On Waring numbers of henselian rings Applications

Tomasz Kowalczyk
Based on joint work with Piotr Miska Jagiellonian University in Kraków

14th July 2023
Conference of rings and factorizations, Graz

Some definitions - recall

Some definitions - recall

Let R be a ring and $n \in \mathbb{N}_{+}$.

Some definitions - recall

Let R be a ring and $n \in \mathbb{N}_{+}$.
We define the n-length of $a \in R$:

$$
\ell_{n}(a)=\ell_{n, R}(a)=\inf \left\{g \in \mathbb{N}_{+}: a=\sum_{j=1}^{g} a_{j}^{n} \text { for some } a_{1}, \ldots, a_{g} \in R\right\}
$$

and the nth level of R as

$$
s_{n}(R):=\ell_{n}(-1)
$$

Some definitions - recall

Let R be a ring and $n \in \mathbb{N}_{+}$.
We define the n-length of $a \in R$:
$\ell_{n}(a)=\ell_{n, R}(a)=\inf \left\{g \in \mathbb{N}_{+}: a=\sum_{j=1}^{g} a_{j}^{n}\right.$ for some $\left.a_{1}, \ldots, a_{g} \in R\right\}$
and the nth level of R as

$$
s_{n}(R):=\ell_{n}(-1)
$$

We call R real if $s_{2}(R)=\infty$.

Some definitions - recall

Let R be a ring and $n \in \mathbb{N}_{+}$.
We define the n-length of $a \in R$:
$\ell_{n}(a)=\ell_{n, R}(a)=\inf \left\{g \in \mathbb{N}_{+}: a=\sum_{j=1}^{g} a_{j}^{n}\right.$ for some $\left.a_{1}, \ldots, a_{g} \in R\right\}$
and the nth level of R as

$$
s_{n}(R):=\ell_{n}(-1) .
$$

We call R real if $s_{2}(R)=\infty$.
By nth Waring number of R we mean

$$
w_{n}(R)=\sup \left\{\ell_{n}(a): a \in R, \ell_{n}(a)<\infty\right\} .
$$

Waring numbers of the rings of power series

Waring numbers of the rings of power series

Theorem

Let k be a field n, s be positive integers and m is the char (k)-free part of n.
a) We have

$$
s_{n}\left(k\left[\left[x_{1}, \ldots x_{s}\right]\right]\right)=s_{n}\left(k\left(\left(x_{1}, \ldots x_{s}\right)\right)\right)=s_{n}\left(k\left(\left(x_{1}\right)\right) \ldots\left(\left(x_{s}\right)\right)\right)=s_{m}(k)
$$

b) If $s_{n}(k)<\infty$, then

$$
\begin{align*}
& w_{n}\left(k\left[\left[x_{1}, \ldots, x_{s}\right]\right]\right)=\left\{\begin{array}{ll}
\max \left\{w_{m}(k), s_{m}(k)+1\right\} & \text { for } m>1 \\
1 & \text { for } m=1
\end{array},\right. \\
& w_{n}\left(k\left(\left(x_{1}, \ldots x_{s}\right)\right)\right)=w_{n}\left(k\left(\left(x_{1}\right)\right) \ldots\left(\left(x_{s}\right)\right)\right)=\left\{\begin{array}{ll}
s_{m}(k)+1 & \text { for } m>1 \\
1 & \text { for } m=1
\end{array},\right. \tag{1}\\
& w_{n}\left(k\left(\left(x_{1}\right)\right) \ldots\left(\left(x_{s}\right)\right)\left[\left[x_{s+1}\right]\right]\right)=\left\{\begin{array}{ll}
s_{m}(k)+1 & \text { for } m>1 \\
1 & \text { for } m=1
\end{array} .\right. \tag{2}
\end{align*}
$$

Waring numbers of the rings of power series

Theorem

Let k be a field such that $s_{n}(k)=\infty$. Then the following holds

$$
\begin{gathered}
w_{n}\left(k\left(\left(x_{1}\right)\right) \ldots\left(\left(x_{s-1}\right)\right)\left[\left[x_{s}\right]\right]\right)=w_{n}\left(k\left(\left(x_{1}\right)\right) \ldots\left(\left(x_{s}\right)\right)\right)=w_{n}(k), \\
w_{n}\left(k\left[\left[x_{1}, \ldots, x_{s}\right]\right]\right) \geq w_{n}\left(k\left(\left(x_{1}, \ldots, x_{s}\right)\right)\right) \geq w_{n}(k) .
\end{gathered}
$$

Waring numbers of coordinate rings

Waring numbers of coordinate rings

Let $V \subset k^{s}$ be an algebraic set.

