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Frames and topological spaces: adjoint functors
A frame is a complete lattice which satisfies the infinite distributive law:

a ∧ ∨
s∈S

s = ∨
s∈S

(a ∧ s).

A frame map is a lattice map that preserves arbitrary joins. The category of
frames and frame maps is denoted by Frm.

Open sets of any topological space form a frame with join operation given by
∪ and finite meet given by ∩:

Top −→ Frmop

point of a frame: frame map x : F −→ {0, 1} where {0, 1} is the Boolean alg.
set of points of any frame form a topological space with open sets of the
form Ω(u) = {x : F −→ {0, 1} | x(u) = 1} for any u ∈ F :

Frmop −→ Top

adjoint functors
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Spectral spaces and coherent frames

To what extent is a topological space characterized by its frame of open sets?

True for sobar spaces (every irreducible closed subset has an unique generic
pt)
Spectral spaces: a compact sober space for which the collection of compact
open subsets is closed under finite intersections and forms a base for the top.
Spectral spaces are in fact spaces homeomorphic to the spectrum of a
commutative ring (Hochster).
The adjuction restricted to spectral spaces gives an equivalence with
”coherent” frames.
an element a of a frame F is finite if for every subset S ⊆ F with a ≤ ∨

s∈S
s, ∃

a finite subset S ′ ⊆ S with a ≤ ∨
s∈S′

s. A frame is called coherent if every
element of the frame can be expressed as a join of finite elements and the
finite elements form a sublattice.

Spectral spaces ≡ Coherent frames
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Hochster dual

For a spectral space X ,
Hochster considered a new topology on X by taking as basic open subsets
the closed sets with quasi-compact complements.
The space so obtained called Hochster dual of X and denoted by X∨.
It is also a spectral space.

4 / 18



Motivation and Overview
P. Balmer, The spectrum of prime ideals in tensor triangulated categories, J.
Reine Angew. Math., Vol. 588, 149–168 (2005).

Tensor triangulated category:
(1) triangulated category T (additive cat + shift functor Σ : T

∼=−→ T + a class of
so-called exact triangle ∆ = (a −→ b −→ c −→ Σa) satisfying some axioms)

(2) equipped with a monoidal structure ⊗ : T −→ T (i.e., associative and has
unit) s.t −⊗− is biexact.

(3) monoidal structure is symmetric i.e., a ⊗ b ∼= b ⊗ a

The ⊗ allows one to define a notion of ”prime ideal” of a TT-cat.
Paul Balmer introduced the notion of spectrum Spec(T) of TT-cat: all prime
ideals endowed with a Zariski-like topology.
Why is this Spec(T) interesting?
In general, classification of all objects of T is a wild problem.
However, Balmer showed that using subsets of Spec(T), one can always
classify objects of T modulo the basic operation: : cones, direct summands
and tensor product.
Precisely, “Thomason subsets” of Spec(T) ↔ ”radical thick ⊗ ideals” of T.
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Motivation and Overview

J. Kock, W. Pitsch, Hochster duality in derived categories and point-free
reconstruction of schemes , Trans. Amer. Math. Soc., Vol. 369, no.1,
223–261(2017).

Later, Koch and Pitsch revisited Balmer’s theory from the viewpoint of
”frames”.
and provided a substantial simplification of the theory through a conceptual
way of understanding the spectrum.
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Motivation

D.K. Nakano, K. B. Vashaw, M.T. Yakimov, Noncommutative Tensor Triangular
Geometry and the Tensor Product Property for Support Maps, International
Mathematics Research Notices, Vol. 2022, no. 22, 17766–17796 (2021).

Introduced a notion of spectrum of a noncomm. TT cat.
provided similar classification of thick ⊗ ideals following Balmer.
Question: Can Koch and Pitsch’s point free approach be used in this
noncomm. setup? Will it simplify the classification?
We show that it is possible under an assumption which is satisfied by a large
class of non-comm. TT categories.
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Noncomm. Balmer’s spectrum(Nakano, Vashaw, Yakimov)
triangulated subcat K ⊆ T: for every a −→ b −→ c −→ Σa in T, if two out
of a, b, c belongs to K, so does the third.

thick subcat: triangulated + a ⊕ b ∈ K =⇒ a, b ∈ K
thick ⊗-ideal : thick subcat K s.t for all a ∈ K, both a ⊗ b, b ⊗ a ∈ K for all
b ∈ T
prime ideal : proper thick ⊗-ideal P of T s.t for all thick tensor ideals I and J
of T,

I⊗ J ⊆ P =⇒ I ⊆ P or J ⊆ P
We denote by Spc(T) the collection of all prime ideals of T.
complete prime ideal : prime ideals which also satisfies

a ⊗ b ∈ P =⇒ a ∈ P or b ∈ P

The noncomm. NVY spectrum Spc(K): collection of prime ideals of K
endowed with Zariski-like topology given by closed sets of the form

V (S) = {P ∈ Spc(K) | P ∩ S = ∅}

for all subsets S of K.
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Noncomm. support datum and universal property
Let Xcl (X ) denote the collection of all closed subsets of a topological space X .

