# On the zero-sum invariants over $C_{n} \rtimes_{s} C_{2}$ 

Conference on Rings and Factorizations

## Sávio Ribas

Partially supported by
FAPEMIG (RED-00133-21 and APQ-02546-21) and NAWI Graz

Universidade Federal de Ouro Preto, Brazil (permanent)
University of Graz (current)

Graz, July 10-14, 2023

## Summary

1. Zero-sum problems
2. The invariants
3. On the group $C_{n} \rtimes_{s} C_{2}$
4. An open problem

## Zero-sum problems

Let $G$ be a finite group multiplicatively written.

The zero-sum problems study conditions to ensure that a given sequence over $G$ has a non-empty subsequence (with some prescribed property which include lengths, weights, repetitions, etc) whose product of the terms (in some order) equals 1 , the identity of $G$.

The terminology "zero-sum problems" relies on the abelian groups, where an additive notation is used.

## Sequences over groups

A sequence $S$ over $G$ is a finite and unordered element of the free abelian monoid $\mathcal{F}(G)$ equipped with the concatenation product denoted by $\cdot$.

$$
S=g_{1} \cdot \ldots \cdot g_{k}=\prod_{g \in G}^{\bullet} g^{\left[\operatorname{vg}_{g}(S)\right]} \in \mathcal{F}(G)
$$

Remark: $g^{2}$ is the square of $g$ and $g^{[2]}=g \cdot g$ is a two-terms sequence.
$T \in \mathcal{F}(G)$ is a subsequence of $S$ if $T \mid S$ as elements of $\mathcal{F}(G)$, that is, if $\mathrm{v}_{g}(T) \leq \mathrm{v}_{g}(S)$ for every $g \in G$. In this case,

$$
S \cdot T^{[-1]}=\prod_{g \in G}^{\bullet} g^{\left[v_{g}(S)-v_{g}(T)\right]}
$$

If $K \subset G$, then let $S_{K}=\prod_{g \in K}^{\bullet} g^{\left[v_{g}(S)\right]}$.
$\pi(S)=\left\{g_{\tau(1)} \ldots g_{\tau(k)} ; \tau\right.$ is a permutation of $\left.[1, k]\right\}$ is the set of products of $S$.

$$
\Pi(S)=\bigcup_{T \mid S} \pi(T) \subset G \text { is the set of subproducts of } S \text {. }
$$

We say that $S$ is:

- product-one sequence if $1 \in \pi(S)$;
- $n$-product-one sequence if $1 \in \pi(S)$ and $|S|=n$;
- product-one free if $1 \notin \Pi(S)$;
- n-product-one free if $1 \notin \pi(T)$ for any $T \mid S$ with $|T|=n$.


## The invariants

The small Davenport constant of $G$ is defined by

$$
\mathrm{d}(G):=\sup \{|S| ; S \in \mathcal{F}(G) \text { is product-one free }\} .
$$

The Gao constant of $G, E(G)$, is the smallest positive integer such that every sequence $S \in \mathcal{F}(G)$ with $|S| \geq \mathrm{E}(G)$ has a $|G|$-productone subsequence.

- $E(G) \geq \mathrm{d}(G)+|G|$.

Gao conjecture: equality holds.
It has been proven for abelian groups.

## The direct and inverse problems

Fixed a finite group $G$, the direct problems consist on obtaining the precise values of the constants, while the inverse problems consist on obtaining the structure of $(|G|-)$ product-one free sequences of large (or maximal) length.

Goal: introduce the inductive method to obtain the direct and inverse problems over non-abelian groups.

## On the cyclic groups

Let $C_{n}=\left\langle y \mid y^{n}=1\right\rangle$ the cyclic group of order $n$.
We have $\mathrm{d}\left(C_{n}\right)=n-1$ and $\mathrm{E}\left(C_{n}\right)=2 n-1$.
Proposition (inverse problem for $E\left(C_{n}\right)$, Gao 1997)
Let $n \geq 2$ and $S \in \mathcal{F}\left(C_{n}\right)$ with $|S|=2 n-k$, where $2 \leq k \leq$ $\lfloor n / 2\rfloor+2$. If $S$ is $n$-product-one free, then there exists $a \cdot b \mid S$ such that $C_{n}=\left\langle a b^{-1}\right\rangle, \min \left\{\mathrm{v}_{a}(S), \mathrm{v}_{b}(S)\right\} \geq n-2 k+3$.
In particular, $|S|=2 n-2 \Rightarrow S=(a \cdot b)^{[n-1]}$.