Waring numbers of coordinate rings

Let $V \subset k^{s}$ be an algebraic set.
Let $I(V) \subset k\left[x_{1}, x_{2}, \ldots, x_{s}\right]$ be the ideal of polynomials vanishing on V.

Waring numbers of coordinate rings

Let $V \subset k^{s}$ be an algebraic set.
Let $I(V) \subset k\left[x_{1}, x_{2}, \ldots, x_{s}\right]$ be the ideal of polynomials vanishing on V.

$$
K[V]:=k\left[x_{1}, x_{2}, \ldots, x_{s}\right] / I(V)
$$

Waring numbers of coordinate rings

Let $V \subset k^{s}$ be an algebraic set.
Let $I(V) \subset k\left[x_{1}, x_{2}, \ldots, x_{s}\right]$ be the ideal of polynomials vanishing on V.

$$
K[V]:=k\left[x_{1}, x_{2}, \ldots, x_{s}\right] / I(V)
$$

We put $k(V)$ to be the field of fractions of $k[V]$, provided that V is an irreducible algebraic set.

Waring numbers of coordinate rings

Let $V \subset k^{s}$ be an algebraic set.
Let $I(V) \subset k\left[x_{1}, x_{2}, \ldots, x_{s}\right]$ be the ideal of polynomials vanishing on V.

$$
K[V]:=k\left[x_{1}, x_{2}, \ldots, x_{s}\right] / I(V)
$$

We put $k(V)$ to be the field of fractions of $k[V]$, provided that V is an irreducible algebraic set.
We say that the point $x \in V$ is a regular point, if the ring $k[V]_{\mathfrak{m}_{x}}$ is a regular local ring, where \mathfrak{m}_{x} is the maximal ideal of polynomial functions vanishing in x.

Waring numbers of coordinate rings

Theorem

Let V be an irreducible algebraic subset of k^{s}, different from the point, which admits a regular point.
a) If $s_{n}(k)<\infty$, then

$$
\begin{gathered}
w_{n}(k[V]) \geq \max \left\{w_{m}(k), s_{m}(k)+1\right\}, \\
w_{n}(k(V)) \geq s_{m}(k)+1
\end{gathered}
$$

where m is the char (k)-free part of n.
b) If $s_{n}(k)=\infty$, then

$$
w_{n}(k[V]) \geq w_{n}(k(V)) \geq w_{n}(k) .
$$

Waring numbers of coordinate rings

Theorem

Let V be an irreducible algebraic subset of k^{s}, different from the point, which admits a regular point.
a) If $s_{n}(k)<\infty$, then

$$
\begin{gathered}
w_{n}(k[V]) \geq \max \left\{w_{m}(k), s_{m}(k)+1\right\}, \\
w_{n}(k(V)) \geq s_{m}(k)+1,
\end{gathered}
$$

where m is the char (k)-free part of n.
b) If $s_{n}(k)=\infty$, then

$$
w_{n}(k[V]) \geq w_{n}(k(V)) \geq w_{n}(k) .
$$

Remark

If $\operatorname{dim} V \geq 3$, then $w_{2}(\mathbb{R}[V])=\infty$ (Choi, Dai, Lam, Reznick, 1982) meanwhile $w_{2}(\mathbb{R})=1$.

Waring numbers of coordinate rings

Corollary

Let V be an irreducible algebraic subset of k^{s}, different from the point, which admits a regular point. Assume that $\operatorname{char}(k) \neq 2$ and $s_{2}(k)<\infty$. Then $w_{2}(k[V])=w_{2}(k(V))=s_{2}(k)+1$.

Waring numbers of coordinate rings

Corollary

Let V be an irreducible algebraic subset of k^{s}, different from the point, which admits a regular point. Assume that $\operatorname{char}(k) \neq 2$ and $s_{2}(k)<\infty$. Then $w_{2}(k[V])=w_{2}(k(V))=s_{2}(k)+1$.

Proof.

