Noncommutative tensor triangulated categories and coherent frames

Samarpita Ray

ISI Bangalore, India

Conference on Rings and Factorizations 2023 University of Graz, Austria

July 12, 2023

• A *frame* is a complete lattice which satisfies the infinite distributive law:

$$a \wedge \bigvee_{s \in S} s = \bigvee_{s \in S} (a \wedge s).$$

A frame map is a lattice map that preserves arbitrary joins. The category of frames and frame maps is denoted by **Frm**.

• A *frame* is a complete lattice which satisfies the infinite distributive law:

$$a \wedge \bigvee_{s \in S} s = \bigvee_{s \in S} (a \wedge s).$$

A frame map is a lattice map that preserves arbitrary joins. The category of frames and frame maps is denoted by **Frm**.

• Open sets of any topological space form a frame with join operation given by \cup and finite meet given by \cap :

$$\mathbf{Top} \longrightarrow \mathbf{Frm}^{op}$$

• A *frame* is a complete lattice which satisfies the infinite distributive law:

$$a \wedge \bigvee_{s \in S} s = \bigvee_{s \in S} (a \wedge s).$$

A frame map is a lattice map that preserves arbitrary joins. The category of frames and frame maps is denoted by **Frm**.

• Open sets of any topological space form a frame with join operation given by \cup and finite meet given by \cap :

$$Top \longrightarrow Frm^{op}$$

• *point* of a frame: frame map $x : F \longrightarrow \{0,1\}$ where $\{0,1\}$ is the Boolean alg.

• A *frame* is a complete lattice which satisfies the infinite distributive law:

$$a \wedge \bigvee_{s \in S} s = \bigvee_{s \in S} (a \wedge s).$$

A frame map is a lattice map that preserves arbitrary joins. The category of frames and frame maps is denoted by **Frm**.

• Open sets of any topological space form a frame with join operation given by \cup and finite meet given by \cap :

$$\mathbf{Top} \longrightarrow \mathbf{Frm}^{op}$$

- *point* of a frame: frame map $x : F \longrightarrow \{0, 1\}$ where $\{0, 1\}$ is the Boolean alg.
- set of points of any frame form a topological space with open sets of the form Ω(u) = {x : F → {0,1} | x(u) = 1} for any u ∈ F:

$$\operatorname{Frm}^{op} \longrightarrow \operatorname{Top}$$

• A *frame* is a complete lattice which satisfies the infinite distributive law:

$$a \wedge \bigvee_{s \in S} s = \bigvee_{s \in S} (a \wedge s).$$

A frame map is a lattice map that preserves arbitrary joins. The category of frames and frame maps is denoted by **Frm**.

• Open sets of any topological space form a frame with join operation given by \cup and finite meet given by \cap :

$$\mathbf{Top} \longrightarrow \mathbf{Frm}^{op}$$

- *point* of a frame: frame map $x : F \longrightarrow \{0, 1\}$ where $\{0, 1\}$ is the Boolean alg.
- set of points of any frame form a topological space with open sets of the form Ω(u) = {x : F → {0,1} | x(u) = 1} for any u ∈ F:

$$\operatorname{Frm}^{op} \longrightarrow \operatorname{Top}$$

adjoint functors

• To what extent is a topological space characterized by its frame of open sets?

- To what extent is a topological space characterized by its frame of open sets?
- True for *sobar spaces* (every irreducible closed subset has an unique generic pt)

- To what extent is a topological space characterized by its frame of open sets?
- True for *sobar spaces* (every irreducible closed subset has an unique generic pt)
- Spectral spaces: a compact sober space for which the collection of compact open subsets is closed under finite intersections and forms a base for the top.

- To what extent is a topological space characterized by its frame of open sets?
- True for *sobar spaces* (every irreducible closed subset has an unique generic pt)
- Spectral spaces: a compact sober space for which the collection of compact open subsets is closed under finite intersections and forms a base for the top.
- Spectral spaces are in fact spaces homeomorphic to the spectrum of a commutative ring (Hochster).

