The invariants 0000 On the group $C_n \rtimes_s C_2$ 00000 An open problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

On the zero-sum invariants over $C_n \rtimes_s C_2$

Conference on Rings and Factorizations

Sávio Ribas

Partially supported by FAPEMIG (RED-00133-21 and APQ-02546-21) and NAWI Graz

Universidade Federal de Ouro Preto, Brazil (permanent) University of Graz (current)

Graz, July 10-14, 2023

The invariants

On the group $C_n \rtimes_s C_2$ 00000 An open problem 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- 1. Zero-sum problems
- 2. The invariants
- 3. On the group $C_n \rtimes_s C_2$
- 4. An open problem

The invariant

On the group $C_n \rtimes_s C_2$ 00000 An open problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Zero-sum problems

Let G be a finite group multiplicatively written.

The zero-sum problems study conditions to ensure that a given sequence over G has a non-empty subsequence (with some prescribed property which include lengths, weights, repetitions, etc) whose product of the terms (in some order) equals 1, the identity of G.

The terminology "zero-sum problems" relies on the abelian groups, where an additive notation is used.

The invariants 0000 On the group $C_n \rtimes_s C_2$ 00000 An open problem

Sequences over groups

A sequence S over G is a finite and unordered element of the free abelian monoid $\mathcal{F}(G)$ equipped with the concatenation product denoted by \cdot .

$$S = g_1 \cdot \ldots \cdot g_k = \prod_{g \in G}^{\bullet} g^{[\mathsf{v}_g(S)]} \in \mathcal{F}(G).$$

Remark: g^2 is the square of g and $g^{[2]} = g \cdot g$ is a two-terms sequence.

 $T \in \mathcal{F}(G)$ is a subsequence of S if $T \mid S$ as elements of $\mathcal{F}(G)$, that is, if $v_g(T) \leq v_g(S)$ for every $g \in G$. In this case,

$$S \cdot T^{[-1]} = \prod_{g \in G}^{\bullet} g^{[\mathsf{v}_g(S) - \mathsf{v}_g(T)]}.$$

If $K \subset G$, then let $S_K = \prod_{g \in K}^{\bullet} g^{[v_g(S)]}$.

The invariants

On the group $C_n \rtimes_s C_2$ 00000 An open problem 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\pi(S) = \{g_{\tau(1)} \dots g_{\tau(k)}; \tau \text{ is a permutation of } [1, k]\}\$ is the set of products of S.

$$\Pi(S) = \bigcup_{\substack{T \mid S \\ |T| \ge 1}} \pi(T) \subset G \text{ is the set of subproducts of } S.$$

We say that S is:

- product-one sequence if $1 \in \pi(S)$;
- *n*-product-one sequence if $1 \in \pi(S)$ and |S| = n;
- product-one free if $1 \notin \Pi(S)$;
- *n*-product-one free if $1 \notin \pi(T)$ for any $T \mid S$ with |T| = n.

The invariants

On the group $C_n \rtimes_s C_2$ 00000 An open problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

The invariants

The small Davenport constant of G is defined by

 $d(G) := \sup\{|S|; S \in \mathcal{F}(G) \text{ is product-one free}\}.$

The Gao constant of G, E(G), is the smallest positive integer such that every sequence $S \in \mathcal{F}(G)$ with $|S| \ge E(G)$ has a |G|-product-one subsequence.

• $E(G) \ge d(G) + |G|$.

Gao conjecture: equality holds.

It has been proven for abelian groups.

The invariants

On the group $C_n \rtimes_s C_2$ 00000 An open problem 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The direct and inverse problems

Fixed a finite group G, the direct problems consist on obtaining the precise values of the constants, while the inverse problems consist on obtaining the structure of (|G|-)product-one free sequences of large (or maximal) length.

Goal: introduce the inductive method to obtain the direct and inverse problems over non-abelian groups.