Write

$$
a=\left(\frac{a+1}{2}\right)^{2}-\left(\frac{a-1}{2}\right)^{2}
$$

Sums of two n-th powers

Sums of two n-th powers

Corollary

Let R be a Henselian local ring with the total ring of fractions $Q(R) \neq R$ and a residue field k. Take an odd positive integer $n>1$. Assume that char $(k) \nmid n$ or R is rank-1 valuation ring with $\operatorname{char}(R) \nmid n$. Then, for every element $f \in Q(R)$ there exists a presentation

$$
f=f_{1}^{n}+f_{2}^{n}
$$

for some $f_{1}, f_{2} \in Q(R)$.

Waring numbers of rings and fields of p-adic numbers

Waring numbers of rings and fields of p-adic numbers

Theorem (recall)

Let R be a Henselian DVR with quotient field K and $n>1$ be an odd positive integer. Denote by m the char(K)-free part of n. Then

$$
w_{n}(K)= \begin{cases}1 & \text { if } m=1 \\ 2 & \text { if } m>1\end{cases}
$$

Waring numbers of rings and fields of p-adic numbers

Theorem (recall)

Let R be a Henselian DVR with quotient field K and $n>1$ be an odd positive integer. Denote by m the char(K)-free part of n. Then

$$
w_{n}(K)=\left\{\begin{array}{lll}
1 & \text { if } m=1 \\
2 & \text { if } m>1
\end{array}\right.
$$

Corollary

For any prime number p and any odd integer n we have $w_{n}\left(\mathbb{Q}_{p}\right)=2$.

Waring numbers of rings and fields of p-adic numbers

Theorem

Let p be an odd prime number, k be a positive integer and d be a positive integer not divisible by p. Then

$$
w_{d p^{k-1}(p-1)}\left(\mathbb{Z}_{p}\right)=w_{d p^{k-1}(p-1)}\left(\mathbb{Q}_{p}\right)=p^{k} .
$$

Waring numbers of rings and fields of p-adic numbers

Theorem

Let p be an odd prime number, k be a positive integer and d be a positive integer not divisible by p. Then

$$
w_{d p^{k-1}(p-1)}\left(\mathbb{Z}_{p}\right)=w_{d p^{k-1}(p-1)}\left(\mathbb{Q}_{p}\right)=p^{k}
$$

Theorem

Let p be an odd prime number, k be a positive integer and d be an odd positive integer not divisible by p. Assume additionally that $\frac{d p^{k-1}(p-1)}{2}>1$. Then the following equalities hold:

$$
\begin{aligned}
& w_{\frac{d p^{k-1}(p-1)}{2}}\left(\mathbb{Z}_{p}\right)=\frac{p^{k}-1}{2} \\
& w_{\frac{d p^{k-1}(p-1)}{2}}^{2}\left(\mathbb{Q}_{p}\right)=2
\end{aligned}
$$

Waring numbers of rings and fields of p-adic numbers

Theorem

Let $k, d>0$ be positive integers, with d odd. Then the following holds:

$$
w_{2^{k} d}\left(\mathbb{Z}_{2}\right)=w_{2^{k} d}\left(\mathbb{Q}_{2}\right)=\left\{\begin{array}{ll}
4 & \text { if } k=1, d=1 \\
15 & \text { if } k=2, d=1 \\
2^{k+2} & \text { if } k>2 \text { or } d \geq 3
\end{array} .\right.
$$

Waring numbers of rings and fields of p-adic numbers

Theorem

Let $k, d>0$ be positive integers, with d odd. Then the following holds:

$$
w_{2^{k} d}\left(\mathbb{Z}_{2}\right)=w_{2^{k} d}\left(\mathbb{Q}_{2}\right)=\left\{\begin{array}{ll}
4 & \text { if } k=1, d=1 \\
15 & \text { if } k=2, d=1 \\
2^{k+2} & \text { if } k>2 \text { or } d \geq 3
\end{array} .\right.
$$

Theorem

Let n be a positive integer. Then for any prime p satisfying $p>(n-1)^{4}$ we have the following formulas:

$$
w_{n}\left(\mathbb{Z}_{p}\right)=w_{n}\left(\mathbb{Q}_{p}\right)= \begin{cases}2 & \text { if }(n, p-1) \left\lvert\, \frac{p-1}{2}\right. \\ 3 & \text { otherwise }\end{cases}
$$

Waring numbers of rings and fields of p-adic numbers

p	$w_{3}\left(\mathbb{Z}_{p}\right)$	$w_{3}\left(\mathbb{F}_{p}\right)$	$s_{3}\left(\mathbb{F}_{p}\right)$
3	4	1	1
7	3	3	1
$p \equiv 1(\bmod 3), p \neq 7$	2	2	1
$p \equiv 2(\bmod 3)$	2	1	1

Table: $w_{3}\left(\mathbb{Z}_{p}\right)$, of course $\left.w_{3}\left(\mathbb{Q}_{p}\right)\right)=2$ for any prime p.

