Power monoids and a conjecture by Bienvenu and Geroldinger

Salvatore Tringali
School of Mathematical Sciences, Hebei Normal University
based on joint work with Weihao Yan $^{(1)}$
Conference on Rings and Factorizations 2023
DMSC, University of Graz (AT), July 12, 2023

${ }^{(1)}$ Weihao defended his bachelor's thesis in mathematics on May 18, 2023.

Outline

1. Power monoids

2. A new wave of questions

3. References

What is... a power monoid?

Throughout, M is a multiplicative[ly written] monoid and we denote by M^{\times}its group of units (note that M need not be commutative, cancellative, etc.)

The large power monoid (LPM) of M is the (multiplicative) monoid $\mathcal{P}(M)$ obtained by endowing the non-empty subsets of M with the setwise product

$$
(X, Y) \mapsto X Y:=\{x y: x \in X, y \in Y\}
$$

Each of the following is a submonoid of $\mathcal{P}(M)$:

- $\mathcal{P}_{\times}(M):=\left\{X \in \mathcal{P}(M): X \cap M^{\times} \neq \varnothing\right\}$, the restricted LPM of M.
- $\mathcal{P}_{1}(M):=\left\{X \in \mathcal{P}(M): 1_{M} \in X\right\}$, the reduced LPM of M.
- $\mathcal{P}_{\text {fin }}(M):=\{X \in \mathcal{P}(M):|X|<\infty\}$, the finitary power monoid (FPM) of M.
- $\mathcal{P}_{\text {fin }, \times}(M):=\mathcal{P}_{\text {fin }}(M) \cap \mathcal{P}_{\times}(M)$, the restricted FPM of M.
- $\mathcal{P}_{\text {fin }, 1}(M):=\mathcal{P}_{\text {fin }}(M) \cap \mathcal{P}_{1}(M)$, the reduced FPM of M.

Altogether, these structures will be referred to as power monoids ${ }^{(2)}$ (PMs).
${ }^{(2)}$ The definition of $\mathcal{P}(\cdot)$ and $\mathcal{P}_{\text {fin }}(\cdot)$ does even make sense for semigroups (see Slide 4).

Older literature and origins

$\mathcal{P}(M)$ and $\mathcal{P}_{\text {fin }}(M)$ have been considered by semigroup theorists and computer scientists since the late 1960s and quite intensively in the 1980s-1990s ${ }^{(3)}$.

They were first explicitly studied by T. Tamura \& J. Shafer ${ }^{(4)}$ (in the more general context of semigroups) in 1967, though the definition of these structures is already implicit to the early work on additive combinatorics ${ }^{(5)}$.

Since then, there has been continuous interest in properties of M that [do not] ascend to $\mathcal{P}(M)$ or $\mathcal{P}_{\text {fin }}(M)$. Tamura \& Shafer were especially interested in:

The Isomorphism Problem (for Power Semigroups)

Assume the large power semigroup of a semigroup S is (semigroup-)isomorphic to the one of a semigroup T. Is it true that S is isomorphic to T ?

For infinite semigroups, the problem was quickly answered in the negative ${ }^{(6)}$, but remains open for finite semigroups.

[^0]
Recent literature and popularization

$\mathcal{P}_{\text {fin }}(M), \mathcal{P}_{\text {fin }, \times}(M)$, and $\mathcal{P}_{\text {fin }, 1}(M)$ were rediscovered by Y . Fan and T. in 2018 and further studied in a series of subsequent papers:

- Fan \& T., J. Algebra 512 (2018), 252-294.
- Antoniou \& T., Pacific J. Math. 312 (2021), No. 2, 279-308.
- Sect. 4.2 in T., J. Algebra 602 (July 2022), 352-380.
- pp. 101-102 in Geroldinger \& Khadam, Ark. Mat. 60 (2022), 67-106.
- Bienvenu \& Geroldinger, Israel J. Math., to appear (arXiv:2205.00982).
- Example 4.5(3) and Remark 5.5 in Cossu \& T., J. Algebra 630 (Sep 2023), 128-161.
- T. \& Yan, three manuscripts (soon on arXiv).

PMs are also the subject of a CrowdMath project recently launched by F. Gotti:
https://artofproblemsolving.com/polymath/mitprimes2023
Most of these papers focus on the arithmetic of PMs (and related structures), and especially on questions concerning the possibility (or impossibility) of factoring a set into a (finite) product of irreducibles ${ }^{(7)}$ (see also Slide 10).