The invariants

On the group $C_n \rtimes_s C_2$ 00000 An open problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

On the cyclic groups

Let $C_n = \langle y \mid y^n = 1 \rangle$ the cyclic group of order *n*. We have $d(C_n) = n - 1$ and $E(C_n) = 2n - 1$.

Proposition (inverse problem for $E(C_n)$, Gao 1997) Let $n \ge 2$ and $S \in \mathcal{F}(C_n)$ with |S| = 2n - k, where $2 \le k \le \lfloor n/2 \rfloor + 2$. If S is n-product-one free, then there exists $a \cdot b \mid S$ such that $C_n = \langle ab^{-1} \rangle$, $\min\{v_a(S), v_b(S)\} \ge n - 2k + 3$.

In particular, $|S| = 2n - 2 \Rightarrow S = (a \cdot b)^{[n-1]}$.

The invariants

On the group $C_n \rtimes_s C_2$ 00000 An open problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

On the dihedral groups

Let $D_{2n} = C_n \rtimes_{-1} C_2 = \langle x, y \mid x^2 = y^n = 1, yx = xy^{-1} \rangle$ be the dihedral group of order 2n.

We have $d(D_{2n}) = n$ and $E(D_{2n}) = 3n$.

Proposition (inverse problem for $E(D_{2n})$, Oh–Zhong 2020) Let $n \ge 4$ and $S \in \mathcal{F}(D_{2n})$ of length $|S| = E(D_{2n}) - 1 = 3n - 1$. Then S is 2n-product-one free $\iff \exists \alpha, \beta \in D_{2n}, t_1, t_2, t_3 \in \mathbb{Z}$ such that $D_{2n} \cong \langle \alpha, \beta \mid \alpha^2 = \beta^n = 1, \beta \alpha = \alpha \beta^{-1} \rangle$, $gcd(t_1 - t_2, n) = 1$ and

$$S = (\beta^{t_1})^{[2n-1]} \cdot (\beta^{t_2})^{[n-1]} \cdot \alpha \beta^{t_3}$$

The invariants 2000 On the group $C_n \rtimes_s C_2$ •••••• An open problem

On the group $C_n \rtimes_s C_2$

Let

$$G_{n,s} := C_n \rtimes_s C_2 = \langle x, y \mid x^2 = y^n = 1, yx = xy^s \rangle,$$

where $s^2 \equiv 1 \pmod{n}$ but $s \not\equiv \pm 1 \pmod{n}$.

We have $d(G_{n,s}) = n$ (trivial). The inverse problem consists of the sequences $\beta^{[n-1]} \cdot \alpha \beta^t$, where $G_{n,s} = \langle \alpha, \beta \mid \alpha^2 = \beta^n = 1, yx = xy^s \rangle$.

It is possible to factorize

 $n = n_1 n_2$,

where $s \equiv -1 \pmod{n_1}$ and $s \equiv 1 \pmod{n_2}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

The invariant

On the group $C_n \rtimes_s C_2$ $0 \bullet 0 \circ 0$ An open problem

The main result

Theorem (Avelar–Brochero Martínez–R. 2023)

Let n and s be as before and suppose additionally that $n_1 \geq 5$ when n is odd. We have

 $\mathsf{E}(G_{n,s})=3n.$

Moreover, the 2n-product-one free sequences of length 3n - 1 are

$$S = (\beta^{t_1})^{[2n-1]} \cdot (\beta^{t_2})^{[n-1]} \cdot \alpha \beta^{t_3}.$$

We already have $E(G_{n,s}) \ge d(G_{n,s}) + |G| = 3n$.

The invariant

On the group $C_n \rtimes_s C_2$ 00000 An open problem

The case *n* odd

Let $S \in \mathcal{F}(G_{n,s})$ with |S| = 3n, where n is odd and $n_1 \ge 5$.

Let $H = \langle x, y^{n_2} \rangle \cong D_{2n_1}$, $H \lhd G_{n,s}$, so that $G_{n,s}/H \cong C_{n_2}$.