Waring numbers of rings and fields of p-adic numbers

p	$w_{4}\left(\mathbb{Z}_{p}\right)$	$w_{4}\left(\mathbb{Q}_{p}\right)$	$w_{4}\left(\mathbb{F}_{p}\right)$	$s_{4}\left(\mathbb{F}_{p}\right)$
2	15	15	1	1
5	5	5	4	4
13	3	3	3	2
29	4	4	3	3
17,41	3	2	3	1
$37,53,61$	3	3	2	2
73	2	2	2	1
$p \equiv 3(\bmod 4), p<81$	3	3	2	2
$p \equiv 1(\bmod 8), p>81$	2	2	2	1
$p \neq 1(\bmod 8), p>81$	3	3	2	2

Waring numbers of rings and fields of p-adic numbers

p	$w_{5}\left(\mathbb{Z}_{p}\right)$	$w_{5}\left(\mathbb{F}_{p}\right)$	$s_{5}\left(\mathbb{F}_{p}\right)$
5	3	1	1
11	5	5	1
$p \not \equiv 1(\bmod 5)$	2	1	1
$p \equiv 1(\bmod 5), p \geq 131$	2	2	1
$p \equiv 1(\bmod 5), p<131, p \neq 11$	3	3	1

Table: $w_{5}\left(\mathbb{Z}_{p}\right)$, of course $w_{5}\left(\mathbb{Q}_{p}\right)=2$ for any prime p.

Waring numbers of local rings and their henselizations and completions

Waring numbers of local rings and their henselizations and completions

Let (R, \mathfrak{m}) be a local ring.

Waring numbers of local rings and their henselizations and completions

Let (R, \mathfrak{m}) be a local ring.
Denote its henselization by R^{h} and its \mathfrak{m}-adic completion by \widehat{R}.

Waring numbers of local rings and their henselizations and completions

Let (R, \mathfrak{m}) be a local ring.
Denote its henselization by R^{h} and its \mathfrak{m}-adic completion by \widehat{R}.

Theorem

Let (R, \mathfrak{m}) be a local ring with residue field k, maximal ideal $\mathfrak{m} \neq \mathfrak{m}^{2}$ and $s_{n}(k)<\infty$. Assume that char $(k) \nmid n$ or $\operatorname{char}(R)=\operatorname{char}(k)=p$ and the rings R^{h}, \widehat{R} are reduced. Then
a) $s_{n}(R) \geq s_{n}\left(R^{h}\right)=s_{n}(\widehat{R})$
b) $w_{n}(R) \geq w_{n}\left(R^{h}\right)=w_{n}(\widehat{R})$.

Waring numbers of local rings and their henselizations and completions

Theorem

Let (R, \mathfrak{m}) be a DVR. Then the following inequality holds:

$$
w_{n}(R) \geq w_{n}\left(R^{h}\right)=w_{n}(\widehat{R})
$$

If we denote by K, K^{h} and \widehat{K} their fields of fractions, respectively, then

$$
w_{n}(K) \geq w_{n}\left(K^{h}\right)=w_{n}(\widehat{K})
$$

Waring numbers of local rings and their henselizations and completions

Definition

Let R be a ring and $n>1$ be a positive integer. We say that a prime ideal $\mathfrak{p} \subset R$ is an n-good ideal if $\mathfrak{p} R_{\mathfrak{p}} \neq\left(\mathfrak{p} R_{\mathfrak{p}}\right)^{2}$, $s_{n}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right)<\infty$, and one of the following conditions hold:
(1) $\operatorname{char}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right) \nmid n$
(2) $\operatorname{char}\left(R_{\mathfrak{p}}\right)=\operatorname{char}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right)=p \mid n$ and the $\mathfrak{p} R_{\mathfrak{p}}$-adic completion of $R_{\mathfrak{p}}$ is reduced.
(3) $R_{\mathfrak{p}}$ is a DVR.