- To what extent is a topological space characterized by its frame of open sets?
- True for *sobar spaces* (every irreducible closed subset has an unique generic pt)
- Spectral spaces: a compact sober space for which the collection of compact open subsets is closed under finite intersections and forms a base for the top.
- Spectral spaces are in fact spaces homeomorphic to the spectrum of a commutative ring (Hochster).
- The adjuction restricted to spectral spaces gives an equivalence with "coherent" frames.

- To what extent is a topological space characterized by its frame of open sets?
- True for *sobar spaces* (every irreducible closed subset has an unique generic pt)
- Spectral spaces: a compact sober space for which the collection of compact open subsets is closed under finite intersections and forms a base for the top.
- Spectral spaces are in fact spaces homeomorphic to the spectrum of a commutative ring (Hochster).
- The adjuction restricted to spectral spaces gives an equivalence with "coherent" frames.
- an element *a* of a frame *F* is *finite* if for every subset $S \subseteq F$ with $a \leq \bigvee_{s \in S} s$, \exists a finite subset $S' \subseteq S$ with $a \leq \bigvee_{s \in S'} s$. A frame is called *coherent* if every element of the frame can be expressed as a join of finite elements and the finite elements form a sublattice.

- To what extent is a topological space characterized by its frame of open sets?
- True for *sobar spaces* (every irreducible closed subset has an unique generic pt)
- Spectral spaces: a compact sober space for which the collection of compact open subsets is closed under finite intersections and forms a base for the top.
- Spectral spaces are in fact spaces homeomorphic to the spectrum of a commutative ring (Hochster).
- The adjuction restricted to spectral spaces gives an equivalence with "coherent" frames.
- an element *a* of a frame *F* is *finite* if for every subset $S \subseteq F$ with $a \leq \bigvee_{s \in S} s$, \exists a finite subset $S' \subseteq S$ with $a \leq \bigvee_{s \in S'} s$. A frame is called *coherent* if every element of the frame can be expressed as a join of finite elements and the finite elements form a sublattice.

Spectral spaces
$$\equiv$$
 Coherent frames

For a spectral space X,

- Hochster considered a new topology on X by taking as basic open subsets the closed sets with quasi-compact complements.
- The space so obtained called *Hochster dual* of X and denoted by X^{\vee} .
- It is also a spectral space.

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

Tensor triangulated category:

triangulated category T (additive cat + shift functor Σ : T → T + a class of so-called exact triangle Δ = (a → b → c → Σa) satisfying some axioms)

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

- (1) triangulated category **T** (additive cat + shift functor $\Sigma : \mathbf{T} \xrightarrow{\cong} \mathbf{T}$ + a class of so-called exact triangle $\Delta = (a \longrightarrow b \longrightarrow c \longrightarrow \Sigma a)$ satisfying some axioms)
- (2) equipped with a monoidal structure $\otimes : \mathbf{T} \longrightarrow \mathbf{T}$ (i.e., associative and has unit) s.t $\otimes -$ is biexact.

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

- triangulated category T (additive cat + shift functor Σ : T → T + a class of so-called exact triangle Δ = (a → b → c → Σa) satisfying some axioms)
- (2) equipped with a monoidal structure $\otimes : \mathbf{T} \longrightarrow \mathbf{T}$ (i.e., associative and has unit) s.t $\otimes -$ is biexact.
- (3) monoidal structure is symmetric i.e., $a \otimes b \cong b \otimes a$

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

- triangulated category T (additive cat + shift functor Σ : T → T + a class of so-called exact triangle Δ = (a → b → c → Σa) satisfying some axioms)
- (2) equipped with a monoidal structure $\otimes : \mathbf{T} \longrightarrow \mathbf{T}$ (i.e., associative and has unit) s.t $\otimes -$ is biexact.
- (3) monoidal structure is symmetric i.e., $a \otimes b \cong b \otimes a$
 - $\bullet\,$ The $\otimes\,$ allows one to define a notion of "prime ideal" of a TT-cat.

