatrix} \sum_{i=1}^{n} \beta_{i} a_{i} \end{pmatrix} = \sum_{i=1}^{n} (\alpha_{i} + \beta_{i}) a_{i}, \lambda \left(\sum_{i=1}^{n} \alpha_{i} a_{i} \right) = \sum_{i=1}^{n} (\lambda \alpha_{i}) a_{i}, \left(\sum_{i=1}^{n} \alpha_{i} a_{i} \right) \left(\sum_{i=1}^{n} \beta_{i} a_{i} \right) = \sum_{i=1}^{n} \left(\sum_{\substack{j,k \\ a_{j} \oplus a_{k} = a_{i}}} \alpha_{j} \beta_{k} \right) a_{i}.$$

$$(4)$$

Since the linear equations $x \oplus a = b$ and $a \oplus y = b$ in the variables x and y have unique solutions in G for all $a, b \in G$, specification of any two of a, b, cin the equation $a \oplus b = c$ uniquely determines the third. Hence, the index condition used in (4) makes sense.

Gyrogroup algebras

Theorem 1 (Gyrogroup algebras)

The set $\mathbb{F}[G]$, equipped with the operations defined by (4), is a unital non-associative algebra over \mathbb{F} . If *G* is a group, then $\mathbb{F}[G]$ becomes the usual group ring. If *G* is a gyrogroup with non-trivial gyroautomorphisms, then $\mathbb{F}[G]$ is not associative.

The algebra $\mathbb{F}[G]$ constructed above is called the *gyrogroup algebra* of *G* over \mathbb{F} .

Some properties of gyrogroup algebras

By convention the terms with zero coefficients of a formal sum in $\mathbb{F}[G]$ are omitted. We remark that the base field \mathbb{F} appears in $\mathbb{F}[G]$ under the identification

 $\lambda \leftrightarrow \lambda a_1$.

Furthermore, the original gyrogroup *G* appears in $\mathbb{F}[G]$ under the identification

 $a_i \leftrightarrow 1a_i$.

Theorem 2

Every finite gyrogroup can be embedded into a nonassociative algebra.

Some properties of gyrogroup algebras

Theorem 3

The gyrogroup *G* is a basis for $\mathbb{F}[G]$ as a vector space. In particular, the dimension of $\mathbb{F}[G]$ equals |G|.

Proof. Let
$$A = \sum_{i=1}^{n} \alpha_i a_i$$
.

Clearly, $A = \alpha_1(1a_1) + \alpha_2(1a_2) + \cdots + \alpha_n(1a_n)$. This proves that *G* spans $\mathbb{F}[G]$.

If $\beta_1(1a_1) + \beta_2(1a_2) + \dots + \beta_n(1a_n) = 0$, where $\beta_i \in \mathbb{F}$, then $\sum_{i=1}^n \beta_i a_i = 0$. By definition, $\beta_i = 0$ for all *i*. This proves that *G* is linearly independent.

Some properties of gyrogroup algebras

Theorem 4

The base field \mathbb{F} is contained in the center of $\mathbb{F}[G]$.

Proof. Let
$$\lambda \in \mathbb{F}$$
. For all $\sum_{i=1}^{n} \lambda_i a_i \in \mathbb{F}[G]$,
 $(\lambda a_1) \left(\sum_{i=1}^{n} \lambda_i a_i \right) = \sum_{i=1}^{n} (\lambda \lambda_i) (a_1 \oplus a_i)$
 $= \sum_{i=1}^{n} (\lambda \lambda_i) a_i$
 $= \sum_{i=1}^{n} (\lambda_i \lambda) (a_i \oplus a_1)$
 $= \left(\sum_{i=1}^{n} \lambda_i a_i \right) (\lambda a_1).$

Hence, λa_1 commutes with all the elements of $\mathbb{F}[G]$

T. Suksumran | CMU

Acknowledgments

The speaker was financially supported by the Fundamental Fund 2023 via Chiang Mai University.

We are grateful to

- the National Research Council of Thailand (NRCT)
- Chiang Mai University
- University of Graz

Thank you for your attention!