Waring numbers of local rings and their henselizations and completions

Definition

Let R be a ring and $n>1$ be a positive integer. We say that a prime ideal $\mathfrak{p} \subset R$ is an n-good ideal if $\mathfrak{p} R_{\mathfrak{p}} \neq\left(\mathfrak{p} R_{\mathfrak{p}}\right)^{2}$,
$s_{n}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right)<\infty$, and one of the following conditions hold:
(1) $\operatorname{char}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right) \nmid n$
(2) $\operatorname{char}\left(R_{\mathfrak{p}}\right)=\operatorname{char}\left(R_{\mathfrak{p}} / \mathfrak{p} R_{\mathfrak{p}}\right)=p \mid n$ and the $\mathfrak{p} R_{\mathfrak{p}}$-adic completion of $R_{\mathfrak{p}}$ is reduced.
(3) $R_{\mathfrak{p}}$ is a DVR.

Theorem

Let R be a ring and $n>1$ be a positive integer. Then

$$
w_{n}(R) \geq \sup w_{n}\left(\widehat{R_{\mathfrak{p}}}\right)
$$

where supremum runs over all n-good ideals of R.

Waring numbers of local rings and their henselizations and completions

An integral domain R is called an almost Dedekind domain, if for every maximal ideal $\mathfrak{m} \subset R$, the localization $R_{\mathfrak{m}}$ is a DVR. In particular, a Noetherian almost Dedekind domain is a Dedekind domain.

Waring numbers of local rings and their henselizations and completions

An integral domain R is called an almost Dedekind domain, if for every maximal ideal $\mathfrak{m} \subset R$, the localization $R_{\mathfrak{m}}$ is a DVR. In particular, a Noetherian almost Dedekind domain is a Dedekind domain.

Theorem

Let R be an almost Dedekind domain with a fraction field K and $n>1$ be a positive integer. Then, the following inequalities hold:

$$
w_{n}(R) \geq \sup _{\mathfrak{m}} w_{n}\left(\widehat{R_{\mathfrak{m}}}\right)
$$

and

$$
w_{n}(K) \geq \sup _{\mathfrak{m}} w_{n}\left(\operatorname{Frac}\left(\widehat{R_{\mathfrak{m}}}\right)\right)
$$

where supremum is taken over all maximal ideals.

Waring numbers of local rings and their henselizations and completions

Corollary

Let K be a number field with its ring of integers
$\mathcal{O}_{K}=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{s}\right]$. Then the following inequalities hold

$$
\begin{aligned}
& w_{n}\left(\mathcal{O}_{K}\right) \geq \sup _{p-\text { prime }} w_{n}\left(\mathbb{Z}_{p}\left[\alpha_{1}, \ldots, \alpha_{s}\right]\right) \\
& w_{n}(K) \geq \sup _{p-\text { prime }} w_{n}\left(\mathbb{Q}_{p}\left[\alpha_{1}, \ldots, \alpha_{s}\right]\right)
\end{aligned}
$$

Waring numbers of local rings and their henselizations and completions

Corollary

Let K be a number field with its ring of integers
$\mathcal{O}_{K}=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{s}\right]$. Then the following inequalities hold

$$
\begin{aligned}
& w_{n}\left(\mathcal{O}_{K}\right) \geq \sup _{p-\text { prime }} w_{n}\left(\mathbb{Z}_{p}\left[\alpha_{1}, \ldots, \alpha_{s}\right]\right) \\
& w_{n}(K) \geq \sup _{p-\text { prime }} w_{n}\left(\mathbb{Q}_{p}\left[\alpha_{1}, \ldots, \alpha_{s}\right]\right)
\end{aligned}
$$

Corollary
(1) $w_{4}(\mathbb{Q}) \geq 15^{a}$,
(2) $w_{6}(\mathbb{Q}) \geq 9$,
(3) $w_{8}(\mathbb{Q}) \geq 32$.