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

- (1) triangulated category **T** (additive cat + shift functor $\Sigma : \mathbf{T} \xrightarrow{\cong} \mathbf{T}$ + a class of so-called exact triangle $\Delta = (a \longrightarrow b \longrightarrow c \longrightarrow \Sigma a)$ satisfying some axioms)
- (2) equipped with a monoidal structure $\otimes : \mathbf{T} \longrightarrow \mathbf{T}$ (i.e., associative and has unit) s.t $\otimes -$ is biexact.
- (3) monoidal structure is symmetric i.e., $a \otimes b \cong b \otimes a$
 - $\bullet\,$ The $\otimes\,$ allows one to define a notion of "prime ideal" of a TT-cat.
 - Paul Balmer introduced the notion of *spectrum Spec*(**T**) of TT-cat: all prime ideals endowed with a Zariski-like topology.

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

- triangulated category T (additive cat + shift functor Σ : T → T + a class of so-called exact triangle Δ = (a → b → c → Σa) satisfying some axioms)
- (2) equipped with a monoidal structure $\otimes : \mathbf{T} \longrightarrow \mathbf{T}$ (i.e., associative and has unit) s.t $\otimes -$ is biexact.
- (3) monoidal structure is symmetric i.e., $a \otimes b \cong b \otimes a$
 - ${ullet}$ The \otimes allows one to define a notion of "prime ideal" of a TT-cat.
 - Paul Balmer introduced the notion of *spectrum Spec*(**T**) of TT-cat: all prime ideals endowed with a Zariski-like topology.
 - Why is this Spec(**T**) interesting?

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

- triangulated category T (additive cat + shift functor Σ : T → T + a class of so-called exact triangle Δ = (a → b → c → Σa) satisfying some axioms)
- (2) equipped with a monoidal structure $\otimes : \mathbf{T} \longrightarrow \mathbf{T}$ (i.e., associative and has unit) s.t $\otimes -$ is biexact.
- (3) monoidal structure is symmetric i.e., $a \otimes b \cong b \otimes a$
 - $\bullet\,$ The $\otimes\,$ allows one to define a notion of "prime ideal" of a TT-cat.
 - Paul Balmer introduced the notion of *spectrum Spec*(**T**) of TT-cat: all prime ideals endowed with a Zariski-like topology.
 - Why is this Spec(**T**) interesting?
 - In general, classification of all objects of **T** is a wild problem.

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

- triangulated category T (additive cat + shift functor Σ : T → T + a class of so-called exact triangle Δ = (a → b → c → Σa) satisfying some axioms)
- (2) equipped with a monoidal structure $\otimes : \mathbf{T} \longrightarrow \mathbf{T}$ (i.e., associative and has unit) s.t $\otimes -$ is biexact.
- (3) monoidal structure is symmetric i.e., $a \otimes b \cong b \otimes a$
 - $\bullet\,$ The $\otimes\,$ allows one to define a notion of "prime ideal" of a TT-cat.
 - Paul Balmer introduced the notion of *spectrum Spec*(**T**) of TT-cat: all prime ideals endowed with a Zariski-like topology.
 - Why is this Spec(**T**) interesting?
 - In general, classification of all objects of ${\bf T}$ is a wild problem.
 - However, Balmer showed that using subsets of *Spec*(**T**), one can always classify objects of **T** modulo the basic operation: : cones, direct summands and tensor product.

P. Balmer, *The spectrum of prime ideals in tensor triangulated categories*, J. Reine Angew. Math., Vol. 588, 149–168 (2005).