[^1]
Why caring?

1) PM are a leading example in the ongoing development of a unifying theory of factorization, with monoids \& irreducibles replaced by premons \& irreds (...):

- T., J. Algebra 602 (July 2022), 352-380.
- Cossu \& T., Israel J. Math., to appear (arXiv:2108.12379).
- Cossu \& T., J. Algebra 630 (Sep 2023), 128-161.
- T., Math. Proc. Cambridge Philos. Soc., to appear (arXiv:2209.05238).
- [Preprints] Cossu \& T. (arXiv:2301.09961), Casabella, García-Sánchez, \& D’Anna (arXiv:2302.09647), and Ajran \& F. Gotti (arXiv:2305.00413).

2) PMs are a natural algebraic framework for arithmetic combinatorics:

- Sárközy's conjecture ${ }^{(8)}$. For all but finitely many primes p, the set $\mathcal{Q}_{p} \subseteq \mathbb{F}_{p}$ of quadratic residues $\bmod p$ is an atom in the FPM of the additive group of \mathbb{F}_{p}.
- Inverse Goldbach conjecture ${ }^{(9)}$. Every set of integers that differ from the set of (positive rational) primes by finitely many elements is an atom in the LPM of $(\mathbb{Z},+)$.

3) The monoid of non-empty (2-sided) ideals of M is a submonoid of $\mathcal{P}(M)$.
4) PMs play a key role in the study of formal languages and automata ${ }^{(10)}$.
[^2]
A zoo of wild beasts

$\mathcal{P}(M), \mathcal{P}_{\times}(M)$, and $\mathcal{P}_{1}(M)$ are rather complicated objects - their "finitary analogues" are much tamer, although $\mathcal{P}_{\text {fin }}(M)$ can still be a real headache.

In the above diagram, a "hooked arrow" $P \hookrightarrow Q$ means the inclusion map from P to Q and a "tailed arrow" $P \mapsto Q$ means the embedding $P \rightarrow Q: x \mapsto\{x\}$.

Fact 1. If M is cancellative, then $\mathcal{P}_{\text {fin }}(M)$ is divisor-closed ${ }^{(11)}$ in $\mathcal{P}(M)$.
Fact 2. If M is Dedekind-finite, then (i) $\mathcal{P}_{\times}(M)$ is divisor-closed in $\mathcal{P}(M)$, and so is $\mathcal{P}_{\text {fin }, \times}(M)$ in $\mathcal{P}_{\text {fin }}(M)$; (ii) $\mathcal{P}_{\text {fin }, 1}(M)$ and $\mathcal{P}_{\text {fin }, \times}(M)$ have essentially the same factorizations into irreducibles, and so also do $\mathcal{P}_{1}(M)$ and $\mathcal{P}_{\times}(M)$.
(11) A submonoid K of a monoid H is divisor-closed if " $x \in H$ and $y \in K \cap H x H$ " $\Rightarrow x \in K$.

Going nuts with a hard nut

The facts mentioned on the previous slide suggest that, at least for a cancellative (and hence Dedekind-finite) M, there is much about $\mathcal{P}(M)$ and other PMs that we can understand from the study of $\mathcal{P}_{\text {fin }, 1}(M)$. In addition:

Proposition 3.2(iii) in [Antoniou \& T., 2019]

$\mathcal{P}_{\text {fin }, 1}(N)$ is divisor-closed in $\mathcal{P}_{\text {fin }, 1}(M)$ for every submonoid N of M.
So, we can understand many properties of PMs by looking at corresponding properties of $\mathcal{P}_{\text {fin }, 1}(M)$ when M is monogenic (i.e., generated by one element).

It is thus natural ${ }^{(12)}$ to focus on the reduced FPMs of $(\mathbb{N},+)$ and $(\mathbb{Z} / n \mathbb{Z},+)$, herein denoted by $\mathcal{P}_{\text {fin }, 0}(\mathbb{N})$ and $\mathcal{P}_{\text {fin }, 0}(\mathbb{Z} / n \mathbb{Z})$, resp., and written additively:

- The arithmetic of $\mathcal{P}_{\text {fin }, 0}(\mathbb{N})$ is the object of Sect. 4 in [Fan \& T., 2018].
- The arithmetic of $\mathcal{P}_{\text {fin }, 0}(\mathbb{Z} / n \mathbb{Z})$ for an odd modulus n is the object of Sect. 5 in [Antoniou \& T., 2019] (see also Sect. 4.2 in [T., 2022]).
- Bienvenu \& Geroldinger have addressed algebraic and (sort of) analytic properties of $\mathcal{P}_{\text {fin }, 0}(\mathbb{N})$ and closely related structures (see Slide 11).