Definition (Nakano, Vashaw, Yakimov)
A (noncommutative) support datum on T is a pair (X , σ) where X is a top space
and σ is a map T −→ Xcl (X ) s.t:
(1) σ(0) = ∅ and σ(1) = X
(2) σ(a ⊕ b) = σ(a) ∪ σ(b), ∀a, b ∈ Ob(T)
(3) σ(

∑
a) = σ(a), ∀a ∈ Ob(T)

(4) If a −→ B −→ c −→
∑

a is a distinguished triangle, then σ(a) ⊆ σ(b)∪σ(c)
(5)

⋃
c∈Ob(K) σ(a ⊗ c ⊗ b) = σ(a) ∩ σ(b), ∀a, b ∈ T

V : T −→ Xcl (Spc(T)), a 7→ supp(a) gives a support datum.

Theorem (Nakano, Vashaw, Yakimov)
The support V is final among all the support data σ of K such that σ(A) is closed
for each A ∈ Ob(T).
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Radical ideals form a frame
Borrowing idea from noncomm. ring theory, we defined

Definition (−, Mallick)
The radical closure of a thick tensor ideal I of a noncomm. tt-category K:

√
I :=

⋂
I⊆P

P

where P denotes prime ideals of K. If I is s.t I =
√

I, we call I radical.

Assumption : All primes of K are complete primes.

Proposition (−, Mallick)
Let RadK denote poset of radical ideals of a noncomm. tt-category K satisfying
Assumption. Then, RadK is a frame with following meet and join operations:

I1
∧

I2 := I1
⋂

I2
∨
j∈J

Ij :=
√⋃

j∈J
Ij
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Radical ideals form a coherent frame

Let S be a set of objects in a noncomm. tt-category K. We define G(S) to be the
set of objects of the forms:
(1) an iterated suspension or desuspension of an object in S,
(2) or a finite sum of objects in S,
(3) or objects of the form s ⊗ t and t ⊗ s with s ∈ S and t ∈ K,
(4) or an extension of two objects in S,
(5) or a direct summand of an object in S.
If I is a thick tensor ideal containing S, then clearly G(S) ⊆ I. Hence, by
induction, Gω(S) :=

⋃
n∈N Gn(S) ⊆ I. It may be easily verified that Gω(S) is

itself a thick tensor ideal and therefore it is the smallest thick tensor ideal
containing S. We will denote it by 〈S〉.

Proposition (−, Mallick)

Let I be a thick ⊗-ideal of K. Then,
√

I = 〈{k ∈ K | k⊗n ∈ I for some n ∈ N}〉.
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Radical ideals form a coherent frame (cont.)

Theorem (−, Mallick)
The poset of radical ideals RadK of a noncomm. tt-category K satisfying
Assumption forms a coherent frame.

Zariski spectrum: SpecRad(K) the spectral space associated to RadK
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Classification: Spc(K) and radical ideals

Theorem (−, Mallick)
Let K be a noncomm. tt-category satisfying Assumption. Then,
(1) the frame-theoretic points of RadK correspond bijectively to prime thick

tensor ideals in K.
(2) Under the above correspondence, a finite element

√
k of RadK corresponds

to the set of prime thick tensor ideals {P ∈ Spc(K) | k /∈ P}.

Corollary (−, Mallick)
Let K be a noncomm. tt-category satisfying Assumption. The noncomm.
Balmer’s spectrum Spc(K) of K is the Hochster dual of the Zariski spectrum
SpecRad(K).
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Support and universal property
we introduce a notion of support for a noncomm. tt-category:

Definition (−, Mallick)
A support on K is a pair (F , d) where F is a frame and d : Ob(K) −→ F is a map
satisfying:
(1) d(0) = 0 and d(1) = 1
(2) d(

∑
k) = d(k) ∀k ∈ K

(3) d(k ⊕ t) = d(k) ∨ d(t) ∀k, t ∈ K
(4) d(k ⊗ t) = d(k) ∧ d(t) = d(t ⊗ k) ∀k, t ∈ K
(5) If k −→ t −→ r −→

∑
k is a triangle in K, then d(t) ≤ d(k) ∨ d(r)

Theorem (−, Mallick)
Let K be a noncomm. tt-category satisfying Assumption.

Then the assignment s : Ob(K) −→ RadK, k 7→
√

k is a support. Moreover,
it is initial among all supports.
From this frame theoretic support datum, one can reconstruct the support
datum on Spc(K) as described by NVY.
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Nullstellensatz-like result

Classical fact: closed subspaces of Spec(R) ←→ radical ideals of R

Finocchiaro, Fontana and Spirito: this bijection is indeed a homeomorphism.

Banerjee: radical thick ⊗-ideals of a tt-category T homeo←−−→ open subsets of
Spec(T) in inverse topology.

Theorem (−, Mallick)
Let K be a noncomm. tt-category satisfying Assumption. The following spaces
are spectral and there is a homeomorphism between them:
(1) The frame RadK of radical thick tensor ideals of K endowed with the

topology generated by the open sets

{I ∈ RadK | k /∈ I} ∀ k ∈ K. (1)

(2) The poset Ω(Spc(K)∨) of open subsets of Spc(K)∨ (or equivalently, open
subsets of SpecZar (K)) endowed with the topology generated by the open sets

{V ∈ Ω(Spc(K)∨) | V + U} ∀ U ∈ Ω(Spc(K)∨). (2)
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Question:

Can we remove the Assumption?
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Thank You!
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