## On the dihedral groups

Let $D_{2 n}=C_{n} \rtimes_{-1} C_{2}=\left\langle x, y \mid x^{2}=y^{n}=1, y x=x y^{-1}\right\rangle$ be the dihedral group of order $2 n$.

We have $\mathrm{d}\left(D_{2 n}\right)=n$ and $\mathrm{E}\left(D_{2 n}\right)=3 n$.
Proposition (inverse problem for $\mathrm{E}\left(D_{2 n}\right)$, Oh-Zhong 2020)
Let $n \geq 4$ and $S \in \mathcal{F}\left(D_{2 n}\right)$ of length $|S|=\mathrm{E}\left(D_{2 n}\right)-1=3 n-1$. Then $S$ is $2 n$-product-one free $\Longleftrightarrow \exists \alpha, \beta \in D_{2 n}, t_{1}, t_{2}, t_{3} \in \mathbb{Z}$ such that $D_{2 n} \cong\left\langle\alpha, \beta \mid \alpha^{2}=\beta^{n}=1, \beta \alpha=\alpha \beta^{-1}\right\rangle, \operatorname{gcd}\left(t_{1}-t_{2}, n\right)=1$ and

$$
S=\left(\beta^{t_{1}}\right)^{[2 n-1]} \cdot\left(\beta^{t_{2}}\right)^{[n-1]} \cdot \alpha \beta^{t_{3}} .
$$

## On the group $C_{n} \rtimes_{s} C_{2}$

Let

$$
G_{n, s}:=C_{n} \rtimes_{s} C_{2}=\left\langle x, y \mid x^{2}=y^{n}=1, y x=x y^{s}\right\rangle
$$

where $s^{2} \equiv 1(\bmod n)$ but $s \not \equiv \pm 1(\bmod n)$.
We have $\mathrm{d}\left(G_{n, s}\right)=n$ (trivial). The inverse problem consists of the sequences $\beta^{[n-1]} \cdot \alpha \beta^{t}$, where $G_{n, s}=\left\langle\alpha, \beta \mid \alpha^{2}=\beta^{n}=1, y x=x y^{s}\right\rangle$.

It is possible to factorize

$$
n=n_{1} n_{2},
$$

where $s \equiv-1\left(\bmod n_{1}\right)$ and $s \equiv 1\left(\bmod n_{2}\right)$.

## The main result

Theorem (Avelar-Brochero Martínez-R. 2023)
Let $n$ and $s$ be as before and suppose additionally that $n_{1} \geq 5$ when $n$ is odd. We have

$$
E\left(G_{n, s}\right)=3 n .
$$

Moreover, the $2 n$-product-one free sequences of length $3 n-1$ are

$$
S=\left(\beta^{t_{1}}\right)^{[2 n-1]} \cdot\left(\beta^{t_{2}}\right)^{[n-1]} \cdot \alpha \beta^{t_{3}} .
$$

We already have $\mathrm{E}\left(G_{n, s}\right) \geq \mathrm{d}\left(G_{n, s}\right)+|G|=3 n$.

## The case $n$ odd

Let $S \in \mathcal{F}\left(G_{n, s}\right)$ with $|S|=3 n$, where $n$ is odd and $n_{1} \geq 5$.
Let $H=\left\langle x, y^{n_{2}}\right\rangle \cong D_{2 n_{1}}, H \triangleleft G_{n, s}$, so that $G_{n, s} / H \cong C_{n_{2}}$.
Since $|S|>E\left(C_{n_{2}}\right)=2 n_{2}-1$, we may decompose

$$
S=T_{1} \cdot \ldots \cdot T_{3 n_{1}-1} \cdot R,
$$

where the $T_{i}$ 's are $n_{2}$-product- $H$ subsequences and $|R|=n_{2}$.
Since $3 n_{1}-1=\mathrm{E}(H)-1$, we use the inverse problem to ensure that if $h_{i} \in \pi\left(T_{i}\right)$, then w.l.o.g.