$$
{ }^{a} w_{4}(\mathbb{Q}) \in\{15,16\}
$$

Waring numbers of local rings and their henselizations and completions

Corollary

Let K be a number field with its ring of integers
$\mathcal{O}_{K}=\mathbb{Z}\left[\alpha_{1}, \ldots, \alpha_{s}\right]$. Then the following inequalities hold

$$
\begin{aligned}
& w_{n}\left(\mathcal{O}_{K}\right) \geq \underset{p-\text { prime }}{\sup _{n}} w_{n}\left(\mathbb{Z}_{p}\left[\alpha_{1}, \ldots, \alpha_{s}\right]\right) \\
& w_{n}(K) \geq \sup _{p-\text { prime }} w_{n}\left(\mathbb{Q}_{p}\left[\alpha_{1}, \ldots, \alpha_{s}\right]\right)
\end{aligned}
$$

Example

$$
\begin{aligned}
& w_{4}(\mathbb{Z}[\sqrt{2}]) \geq \sup _{p-\text { prime }} w_{4}\left(\mathbb{Z}_{p}[\sqrt{2}]\right)=w_{4}\left(\mathbb{Z}_{2}[\sqrt{2}]\right)=7, \\
& w_{4}(\mathbb{Q}(\sqrt{2})) \geq \sup _{p-\text { prime }} w_{4}\left(\mathbb{Q}_{p}(\sqrt{2})\right)=w_{4}\left(\mathbb{Q}_{2}(\sqrt{2})\right)=7
\end{aligned}
$$

Waring numbers of local rings and their henselizations and completions

Problems:
(1) Assume that $\mathfrak{m} \neq \mathfrak{m}^{2}$ and $\operatorname{char}(R)=\operatorname{char}(k) \mid n$. In this case, nilpotents may occur in the completion, and we do not know how to compute $w_{n}(R)$. This is because the Frobenius map is not injective.

Waring numbers of local rings and their henselizations and completions

Problems:
(1) Assume that $\mathfrak{m} \neq \mathfrak{m}^{2}$ and $\operatorname{char}(R)=\operatorname{char}(k) \mid n$. In this case, nilpotents may occur in the completion, and we do not know how to compute $w_{n}(R)$. This is because the Frobenius map is not injective.
(2) Assume that $\mathfrak{m} \neq \mathfrak{m}^{2}$ and $\operatorname{char}(R) \neq \operatorname{char}(k) \mid n$. This is equivalent to $n \in \mathfrak{m}$. Here, we are not able to compute $w_{n}(R)$ if R is NOT a DVR. In particular, our theory cannot be applied to the case $n=p$ and $R=\mathbb{Z}_{p}[[x]]$. It can be shown by different methods that for $n=p, w_{p}\left(\mathbb{Z}_{p}[[x]]\right)$ is finite. In n is a multiple of p nothing is known in this case.

Waring numbers of local rings and their henselizations and completions

Problems:
(1) Assume that $\mathfrak{m} \neq \mathfrak{m}^{2}$ and $\operatorname{char}(R)=\operatorname{char}(k) \mid n$. In this case, nilpotents may occur in the completion, and we do not know how to compute $w_{n}(R)$. This is because the Frobenius map is not injective.
(2) Assume that $\mathfrak{m} \neq \mathfrak{m}^{2}$ and $\operatorname{char}(R) \neq \operatorname{char}(k) \mid n$. This is equivalent to $n \in \mathfrak{m}$. Here, we are not able to compute $w_{n}(R)$ if R is NOT a DVR. In particular, our theory cannot be applied to the case $n=p$ and $R=\mathbb{Z}_{p}[[x]]$. It can be shown by different methods that for $n=p, w_{p}\left(\mathbb{Z}_{p}[[x]]\right)$ is finite. In n is a multiple of p nothing is known in this case.
(3) The last case deals with arbitrary n and $\mathfrak{m}=\mathfrak{m}^{2}$. In most cases we have an upper bound for $w_{n}(R)$, however these bounds may be sharp. Completion of such a ring degenerates into the residue field. Hence, it is possible $w_{n}\left(R^{h}\right)>w_{n}(\widehat{R})$.

Problem

Let R be a valuation ring and K its field of fractions.

Problem

Let R be a valuation ring and K its field of fractions. Determine conditions on R for which we have

$$
w_{n}(R)=w_{n}(K)
$$

Problem

Let R be a valuation ring and K its field of fractions. Determine conditions on R for which we have

$$
w_{n}(R)=w_{n}(K)
$$

This is known for $n=2$. If $\frac{1}{2} \in R$ then $w_{2}(R)=w_{2}(K)$ (Kneser and Colliot-Thélène).

Thank you!

