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Some definitions - recall

Let R be a ring and n ∈ N+.
We define the n-length of a ∈ R:

`n(a) = `n,R(a) = inf

g ∈ N+ : a =

g∑
j=1

anj for some a1, . . . , ag ∈ R


and the nth level of R as

sn(R) := `n(−1).

We call R real if s2(R) =∞.
By nth Waring number of R we mean

wn(R) = sup{`n(a) : a ∈ R, `n(a) <∞}.
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Waring numbers of the rings of power series

Theorem
Let k be a field n, s be positive integers and m is the char(k)-free part of n.

a) We have

sn(k[[x1, . . . xs ]]) = sn(k((x1, . . . xs))) = sn(k((x1)) . . . ((xs))) = sm(k).

b) If sn(k) <∞, then

wn(k[[x1, . . . , xs ]]) =

{
max{wm(k), sm(k) + 1} for m > 1

1 for m = 1
,

wn(k((x1, . . . xs))) = wn(k((x1)) . . . ((xs))) =

{
sm(k) + 1 for m > 1

1 for m = 1
, (1)

wn(k((x1)) . . . ((xs))[[xs+1]]) =

{
sm(k) + 1 for m > 1

1 for m = 1
. (2)

Tomasz Kowalczyk On Waring numbers of henselian rings



Waring numbers of the rings of power series

Theorem
Let k be a field n, s be positive integers and m is the char(k)-free part of n.

a) We have

sn(k[[x1, . . . xs ]]) = sn(k((x1, . . . xs))) = sn(k((x1)) . . . ((xs))) = sm(k).

b) If sn(k) <∞, then

wn(k[[x1, . . . , xs ]]) =

{
max{wm(k), sm(k) + 1} for m > 1

1 for m = 1
,

wn(k((x1, . . . xs))) = wn(k((x1)) . . . ((xs))) =

{
sm(k) + 1 for m > 1

1 for m = 1
, (1)

wn(k((x1)) . . . ((xs))[[xs+1]]) =

{
sm(k) + 1 for m > 1

1 for m = 1
. (2)

Tomasz Kowalczyk On Waring numbers of henselian rings



Waring numbers of the rings of power series

Theorem

Let k be a field such that sn(k) =∞. Then the following holds

wn(k((x1)) . . . ((xs−1))[[xs ]]) = wn(k((x1)) . . . ((xs))) = wn(k),

wn(k[[x1, . . . , xs ]]) ≥ wn(k((x1, . . . , xs))) ≥ wn(k).
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Waring numbers of coordinate rings

Let V ⊂ ks be an algebraic set.
Let I (V ) ⊂ k[x1, x2, . . . , xs ] be the ideal of polynomials vanishing
on V .

K [V ] := k[x1, x2, . . . , xs ]/I (V )

We put k(V ) to be the field of fractions of k[V ], provided that V
is an irreducible algebraic set.
We say that the point x ∈ V is a regular point, if the ring k[V ]mx

is a regular local ring, where mx is the maximal ideal of polynomial
functions vanishing in x .
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Waring numbers of coordinate rings

Theorem

Let V be an irreducible algebraic subset of ks , different from the
point, which admits a regular point.

a) If sn(k) <∞, then

wn(k[V ]) ≥ max{wm(k), sm(k) + 1},

wn(k(V )) ≥ sm(k) + 1,

where m is the char(k)-free part of n.

b) If sn(k) =∞, then

wn(k[V ]) ≥ wn(k(V )) ≥ wn(k).

Remark

If dimV ≥ 3, then w2(R[V ]) =∞ (Choi, Dai, Lam, Reznick,
1982) meanwhile w2(R) = 1.
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Waring numbers of coordinate rings

Corollary

Let V be an irreducible algebraic subset of ks , different from the
point, which admits a regular point. Assume that char(k) 6= 2 and
s2(k) <∞. Then w2(k[V ]) = w2(k(V )) = s2(k) + 1.

Proof.