- triangulated category T (additive cat + shift functor Σ : T → T + a class of so-called exact triangle Δ = (a → b → c → Σa) satisfying some axioms)
- (2) equipped with a monoidal structure $\otimes : \mathbf{T} \longrightarrow \mathbf{T}$ (i.e., associative and has unit) s.t $\otimes -$ is biexact.
- (3) monoidal structure is symmetric i.e., $a \otimes b \cong b \otimes a$
 - $\bullet\,$ The $\otimes\,$ allows one to define a notion of "prime ideal" of a TT-cat.
 - Paul Balmer introduced the notion of *spectrum Spec*(**T**) of TT-cat: all prime ideals endowed with a Zariski-like topology.
 - Why is this Spec(**T**) interesting?
 - In general, classification of all objects of ${\bf T}$ is a wild problem.
 - However, Balmer showed that using subsets of *Spec*(**T**), one can always classify objects of **T** modulo the basic operation: : cones, direct summands and tensor product.
 - Precisely, "Thomason subsets" of $Spec(T) \leftrightarrow$ "radical thick \otimes ideals" of T.

• Later, Koch and Pitsch revisited Balmer's theory from the viewpoint of "frames".

- Later, Koch and Pitsch revisited Balmer's theory from the viewpoint of "frames".
- and provided a substantial simplification of the theory through a conceptual way of understanding the spectrum.

- Later, Koch and Pitsch revisited Balmer's theory from the viewpoint of "frames".
- and provided a substantial simplification of the theory through a conceptual way of understanding the spectrum.

• Introduced a notion of spectrum of a noncomm. TT cat.

- Introduced a notion of spectrum of a noncomm. TT cat.
- $\bullet\,$ provided similar classification of thick \otimes ideals following Balmer.

- Introduced a notion of spectrum of a noncomm. TT cat.
- $\bullet\,$ provided similar classification of thick \otimes ideals following Balmer.
- **Question**: Can Koch and Pitsch's point free approach be used in this noncomm. setup? Will it simplify the classification?

- Introduced a notion of spectrum of a noncomm. TT cat.
- $\bullet\,$ provided similar classification of thick \otimes ideals following Balmer.
- **Question**: Can Koch and Pitsch's point free approach be used in this noncomm. setup? Will it simplify the classification?
- We show that it is possible under an assumption which is satisfied by a large class of non-comm. TT categories.

Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

triangulated subcat K ⊆ T: for every a → b → c → Σa in T, if two out of a, b, c belongs to K, so does the third.

Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

- triangulated subcat K ⊆ T: for every a → b → c → Σa in T, if two out of a, b, c belongs to K, so does the third.
- thick subcat: triangulated $+ a \oplus b \in \mathbf{K} \implies a, b \in \mathbf{K}$

Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

- triangulated subcat K ⊆ T: for every a → b → c → Σa in T, if two out of a, b, c belongs to K, so does the third.
- thick subcat: triangulated $+ a \oplus b \in \mathbf{K} \implies a, b \in \mathbf{K}$
- thick ⊗-ideal : thick subcat K s.t for all a ∈ K, both a ⊗ b, b ⊗ a ∈ K for all b ∈ T

Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

- triangulated subcat K ⊆ T: for every a → b → c → Σa in T, if two out of a, b, c belongs to K, so does the third.
- thick subcat: triangulated $+ a \oplus b \in \mathbf{K} \implies a, b \in \mathbf{K}$
- thick ⊗-ideal : thick subcat K s.t for all a ∈ K, both a ⊗ b, b ⊗ a ∈ K for all b ∈ T
- prime ideal : proper thick ⊗-ideal P of T s.t for all thick tensor ideals I and J of T,

 $\textbf{I} \otimes \textbf{J} \subseteq \textbf{P} \implies \textbf{I} \subseteq \textbf{P} \text{ or } \textbf{J} \subseteq \textbf{P}$

We denote by $Spc(\mathbf{T})$ the collection of all prime ideals of \mathbf{T} .

Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

- triangulated subcat K ⊆ T: for every a → b → c → Σa in T, if two out of a, b, c belongs to K, so does the third.
- thick subcat: triangulated $+ a \oplus b \in \mathbf{K} \implies a, b \in \mathbf{K}$
- thick ⊗-ideal : thick subcat K s.t for all a ∈ K, both a ⊗ b, b ⊗ a ∈ K for all b ∈ T
- prime ideal : proper thick ⊗-ideal P of T s.t for all thick tensor ideals I and J of T,

 $\mathsf{I}\otimes\mathsf{J}\subseteq\mathsf{P}\implies\mathsf{I}\subseteq\mathsf{P}\text{ or }\mathsf{J}\subseteq\mathsf{P}$

We denote by $Spc(\mathbf{T})$ the collection of all prime ideals of \mathbf{T} .

• complete prime ideal : prime ideals which also satisfies

 $a\otimes b\in \mathbf{P}\implies a\in \mathbf{P}$ or $b\in \mathbf{P}$

Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

- triangulated subcat K ⊆ T: for every a → b → c → Σa in T, if two out of a, b, c belongs to K, so does the third.
- thick subcat: triangulated $+ a \oplus b \in \mathbf{K} \implies a, b \in \mathbf{K}$
- thick ⊗-ideal : thick subcat K s.t for all a ∈ K, both a ⊗ b, b ⊗ a ∈ K for all b ∈ T
- prime ideal : proper thick ⊗-ideal P of T s.t for all thick tensor ideals I and J of T,

 $\mathsf{I}\otimes\mathsf{J}\subseteq\mathsf{P}\implies\mathsf{I}\subseteq\mathsf{P}\text{ or }\mathsf{J}\subseteq\mathsf{P}$

We denote by $Spc(\mathbf{T})$ the collection of all prime ideals of \mathbf{T} .

• complete prime ideal : prime ideals which also satisfies

$$a \otimes b \in \mathbf{P} \implies a \in \mathbf{P} \text{ or } b \in \mathbf{P}$$

• The noncomm. NVY spectrum *Spc*(**K**): collection of prime ideals of **K** endowed with Zariski-like topology given by closed sets of the form

$$V(S) = \{ \mathbf{P} \in Spc(\mathbf{K}) \mid \mathbf{P} \cap S = \emptyset \}$$

for all subsets S of K.

Noncomm. support datum and universal property

Let $\mathcal{X}_{cl}(X)$ denote the collection of all closed subsets of a topological space X.

Definition (Nakano, Vashaw, Yakimov)

A (noncommutative) support datum on **T** is a pair (X, σ) where X is a top space and σ is a map **T** $\longrightarrow \mathcal{X}_{cl}(X)$ s.t:

(1)
$$\sigma(0) = \emptyset$$
 and $\sigma(1) = X$

(2)
$$\sigma(a \oplus b) = \sigma(a) \cup \sigma(b), \quad \forall a, b \in Ob(\mathbf{T})$$

(3)
$$\sigma(\sum a) = \sigma(a), \quad \forall a \in Ob(\mathbf{T})$$

(4) If $a \longrightarrow B \longrightarrow c \longrightarrow \sum a$ is a distinguished triangle, then $\sigma(a) \subseteq \sigma(b) \cup \sigma(c)$

(5)
$$\bigcup_{c \in Ob(\mathbf{K})} \sigma(a \otimes c \otimes b) = \sigma(a) \cap \sigma(b), \quad \forall a, b \in \mathbf{T}$$

Noncomm. support datum and universal property

Let $\mathcal{X}_{cl}(X)$ denote the collection of all closed subsets of a topological space X.

