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Zero-sum problems

Let G be a finite group multiplicatively written.

The zero-sum problems study conditions to ensure that a given se-
quence over G has a non-empty subsequence (with some prescribed
property which include lengths, weights, repetitions, etc) whose pro-
duct of the terms (in some order) equals 1, the identity of G .

The terminology “zero-sum problems” relies on the abelian groups,
where an additive notation is used.
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Sequences over groups
A sequence S over G is a finite and unordered element of the free
abelian monoid F(G ) equipped with the concatenation product de-
noted by ·.

S = g1 · . . . · gk =
•∏

g∈G
g [vg (S)] ∈ F(G ).

Remark: g2 is the square of g and g [2] = g · g is a two-terms
sequence.

T ∈ F(G ) is a subsequence of S if T | S as elements of F(G ), that
is, if vg (T ) ≤ vg (S) for every g ∈ G . In this case,

S · T [−1] =
•∏

g∈G
g [vg (S)−vg (T )].

If K ⊂ G , then let SK =
∏•

g∈K g [vg (S)].
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π(S) = {gτ(1). . .gτ(k); τ is a permutation of [1, k]} is the set of
products of S .

Π(S) =
⋃
T |S
|T |≥1

π(T ) ⊂ G is the set of subproducts of S .

We say that S is:

• product-one sequence if 1 ∈ π(S);

• n-product-one sequence if 1 ∈ π(S) and |S | = n;

• product-one free if 1 6∈ Π(S);

• n-product-one free if 1 6∈ π(T ) for any T | S with |T | = n.
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The invariants

The small Davenport constant of G is defined by

d(G ) := sup{|S |; S ∈ F(G ) is product-one free}.

The Gao constant of G , E(G ), is the smallest positive integer such
that every sequence S ∈ F(G ) with |S | ≥ E(G ) has a |G |-product-
one subsequence.

• E(G ) ≥ d(G ) + |G |.

Gao conjecture: equality holds.

It has been proven for abelian groups.
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The direct and inverse problems

Fixed a finite group G , the direct problems consist on obtaining the
precise values of the constants, while the inverse problems consist
on obtaining the structure of (|G |-)product-one free sequences of
large (or maximal) length.

Goal: introduce the inductive method to obtain the direct and in-
verse problems over non-abelian groups.
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On the cyclic groups

Let Cn = 〈y | yn = 1〉 the cyclic group of order n.

We have d(Cn) = n − 1 and E(Cn) = 2n − 1.

Proposition (inverse problem for E(Cn), Gao 1997)

Let n ≥ 2 and S ∈ F(Cn) with |S | = 2n − k, where 2 ≤ k ≤
bn/2c+ 2. If S is n-product-one free, then there exists a ·b | S such
that Cn = 〈ab−1〉, min{va(S), vb(S)} ≥ n − 2k + 3.

In particular, |S | = 2n − 2⇒ S = (a · b)[n−1].



Zero-sum problems The invariants On the group Cn os C2 An open problem

On the dihedral groups

Let D2n = Cn o−1 C2 = 〈x , y | x2 = yn = 1, yx = xy−1〉 be the dihe-
dral group of order 2n.

We have d(D2n) = n and E(D2n) = 3n.

Proposition (inverse problem for E(D2n), Oh–Zhong 2020)

Let n ≥ 4 and S ∈ F(D2n) of length |S | = E(D2n)−1 = 3n−1.
Then S is 2n-product-one free ⇐⇒ ∃α, β ∈ D2n, t1, t2, t3 ∈ Z such
that D2n

∼= 〈α, β | α2 =βn =1, βα=αβ−1〉, gcd(t1− t2, n) = 1 and

S = (βt1)[2n−1] · (βt2)[n−1] · αβt3 .
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On the group Cn os C2

Let

Gn,s := Cn os C2 = 〈x , y | x2 = yn = 1, yx = xy s〉,

where s2 ≡ 1 (mod n) but s 6≡ ±1 (mod n).