$$
h_{i}= \begin{cases}y^{t_{1} n_{2}} & \text { for } i \in\left[1,2 n_{1}-1\right], \\ y^{t_{2} n_{2}} & \text { for } i \in\left[2 n_{1}, 3 n_{1}-2\right] \\ x y^{t_{3} n_{2}} & \text { for } i=3 n_{1}-1 .\end{cases}
$$

Any decomposition of $S$ as before must satisfy the equality above.

Notice that

- $\pi\left(T_{i}\right)=\left\{h_{i}\right\}$ and $\left|\left(T_{i}\right)_{x\langle y\rangle}\right|$ is even for $i \in\left[1,3 n_{1}-2\right]$.
- $x y^{\alpha} \cdot x y^{\beta}=x y^{\beta} \cdot x y^{\alpha} \Longleftrightarrow \alpha \equiv \beta\left(\bmod n_{1}\right)$,
- $x y^{\alpha} \cdot y^{\gamma}=y^{\gamma} \cdot x y^{\alpha} \Longleftrightarrow \gamma \equiv 0\left(\bmod n_{1}\right)$.

It follows that if $\left|\left(T_{i}\right)_{x\langle y\rangle}\right|>0$, then $h_{i}=1$.
General idea: split into subcases and in each of them we guarantee we can avoid the sequence $h_{1} \cdot \ldots \cdot h_{3 n_{1}-1}$, by (for instance) changing the order of products or obtaining anoter term in $x\left\langle y^{n_{2}}\right\rangle$.

The inverse problem runs similarly.

## The case $n$ even

Suppose $n$ is even.
Let $H=\left\langle y^{n_{1}}\right\rangle \cong C_{n_{2}}, H \triangleleft G_{n, s}$, so that $G_{n, s} / H \cong D_{2 n_{1}}$.
It suffices to show that if $|S|=2 n$, then $S$ contains an $n$-product-one subsequence.

We may decompose $S=T_{1} \cdot \ldots \cdot T_{2 n_{2}-1} \cdot R$, where the $T_{i}$ 's are $n_{1}$-product- $H$ subsequences and $|R|=n_{1}$.

Since $\mathrm{E}(H)=2 n_{2}-1, S$ contains a $2 n$-product-one subsequence.
Therefore $\mathrm{E}\left(G_{n, s}\right)=3 n$.
The inverse problems run similarly.

## An open problem

Let $G_{m, n, s} \cong C_{n} \rtimes_{s} C_{m}$, where $\operatorname{ord}_{n}(s)=m$. Consider the following assertions.
(a) $\mathrm{E}\left(G_{m_{0}, n_{0}, s^{2}}\right)=m_{0} n_{0}+m_{0}+n_{0}-2$.
(b) If $S \in \mathcal{F}\left(G_{m_{0}, n_{0}, s^{2}}\right)$ has length $|S|=\mathrm{E}\left(G_{m_{0}, n_{0}, s^{2}}\right)-1$ and has no $m_{0} n_{0}$-product-one subsequence, then

$$
S=\left(y^{\alpha}\right)^{\left[\ell n_{0}-1\right]} \cdot\left(y^{\beta}\right)^{\left[m_{0} n_{0}+n_{0}-\ell n_{0}-1\right]} \cdot \prod_{1 \leq i \leq m_{0}-1}^{\bullet} x^{\omega} y^{\gamma_{i}}
$$

where $\operatorname{gcd}\left(\alpha-\beta, n_{0}\right)=1, \operatorname{gcd}\left(\omega, m_{0}\right)=1$ and $\ell \in\left[1, m_{0}\right]$.
It is proven that if (a) and (b) hold, then $\mathrm{E}\left(G_{m, n, s}\right)=m n+m+n-2$, where $m=2 m_{0}$ and $n=2 n_{0}$.

Assuming (a) and (b), can we solve the inverse problem?

That's all, folks. Thank you!