[^3]
Outline

1. Power monoids

2. A new wave of questions

3. References

Factorizations and length sets

To sum up, recent work on PMs has brought new life to the subject, a major problem being the following conjecture:

Sect. 5 of [Fan \& T., 2018]

If M is linearly orderable ${ }^{a}$, then every non-empty finite subset L of $\mathbb{N}_{\geq 2}$ is the length set (LS) of a set $X \in \mathcal{P}_{\text {fin }, 1}(M)$, i.e., L is the set of all and only the integers $k \geq 0$ such that X is a product of k atoms b of $\mathcal{P}_{\text {fin }, 1}(M)$.

> a Namely, there is a total order \preceq on M s.t. if $x \prec y$ then $u x v \prec u y v$ for all $u, v \in H$.
> ${ }^{b}$ Here, an atom is a non-unit that does not factor as a product of two non-units.

As noted in [Fan \& T., 2018], the conjecture boils down to the case $M=$ $(\mathbb{N},+)$, and what is known to date amounts to the following:

Propositions 4.8-4.10 in [Fan \& T., 2018]

For every integer $n \geq 2$, each of the sets $\{n\},\{2, n\}$, and $\llbracket 2, n \rrbracket$ can be realized as the length set of a set in the reduced FPM of $(\mathbb{N},+)$.

Problem 1: L is a length set of $\mathcal{P}_{\text {fin }, 0}(\mathbb{N})$ iff so is $L+k$ for all $k \in \mathbb{N}$. (Easy in the FPM of $(\mathbb{N},+)$, see Theorem 1.2.3 in [Bienvenu \& Geroldinger, 202?].)

The Bienvenu-Geroldinger conjecture

True or not, the conjecture has motivated new questions.
Most notably, let S be a numerical monoid, i.e., a submonoid of $(\mathbb{N},+)$ s.t. $\mathbb{N} \backslash S$ is finite. Bienvenu \& Geroldinger have

- obtained quantitative results on the "density" of the atoms of the reduced FPM of S, herein denoted by $\mathcal{P}_{\text {fin }, 0}(S)$ and written additively;
- started a foray into the ideal theory of $\mathcal{P}_{\text {fin }, 0}(S)$, with emphasis on prime ideals.

Moreover, they have formulated (and proved special cases of) the following:

Bienvenu-Geroldinger conjecture

The reduced FPM of a numerical monoid S_{1} is isomorphic (shortly, \simeq) to the reduced FPM of a numerical monoid S_{2} iff $S_{1}=S_{2}$.

It is worth noting that:
i) The Bienvenu-Geroldinger conjecture is ultimately asking to show that, in a certain class of multiplicative monoids, $\mathcal{P}_{\text {fin }, 1}(H) \simeq \mathcal{P}_{\text {fin }, 1}(K)$ iff $H \simeq K$, as it is folklore that two numerical monoids are isomorphic iff they are equal ${ }^{(13)}$.
ii) The unrestricted conjecture is false - if H is an idempotent (multiplicative) monoid with two elements, then $H \simeq \mathcal{P}_{\text {fin }, 1}(H) \simeq \mathcal{P}_{\text {fin }, 0}(\mathbb{Z} / 2 \mathbb{Z}) \nsucceq(\mathbb{Z} / 2 \mathbb{Z},+)$.

[^4]
Sketch of proof

The Bienvenu-Geroldinger conjecture was recently settled by Weihao Yan and myself in a 4-page note. In hindsight, the proof is rather simple - the most "advanced technology" we use is a classic ${ }^{(14)}$:

Nathanson's Thm (or Fundamental Thm of Additive Combinatorics)

Given $A \in \mathcal{P}_{\text {fin }, 0}(\mathbb{N})$ with $\operatorname{gcd} A=1$, there exist $b, c \in \mathbb{N}, B \subseteq \llbracket 0, b-2 \rrbracket$, and $C \subseteq \llbracket 0, c-2 \rrbracket$ s.t. $k A=B \cup \llbracket b, k a-c \rrbracket \cup(k a-C)$ for all large $k \in \mathbb{N}$, where $a:=\max A$ and $k A:=A+\cdots+A$ (k times).