We have d(Gn,s) = n (trivial). The inverse problem consists of the
sequences β[n−1] · αβt , where Gn,s =〈α, β | α2 =βn =1, yx =xy s〉.

It is possible to factorize

n = n1n2,

where s ≡ −1 (mod n1) and s ≡ 1 (mod n2).
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The main result

Theorem (Avelar–Brochero Mart́ınez–R. 2023)

Let n and s be as before and suppose additionally that n1 ≥ 5 when
n is odd. We have

E(Gn,s) = 3n.

Moreover, the 2n-product-one free sequences of length 3n − 1 are

S = (βt1)[2n−1] · (βt2)[n−1] · αβt3 .

We already have E(Gn,s) ≥ d(Gn,s) + |G | = 3n.
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The case n odd

Let S ∈ F(Gn,s) with |S | = 3n, where n is odd and n1 ≥ 5.

Let H = 〈x , yn2〉 ∼= D2n1 , H C Gn,s , so that Gn,s/H ∼= Cn2 .

Since |S | > E(Cn2) = 2n2 − 1, we may decompose

S = T1 · . . . · T3n1−1 · R,

where the Ti ’s are n2-product-H subsequences and |R| = n2.

Since 3n1 − 1 = E(H) − 1, we use the inverse problem to ensure
that if hi ∈ π(Ti ), then w.l.o.g.

hi =


y t1n2 for i ∈ [1, 2n1 − 1],

y t2n2 for i ∈ [2n1, 3n1 − 2],

xy t3n2 for i = 3n1 − 1.

Any decomposition of S as before must satisfy the equality above.
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Notice that

• π(Ti ) = {hi} and |(Ti )x〈y〉| is even for i ∈ [1, 3n1 − 2].

• xyα · xyβ = xyβ · xyα ⇐⇒ α ≡ β (mod n1),

• xyα · yγ = yγ · xyα ⇐⇒ γ ≡ 0 (mod n1).

It follows that if |(Ti )x〈y〉| > 0, then hi = 1.

General idea: split into subcases and in each of them we guarantee
we can avoid the sequence h1 ·. . .·h3n1−1, by (for instance) changing
the order of products or obtaining anoter term in x〈yn2〉.

The inverse problem runs similarly. �
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The case n even

Suppose n is even.

Let H =〈yn1〉∼=Cn2 , H C Gn,s , so that Gn,s/H∼=D2n1 .

It suffices to show that if |S | = 2n, then S contains an n-product-one
subsequence.

We may decompose S = T1 · . . . · T2n2−1 · R, where the Ti ’s are
n1-product-H subsequences and |R| = n1.

Since E(H) = 2n2 − 1, S contains a 2n-product-one subsequence.

Therefore E(Gn,s) = 3n.

The inverse problems run similarly. �
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An open problem

Let Gm,n,s
∼= Cn os Cm, where ordn(s) = m. Consider the following

assertions.

(a) E(Gm0,n0,s2) = m0n0 + m0 + n0 − 2.

(b) If S ∈ F(Gm0,n0,s2) has length |S | = E(Gm0,n0,s2)− 1 and has
no m0n0-product-one subsequence, then

S = (yα)[`n0−1] · (yβ)[m0n0+n0−`n0−1] ·
•∏

1≤i≤m0−1
xωyγi ,

where gcd(α− β, n0) = 1, gcd(ω,m0) = 1 and ` ∈ [1,m0].

It is proven that if (a) and (b) hold, then E(Gm,n,s) = mn+m+n−2,
where m = 2m0 and n = 2n0.

Assuming (a) and (b), can we solve the inverse problem?
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That’s all, folks. Thank you!


	Zero-sum problems
	Zero-sum problems

	The invariants
	The invariants

	On the group Cn s C2
	On the group Cn s C2

	An open problem
	An open problem