Write

a =

(
a+ 1

2

)2

−
(
a− 1

2

)2

.
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Sums of two n-th powers

Corollary

Let R be a Henselian local ring with the total ring of fractions
Q(R) 6= R and a residue field k . Take an odd positive integer
n > 1. Assume that char(k) - n or R is rank-1 valuation ring with
char(R) - n. Then, for every element f ∈ Q(R) there exists a
presentation

f = f n1 + f n2

for some f1, f2 ∈ Q(R).
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Waring numbers of rings and fields of p-adic numbers

Theorem (recall)

Let R be a Henselian DVR with quotient field K and n > 1 be an
odd positive integer. Denote by m the char(K )-free part of n.
Then

wn(K ) =

{
1 if m = 1,

2 if m > 1.

Corollary

For any prime number p and any odd integer n we have
wn(Qp) = 2.
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Waring numbers of rings and fields of p-adic numbers

Theorem

Let p be an odd prime number, k be a positive integer and d be a
positive integer not divisible by p. Then

wdpk−1(p−1)(Zp) = wdpk−1(p−1)(Qp) = pk .

Theorem

Let p be an odd prime number, k be a positive integer and d be
an odd positive integer not divisible by p. Assume additionally that
dpk−1(p−1)

2 > 1. Then the following equalities hold:

w dpk−1(p−1)
2

(Zp) =
pk − 1

2
,

w dpk−1(p−1)
2

(Qp) = 2.
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Waring numbers of rings and fields of p-adic numbers

Theorem

Let k, d > 0 be positive integers, with d odd. Then the following
holds:

w2kd(Z2) = w2kd(Q2) =


4 if k = 1, d = 1

15 if k = 2, d = 1

2k+2 if k > 2 or d ≥ 3

.

Theorem

Let n be a positive integer. Then for any prime p satisfying
p > (n − 1)4 we have the following formulas:

wn(Zp) = wn(Qp) =

{
2 if (n, p − 1) | p−1

2 ,

3 otherwise.
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Waring numbers of rings and fields of p-adic numbers

p w3(Zp) w3(Fp) s3(Fp)

3 4 1 1
7 3 3 1

p ≡ 1 (mod 3), p 6= 7 2 2 1
p ≡ 2 (mod 3) 2 1 1

Table: w3(Zp), of course w3(Qp)) = 2 for any prime p.
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Waring numbers of rings and fields of p-adic numbers

p w4(Zp) w4(Qp) w4(Fp) s4(Fp)

2 15 15 1 1
5 5 5 4 4

13 3 3 3 2
29 4 4 3 3

17,41 3 2 3 1
37,53,61 3 3 2 2

73 2 2 2 1
p ≡ 3 (mod 4), p < 81 3 3 2 2
p ≡ 1 (mod 8), p > 81 2 2 2 1
p 6≡ 1 (mod 8), p > 81 3 3 2 2

Table: w4(Zp) and w4(Qp).
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Waring numbers of rings and fields of p-adic numbers

p w5(Zp) w5(Fp) s5(Fp)

5 3 1 1
11 5 5 1

p 6≡ 1 (mod 5) 2 1 1
p ≡ 1 (mod 5), p ≥ 131 2 2 1

p ≡ 1 (mod 5), p < 131, p 6= 11 3 3 1

Table: w5(Zp), of course w5(Qp) = 2 for any prime p.
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Waring numbers of local rings and their henselizations and
completions

Let (R,m) be a local ring.
Denote its henselization by Rh and its m-adic completion by R̂.

Theorem

Let (R,m) be a local ring with residue field k, maximal ideal
m 6= m2 and sn(k) <∞. Assume that char(k) - n or
char(R) = char(k) = p and the rings Rh, R̂ are reduced. Then

a) sn(R) ≥ sn(R
h) = sn(R̂)

b) wn(R) ≥ wn(R
h) = wn(R̂).
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Waring numbers of local rings and their henselizations and
completions

Theorem

Let (R,m) be a DVR. Then the following inequality holds:

wn(R) ≥ wn(R
h) = wn(R̂).

If we denote by K , Kh and K̂ their fields of fractions, respectively,
then

wn(K ) ≥ wn(K
h) = wn(K̂ ).
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Waring numbers of local rings and their henselizations and
completions

Definition

Let R be a ring and n > 1 be a positive integer. We say that a
prime ideal p ⊂ R is an n-good ideal if pRp 6= (pRp)

2,
sn(Rp/pRp) <∞, and one of the following conditions hold:
1 char(Rp/pRp) - n
2 char(Rp) = char(Rp/pRp) = p | n and the pRp-adic

completion of Rp is reduced.
3 Rp is a DVR.

