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Introduction

Concrete example of a gyrogroup: Möbius gyrogroup

Set D= {z ∈C : |z| < 1}. Möbius addition [1], ⊕M , is given by

a⊕M b = a+b

1+ āb
(1)

for all a,b ∈D.

⊕M is a binary operation on D.

0 is an identity of D.

Given a ∈D, −a is an inverse of a.

⊕M is non-associative and non-commutative.

[1] A. Ungar, The holomorphic automorphism group of the complex disk, Aequationes
Mathmematicae 47 (1994)
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Introduction

Concrete example of a gyrogroup: Möbius gyrogroup

(D,⊕M ) satisfies a law similar to the associative law:

a⊕M (b⊕M c) = (a⊕M b)⊕M gyr[a,b]c

(a⊕M b)⊕M c = a⊕M (b⊕M gyr[b,a]c),

where gyr[a,b] is an automorphism of D given by

gyr[a,b]z =ωz, z ∈D, (2)

and ω= 1+ab̄

1+ āb
is a unit complex number for all a,b ∈D.
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Introduction

Gyrogroups: An axiom approach

Let G be a non-empty set with a binary operation ⊕. The pair (G,⊕) is
called a gyrogroup if the following conditions hold:

1 ∃e ∈ G ∀a ∈ G, a⊕e = a = e⊕a (identity element)

2 ∀a ∈ G∃b ∈ G, b⊕a = e = a⊕b (inverse element)

3 ∀a,b ∈ G ∃gyr[a,b],gyr[b,a] ∈Aut (G,⊕) such that
Ï a⊕ (b⊕ c) = (a⊕b)⊕gyr[a,b]c (left gyroassociative law)
Ï (a⊕b)⊕ c = a⊕ (b⊕gyr[b,a]c) (right gyroassociative law)

4 ∀a,b ∈ G,
Ï gyr[a⊕b,b] = gyr[a,b] (left loop property)
Ï gyr[a,b⊕a] = gyr[a,b] (right loop property)
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From groups to gyrogroups

Groups and gyrogroups

Recall the gyroassociative law

a⊕ (b⊕ c) = (a⊕b)⊕gyr[a,b]c

(a⊕b)⊕ c = a⊕ (b⊕gyr[b,a]c)

Every group is a gyrogroup by defining gyr[a,b] to be the identity
automorphism.

Any gyrogroup with trivial gyroautomorphisms is a group.
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From groups to gyrogroups

Groups and gyrogroups

GROUP GYROGROUP
group identity 1 gyrogroup identity e
inverse element a−1 inverse element ⊖a
the associative law the gyroassociative law
subgroup subgyrogroup
normal subgroup normal subgyrogroup
quotient group quotient gyrogroup
group homomorphism gyrogroup homomorphism
group isomorphism gyrogroup isomorphism
abelian group gyrocommutative gyrogroup

...
...
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A non-associative algebra generated by a gyrogroup Construction

Construction of a gyrogroup algebra

Throughout the remaining of this talk, let G = {a1,a2, . . . ,an} be a finite
gyrogroup of order n with a1 being the identity of G, and let F be a field.

Define F[G] to be the set of all finite formal sums of elements of G with
coefficients from F, that is,

F[G] =
{

n∑
i=1

λiai : λi ∈ F, i = 1,2, . . . ,n

}
. (3)
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A non-associative algebra generated by a gyrogroup Construction

Construction of a gyrogroup algebra

Define the following operations on F[G]:(
n∑

i=1
αiai

)
+

(
n∑

i=1
βiai

)
=

n∑
i=1

(αi +βi)ai,

λ

(
n∑

i=1
αiai

)
=

n∑
i=1

(λαi)ai,(
n∑

i=1
αiai

)(
n∑

i=1
βiai

)
=

n∑
i=1

( ∑
j,k

aj ⊕ak =ai

αjβk

)
ai.

(4)

Since the linear equations x⊕a = b and a⊕y = b in the variables x and y
have unique solutions in G for all a,b ∈ G, specification of any two of a,b,c
in the equation a⊕b = c uniquely determines the third. Hence, the index
condition used in (4) makes sense.
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A non-associative algebra generated by a gyrogroup Construction

Gyrogroup algebras

Theorem 1 (Gyrogroup algebras)

The set F[G], equipped with the operations defined by (4), is a unital
non-associative algebra over F. If G is a group, then F[G] becomes the usual
group ring. If G is a gyrogroup with non-trivial gyroautomorphisms, then
F[G] is not associative.

The algebra F[G] constructed above is called the gyrogroup algebra of G
over F.
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A non-associative algebra generated by a gyrogroup Properties

Some properties of gyrogroup algebras

By convention the terms with zero coefficients of a formal sum in F[G] are
omitted. We remark that the base field F appears in F[G] under the
identification

λ↔λa1.

Furthermore, the original gyrogroup G appears in F[G] under the
identification

ai ↔ 1ai.

Theorem 2
Every finite gyrogroup can be embedded into a nonassociative algebra.

T. Suksumran | CMU On non-associative algebras generated by... CRF2023 | University of Graz 11 / 14



A non-associative algebra generated by a gyrogroup Properties

Some properties of gyrogroup algebras

Theorem 3
The gyrogroup G is a basis for F[G] as a vector space. In particular, the
dimension of F[G] equals |G|.

Proof. Let A =
n∑

i=1
αiai.

Clearly, A =α1(1a1)+α2(1a2)+·· ·+αn(1an). This proves that G spans
F[G].

If β1(1a1)+β2(1a2)+·· ·+βn(1an) = 0, where βi ∈ F, then
n∑

i=1
βiai = 0. By

definition, βi = 0 for all i. This proves that G is linearly independent.
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A non-associative algebra generated by a gyrogroup Properties

Some properties of gyrogroup algebras

Theorem 4
The base field F is contained in the center of F[G].

Proof. Let λ ∈ F. For all
n∑

i=1
λiai ∈ F[G],

(λa1)

(
n∑

i=1
λiai

)
=

n∑
i=1

(λλi)(a1 ⊕ai)

=
n∑

i=1
(λλi)ai

=
n∑

i=1
(λiλ)(ai ⊕a1)

=
(

n∑
i=1

λiai

)
(λa1).

Hence, λa1 commutes with all the elements of F[G] .
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