The proof breaks down to the following steps:

1) Show by Nathanson's theorem that, given $A \in \mathcal{P}_{\text {fin }, 0}(\mathbb{N})$, we have $(k+1) A=k A+B$ for all large $k \in \mathbb{N}$ and every $B \subseteq A$ with $\{0, \max A\} \subseteq B$.
2) Use 1) to prove that, if S_{1} and S_{2} are numerical monoids and $\phi: \mathcal{P}_{\text {fin,0 }}\left(S_{1}\right) \rightarrow$ $\mathcal{P}_{\text {fin }, 0}\left(S_{2}\right)$ is an iso, then ϕ sends 2 -element sets to 2 -element sets.
3) Use 2) to show that, if $\phi\left(\left\{0, a_{1}\right\}\right)=\left\{0, b_{1}\right\}$ and $\phi\left(\left\{0, a_{2}\right\}\right)=\left\{0, b_{2}\right\}$ for some $a_{1}, a_{2} \in S_{1}$, then $\phi\left(\left\{0, a_{1}+a_{2}\right\}\right)=\left\{0, b_{1}+b_{2}\right\}$.
4) Use 3) to conclude that, if S_{1} and S_{2} are numerical monoids and ϕ is an iso $\mathcal{P}_{\text {fin }, 0}\left(S_{1}\right) \rightarrow \mathcal{P}_{\text {fin }, 0}\left(S_{2}\right)$, then the fnc $\Phi: S_{1} \rightarrow S_{2}: a \mapsto \max \phi(\{0, a\})$ is also an iso.
Problem 2. Generalize the result to a larger class of monoids.
[^5]
Looking for extensions

Let a Puiseux monoid H be a submonoid of $\left(\mathbb{R}_{\geq 0},+\right)$. We denote the reduced FPM of H by $\mathcal{P}_{\text {fin }, 0}(H)$, write it additively, and say that H is a rational Puiseux monoid if H is made of (non-negative) rational numbers ${ }^{(15)}$.
Nathanson's theorem has a natural extension to (non-empty, finite) sets of rationals, so the proof outlined on the previous slide can be adapted to show:

Theorem 1.

$\mathcal{P}_{\text {fin }, 0}(H) \simeq \mathcal{P}_{\text {fin }, 0}(K)$, for rational Puiseux monoids H and K, iff $H \simeq K$.
However, no analogue of Nathanson's theorem is available for (finite) sets of real numbers, and the question arises whether rationality is really necessary.

Definition 2.

The monoid M is positively orderable if there is a total order \preceq on M such that (i) $1_{M} \preceq x$ for each $x \in M$ and (ii) $x \prec y$ implies $u x v \prec u y v$ for all $u, v \in M$.

Puiseux monoids are positively orderable, and so is every submonoid of the non-negative cone of a totally orderable group.

[^6]
A generalization

Proposition 1.

The monoid M is torsion-free iff so is its reduced power monoid.

Proof.

Assume M is torsion-free, let X be a set in $\mathcal{P}_{\text {fin }, 1}(M)$ with $X \neq\left\{1_{H}\right\}$, and suppose for a contradiction that $X^{m}=X^{n}$ for some $m, n \in \mathbb{N}, m<n$. Then (by induction) $X^{m}=$ $X^{n k-m(k-1)} \supseteq X^{k}$ for each $k \in \mathbb{N}^{+}$. So, considering that $|X| \geq 2$ and picking $x \in X \backslash$ $\left\{1_{M}\right\}$, we find $\left|X^{m}\right| \geq\left|X^{k}\right| \geq\left|\left\{1_{M}, x\right\}^{k}\right|=k+1$ for all $k \in \mathbb{N}^{+}$(absurd).
If, on the other hand, there are $x \in M \backslash\left\{1_{M}\right\}$ and $m, n \in \mathbb{N}^{+}$with $m<n$ s.t. $x^{m}=x^{n}$, then $\left\{1_{M}, x\right\}^{n}=\left\{1_{M}, \ldots, x^{n}\right\}=\left\{1_{M}, \ldots, x^{n-1}\right\}=\left\{1_{M}, x\right\}^{n-1}$.