Theorem

Let R be a ring and n > 1 be a positive integer. Then

wn(R) ≥ supwn(R̂p),

where supremum runs over all n-good ideals of R.
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Waring numbers of local rings and their henselizations and
completions

An integral domain R is called an almost Dedekind domain, if for
every maximal ideal m ⊂ R, the localization Rm is a DVR. In
particular, a Noetherian almost Dedekind domain is a Dedekind
domain.

Theorem

Let R be an almost Dedekind domain with a fraction field K and
n > 1 be a positive integer. Then, the following inequalities hold:

wn(R) ≥ sup
m

wn(R̂m)

and
wn(K ) ≥ sup

m
wn(Frac(R̂m)),

where supremum is taken over all maximal ideals.
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Waring numbers of local rings and their henselizations and
completions

Corollary

Let K be a number field with its ring of integers
OK = Z[α1, ..., αs ]. Then the following inequalities hold

wn(OK ) ≥ sup
p−prime

wn(Zp[α1, ..., αs ]),

wn(K ) ≥ sup
p−prime

wn(Qp[α1, ..., αs ]).

Corollary
1 w4(Q) ≥ 15a,
2 w6(Q) ≥ 9,
3 w8(Q) ≥ 32.

aw4(Q) ∈ {15, 16}
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Waring numbers of local rings and their henselizations and
completions

Corollary

Let K be a number field with its ring of integers
OK = Z[α1, ..., αs ]. Then the following inequalities hold

wn(OK ) ≥ sup
p−prime

wn(Zp[α1, ..., αs ])

wn(K ) ≥ sup
p−prime

wn(Qp[α1, ..., αs ]).

Example

w4(Z[
√

2]) ≥ sup
p−prime

w4(Zp[
√

2]) = w4(Z2[
√

2]) = 7,

w4(Q(
√

2)) ≥ sup
p−prime

w4(Qp(
√

2)) = w4(Q2(
√

2)) = 7.
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Waring numbers of local rings and their henselizations and
completions

Problems:
1 Assume that m 6= m2 and char(R) = char(k) | n. In this case,

nilpotents may occur in the completion, and we do not know
how to compute wn(R). This is because the Frobenius map is
not injective.

2 Assume that m 6= m2 and char(R) 6= char(k) | n. This is
equivalent to n ∈ m. Here, we are not able to compute wn(R)
if R is NOT a DVR. In particular, our theory cannot be
applied to the case n = p and R = Zp[[x ]]. It can be shown
by different methods that for n = p, wp(Zp[[x ]]) is finite. In n
is a multiple of p nothing is known in this case.

3 The last case deals with arbitrary n and m = m2. In most
cases we have an upper bound for wn(R), however these
bounds may be sharp. Completion of such a ring degenerates
into the residue field. Hence, it is possible wn(R

h) > wn(R̂).
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nilpotents may occur in the completion, and we do not know
how to compute wn(R). This is because the Frobenius map is
not injective.

2 Assume that m 6= m2 and char(R) 6= char(k) | n. This is
equivalent to n ∈ m. Here, we are not able to compute wn(R)
if R is NOT a DVR. In particular, our theory cannot be
applied to the case n = p and R = Zp[[x ]]. It can be shown
by different methods that for n = p, wp(Zp[[x ]]) is finite. In n
is a multiple of p nothing is known in this case.

3 The last case deals with arbitrary n and m = m2. In most
cases we have an upper bound for wn(R), however these
bounds may be sharp. Completion of such a ring degenerates
into the residue field. Hence, it is possible wn(R

h) > wn(R̂).
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Problem

Let R be a valuation ring and K its field of fractions.

Determine
conditions on R for which we have

wn(R) = wn(K ).

This is known for n = 2. If 1
2 ∈ R then w2(R) = w2(K ) (Kneser

and Colliot-Thélène).
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Thank you!
(:
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