Definition (Nakano, Vashaw, Yakimov)

A (noncommutative) support datum on **T** is a pair (X, σ) where X is a top space and σ is a map **T** $\longrightarrow \mathcal{X}_{cl}(X)$ s.t:

(1)
$$\sigma(0) = \emptyset$$
 and $\sigma(1) = X$

(2)
$$\sigma(a \oplus b) = \sigma(a) \cup \sigma(b), \quad \forall a, b \in Ob(\mathbf{T})$$

(3)
$$\sigma(\sum a) = \sigma(a), \quad \forall a \in Ob(\mathbf{T})$$

(4) If $a \longrightarrow B \longrightarrow c \longrightarrow \sum a$ is a distinguished triangle, then $\sigma(a) \subseteq \sigma(b) \cup \sigma(c)$

(5)
$$\bigcup_{c \in Ob(\mathbf{K})} \sigma(a \otimes c \otimes b) = \sigma(a) \cap \sigma(b), \quad \forall a, b \in \mathbf{T}$$

• $V : \mathbf{T} \longrightarrow \mathcal{X}_{cl}(Spc(\mathbf{T})), a \mapsto supp(a)$ gives a support datum.

Theorem (Nakano, Vashaw, Yakimov)

The support V is final among all the support data σ of K such that $\sigma(A)$ is closed for each $A \in Ob(\mathbf{T})$.

Radical ideals form a frame

Borrowing idea from noncomm. ring theory, we defined

Definition (-, Mallick)

The *radical closure* of a thick tensor ideal I of a noncomm. tt-category K:

$$\sqrt{\mathsf{I}} := \bigcap_{\mathsf{I}\subseteq\mathsf{P}}\mathsf{P}$$

where **P** denotes prime ideals of **K**. If **I** is s.t $I = \sqrt{I}$, we call **I** radical.

Radical ideals form a frame

Borrowing idea from noncomm. ring theory, we defined

Definition (-, Mallick)

The radical closure of a thick tensor ideal I of a noncomm. tt-category K:

$$\sqrt{\mathsf{I}} := \bigcap_{\mathsf{I}\subseteq\mathsf{P}}\mathsf{P}$$

where **P** denotes prime ideals of **K**. If **I** is s.t $\mathbf{I} = \sqrt{\mathbf{I}}$, we call **I** radical.

Assumption : All primes of K are complete primes.

Radical ideals form a frame

Borrowing idea from noncomm. ring theory, we defined

Definition (-, Mallick)

The radical closure of a thick tensor ideal I of a noncomm. tt-category K:

$$\sqrt{\mathbf{I}} := \bigcap_{\mathbf{I} \subseteq \mathbf{P}} \mathbf{P}$$

where **P** denotes prime ideals of **K**. If **I** is s.t $\mathbf{I} = \sqrt{\mathbf{I}}$, we call **I** radical.

Assumption : All primes of K are complete primes.

Proposition (-, Mallick)

Let Rad_K denote poset of radical ideals of a noncomm. tt-category K satisfying Assumption. Then, Rad_K is a frame with following meet and join operations:

$$\mathbf{I}_1 \bigwedge \mathbf{I}_2 := \mathbf{I}_1 \bigcap \mathbf{I}_2$$
 $\bigvee_{j \in J} \mathbf{I}_j := \sqrt{\bigcup_{j \in J} \mathbf{I}_j}$

Radical ideals form a coherent frame

Let S be a set of objects in a noncomm. tt-category **K**. We define G(S) to be the set of objects of the forms:

- (1) an iterated suspension or desuspension of an object in S,
- (2) or a finite sum of objects in S,
- (3) or objects of the form $s \otimes t$ and $t \otimes s$ with $s \in S$ and $t \in K$,
- (4) or an extension of two objects in S,

(5) or a direct summand of an object in S.

If **I** is a thick tensor ideal containing *S*, then clearly $G(S) \subseteq \mathbf{I}$. Hence, by induction, $G^{\omega}(S) := \bigcup_{n \in \mathbb{N}} G^n(S) \subseteq \mathbf{I}$. It may be easily verified that $G^{\omega}(S)$ is itself a thick tensor ideal and therefore it is the smallest thick tensor ideal containing *S*. We will denote it by $\langle S \rangle$.