Proposition 2.

Let H and K be (multiplicative) monoids with H torsion-free, and ϕ be an iso $\mathcal{P}_{\text {fin }, 1}(H) \rightarrow \mathcal{P}_{\text {fin }, 1}(K)$. Then $|\phi(X)|=|X|$ for all $X \in \mathcal{P}_{\text {fin }, 1}(H)$ s.t. $|X| \leq 3$.

Theorem 3.

Let H and K be commutative monoids and assume K is positively orderable. Then $\mathcal{P}_{\mathrm{fin}, 1}(H) \simeq \mathcal{P}_{\mathrm{fin}, 1}(K)$ iff $H \simeq K$.

Outline

1. Power monoids

2. A new wave of questions

3. References

Bibliography

- A. A. Antoniou \& S. Tringali, On the Arithmetic of Power Monoids and Sumsets in Cyclic Groups, Pacific J. Math. 312 (2021), No. 2, 279-308 (arXiv:1804.10913).
- P.-Y. Bienvenu and A. Geroldinger, On algebraic properties of power monoids of numerical monoids, Israel J. Math., to appear (https://arxiv.org/abs/2205.00982).
- L. Cossu \& S. Tringali, Abstract Factorization Theorems with Applications to Idempotent Factorizations, to appear in Israel J. Math. (arXiv:2108.12379).
- L. Cossu \& S. Tringali, Factorization under local finiteness conditions, J. Algebra 630 (Sep 2023), 128-161 (arXiv:2208.05869).
- L. Cossu \& S. Tringali, On the finiteness of certain factorization invariants, preprint (under review, arXiv:2301.09961).
- Y. Fan \& S. Tringali, Power monoids: A bridge between Factorization Theory and Arithmetic Combinatorics, J. Algebra 512 (2018), 252-294.
- S. Tringali, An abstract factorization theorem and some applications, J. Algebra 602 (July 2022), 352-380 (arXiv:2102.01598).
- S. Tringali, A characterization of atomicity, to appear in Math. Proc. Cambridge Philos. Soc. (arXiv: 2209.05238).
- S. Tringali and W. Yan, A conjecture by Bienvenu and Geroldinger on power monoids, manuscript (available upon request)
- S. Tringali and W. Yan, PMs and their automorphisms, manuscript (available upon request).
- S. Tringali and W. Yan, A conjecture by Bienvenu and Geroldinger on power monoids, II, manuscript (available upon request).

[^0]: ${ }^{(3)}$ See J. Almeida, Semigroup Forum 64 (2002), 159-179 (a must-read survey).
 ${ }^{(4)}$ See Power semigroups, Mathematica Japonicae 12 (1967), 25-32.
 ${ }^{(5)}$ At least starting with the work of A.L. Cauchy in his famous 1813 paper containing a proof of what is now known as the Cauchy-Davenport inequality.
 ${ }^{(6)}$ See E. M. Mogiljanskaja, Semigroup Forum 6 (1973), 330-333.

[^1]: ${ }^{(7)}$ In a multiplicative monoid H, an element a is irreducible if a is a non-unit and $a \neq x y$ for all non-units $x, y \in H$ such that $H x H \neq H a H \neq H y H$.

[^2]: ${ }^{(8)}$ Conjecture 1.6 in A. Sárközy, Acta Arith. 155 (2012), No. 1, 41-51.
 ${ }^{(9)}$ See C. Elsholtz, Mathematika 48 (2001), Nos. 1-2, 151-158.
 ${ }^{(10)}$ See (the refs in) K. Auinger and B. Steinberg, Theoret. Comput. Sci. 341 (2005), 1-21.

[^3]: ${ }^{(12)}$ When M is cancellative, there are no other monogenic submonoids (up to iso).

[^4]: ${ }^{(13)}$ See, e.g., Theorem 3 in J. C. Higgins, Bull. Austral. Math. Soc. 1 (1969), 115-125.

[^5]: ${ }^{(14)}$ See M. B. Nathanson, Amer. Math. Monthly 79 (1972), No. 9, 1010-1012.

[^6]: ${ }^{(15)}$ Rational Puiseux monoids have been intensively studied by F. Gotti since 2018. They are indeed much older, but Felix' work has brought many new ideas to the topic.