Since $|S| > E(C_{n_2}) = 2n_2 - 1$, we may decompose

 $S=T_1\boldsymbol{\cdot}\ldots\boldsymbol{\cdot} T_{3n_1-1}\boldsymbol{\cdot} R,$

where the T_i 's are n_2 -product-H subsequences and $|R| = n_2$. Since $3n_1 - 1 = E(H) - 1$, we use the inverse problem to ensure that if $h_i \in \pi(T_i)$, then w.l.o.g.

$$h_i = \begin{cases} y^{t_1 n_2} & \text{ for } i \in [1, 2n_1 - 1], \\ y^{t_2 n_2} & \text{ for } i \in [2n_1, 3n_1 - 2], \\ xy^{t_3 n_2} & \text{ for } i = 3n_1 - 1. \end{cases}$$

Any decomposition of S as before must satisfy the equality above.

o-sum problems	The invariants
0	0000

On the group $C_n \rtimes_s C_2$ 00000 An open problem 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

Notice that

- $\pi(T_i) = \{h_i\}$ and $|(T_i)_{x\langle y\rangle}|$ is even for $i \in [1, 3n_1 2]$.
- $xy^{\alpha} \cdot xy^{\beta} = xy^{\beta} \cdot xy^{\alpha} \iff \alpha \equiv \beta \pmod{n_1},$
- $xy^{\alpha} \cdot y^{\gamma} = y^{\gamma} \cdot xy^{\alpha} \iff \gamma \equiv 0 \pmod{n_1}.$

It follows that if $|(T_i)_{x\langle y\rangle}| > 0$, then $h_i = 1$.

General idea: split into subcases and in each of them we guarantee we can avoid the sequence $h_1 \cdot \ldots \cdot h_{3n_1-1}$, by (for instance) changing the order of products or obtaining anoter term in $x \langle y^{n_2} \rangle$.

The inverse problem runs similarly.

The invariant

On the group $C_n \rtimes_s C_2$ 0000 An open problem

The case *n* even

Suppose *n* is even.

Let $H = \langle y^{n_1} \rangle \cong C_{n_2}$, $H \lhd G_{n,s}$, so that $G_{n,s}/H \cong D_{2n_1}$.

It suffices to show that if |S| = 2n, then S contains an *n*-product-one subsequence.

We may decompose $S = T_1 \cdot \ldots \cdot T_{2n_2-1} \cdot R$, where the T_i 's are n_1 -product-H subsequences and $|R| = n_1$.

Since $E(H) = 2n_2 - 1$, S contains a 2*n*-product-one subsequence.

Therefore $E(G_{n,s}) = 3n$.

The inverse problems run similarly.

The invariants

On the group $C_n \rtimes_s C_2$ 00000 An open problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ●

An open problem

Let $G_{m,n,s} \cong C_n \rtimes_s C_m$, where $ord_n(s) = m$. Consider the following assertions.

(a)
$$E(G_{m_0,n_0,s^2}) = m_0 n_0 + m_0 + n_0 - 2.$$

(b) If $S \in \mathcal{F}(G_{m_0,n_0,s^2})$ has length $|S| = E(G_{m_0,n_0,s^2}) - 1$ and has no $m_0 n_0$ -product-one subsequence, then
 $S = (y^{\alpha})^{[\ell n_0 - 1]} \cdot (y^{\beta})^{[m_0 n_0 + n_0 - \ell n_0 - 1]} \cdot \prod_{1 \le i \le m_0 - 1}^{\bullet} x^{\omega} y^{\gamma_i},$

where $gcd(\alpha - \beta, n_0) = 1$, $gcd(\omega, m_0) = 1$ and $\ell \in [1, m_0]$.

It is proven that if (a) and (b) hold, then $E(G_{m,n,s}) = mn+m+n-2$, where $m = 2m_0$ and $n = 2n_0$.

Assuming (a) and (b), can we solve the inverse problem?

The invariants 0000 On the group $C_n \rtimes_s C_2$ 00000 An open problem

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

That's all, folks. Thank you!