Radical ideals form a coherent frame

Let S be a set of objects in a noncomm. tt-category **K**. We define G(S) to be the set of objects of the forms:

- (1) an iterated suspension or desuspension of an object in S,
- (2) or a finite sum of objects in S,
- (3) or objects of the form $s \otimes t$ and $t \otimes s$ with $s \in S$ and $t \in K$,
- (4) or an extension of two objects in S,
- (5) or a direct summand of an object in S.

If I is a thick tensor ideal containing S, then clearly $G(S) \subseteq I$. Hence, by induction, $G^{\omega}(S) := \bigcup_{n \in \mathbb{N}} G^n(S) \subseteq I$. It may be easily verified that $G^{\omega}(S)$ is itself a thick tensor ideal and therefore it is the smallest thick tensor ideal containing S. We will denote it by $\langle S \rangle$.

Proposition (-, Mallick)

Let I be a thick \otimes -ideal of **K**. Then, $\sqrt{I} = \langle \{k \in \mathbf{K} \mid k^{\otimes n} \in I \text{ for some } n \in \mathbb{N} \} \rangle$.

Radical ideals form a coherent frame (cont.)

Theorem (-, Mallick)

The poset of radical ideals Rad_{K} of a noncomm. tt-category K satisfying Assumption forms a coherent frame.

Theorem (-, Mallick)

The poset of radical ideals Rad_{K} of a noncomm. tt-category K satisfying Assumption forms a coherent frame.

Zariski spectrum: $Spec_{Rad}(K)$ the spectral space associated to Rad_{K}

Theorem (–, Mallick)

Let **K** be a noncomm. tt-category satisfying **Assumption**. Then,

- (1) the frame-theoretic points of Rad_{K} correspond bijectively to prime thick tensor ideals in K.
- (2) Under the above correspondence, a finite element \sqrt{k} of $\operatorname{Rad}_{\mathsf{K}}$ corresponds to the set of prime thick tensor ideals { $\mathsf{P} \in \operatorname{Spc}(\mathsf{K}) \mid k \notin \mathsf{P}$ }.

Theorem (–, Mallick)

Let **K** be a noncomm. tt-category satisfying **Assumption**. Then,

- (1) the frame-theoretic points of Rad_{K} correspond bijectively to prime thick tensor ideals in K.
- (2) Under the above correspondence, a finite element \sqrt{k} of $\operatorname{Rad}_{\mathsf{K}}$ corresponds to the set of prime thick tensor ideals $\{\mathsf{P} \in \operatorname{Spc}(\mathsf{K}) \mid k \notin \mathsf{P}\}$.

Corollary (-, Mallick)

Let **K** be a noncomm. tt-category satisfying **Assumption**. The noncomm. Balmer's spectrum Spc(K) of **K** is the Hochster dual of the Zariski spectrum $Spec_{Rad}(K)$.

Theorem (–, Mallick)

Let **K** be a noncomm. tt-category satisfying **Assumption**. Then,

- (1) the frame-theoretic points of Rad_{K} correspond bijectively to prime thick tensor ideals in K.
- (2) Under the above correspondence, a finite element \sqrt{k} of $\operatorname{Rad}_{\mathsf{K}}$ corresponds to the set of prime thick tensor ideals $\{\mathsf{P} \in \operatorname{Spc}(\mathsf{K}) \mid k \notin \mathsf{P}\}$.

Corollary (-, Mallick)

Let **K** be a noncomm. tt-category satisfying **Assumption**. The noncomm. Balmer's spectrum Spc(K) of **K** is the Hochster dual of the Zariski spectrum $Spec_{Rad}(K)$.

Support and universal property

we introduce a notion of support for a noncomm. tt-category:

Definition (-, Mallick)

A support on **K** is a pair (F, d) where F is a frame and $d : Ob(\mathbf{K}) \longrightarrow F$ is a map satisfying:

(1)
$$d(0) = 0$$
 and $d(1) = 1$

(2)
$$d(\sum k) = d(k) \quad \forall k \in \mathbf{K}$$

(3)
$$d(k \oplus t) = d(k) \lor d(t) \quad \forall k, t \in \mathbf{K}$$

(4)
$$d(k \otimes t) = d(k) \wedge d(t) = d(t \otimes k) \quad \forall k, t \in \mathbf{K}$$

(5) If
$$k \longrightarrow t \longrightarrow r \longrightarrow \sum k$$
 is a triangle in **K**, then $d(t) \le d(k) \lor d(r)$

Support and universal property

we introduce a notion of support for a noncomm. tt-category:

Definition (-, Mallick)

A support on **K** is a pair (F, d) where F is a frame and $d : Ob(\mathbf{K}) \longrightarrow F$ is a map satisfying:

- (1) d(0) = 0 and d(1) = 1
- (2) $d(\sum k) = d(k) \quad \forall k \in \mathbf{K}$
- (3) $d(k \oplus t) = d(k) \lor d(t) \quad \forall k, t \in \mathbf{K}$
- (4) $d(k \otimes t) = d(k) \wedge d(t) = d(t \otimes k) \quad \forall k, t \in \mathbf{K}$
- (5) If $k \longrightarrow t \longrightarrow r \longrightarrow \sum k$ is a triangle in **K**, then $d(t) \le d(k) \lor d(r)$

Theorem (–, Mallick)

Let **K** be a noncomm. tt-category satisfying **Assumption**.

- Then the assignment $s : Ob(\mathbf{K}) \longrightarrow \mathbf{Rad}_{\mathbf{K}}, \ k \mapsto \sqrt{k}$ is a support. Moreover, it is initial among all supports.
- From this frame theoretic support datum, one can reconstruct the support datum on Spc(K) as described by NVY.

• Classical fact: closed subspaces of $Spec(R) \leftrightarrow radical$ ideals of R

- Classical fact: closed subspaces of $Spec(R) \leftrightarrow radical$ ideals of R
- Finocchiaro, Fontana and Spirito: this bijection is indeed a homeomorphism.

- Classical fact: closed subspaces of $Spec(R) \leftrightarrow radical$ ideals of R
- Finocchiaro, Fontana and Spirito: this bijection is indeed a homeomorphism.

- Classical fact: closed subspaces of $Spec(R) \iff$ radical ideals of R
- Finocchiaro, Fontana and Spirito: this bijection is indeed a homeomorphism.

Theorem (–, Mallick)

Let **K** be a noncomm. tt-category satisfying **Assumption**. The following spaces are spectral and there is a homeomorphism between them:

(1) The frame Rad_K of radical thick tensor ideals of K endowed with the topology generated by the open sets

$$\{\mathbf{I} \in \mathbf{Rad}_{\mathbf{K}} \mid k \notin \mathbf{I}\} \qquad \forall \ k \in \mathbf{K}.$$
 (1)

(2) The poset Ω(Spc(K)[∨]) of open subsets of Spc(K)[∨] (or equivalently, open subsets of Spec_{Zar}(K)) endowed with the topology generated by the open sets

$$\{V \in \Omega(Spc(\mathbf{K})^{\vee}) \mid V \not\supseteq U\} \qquad \forall \ U \in \Omega(Spc(\mathbf{K})^{\vee}).$$
(2)

Can we remove the Assumption?

References

- P. Balmer, The spectrum of prime ideals in tensor triangulated categories, J. Reine Angew. Math. 588 (2005), 149–168.
- [2] A. Banerjee, A topological Nullstellensatz for tensor-triangulated categories, C. R. Math. Acad. Sci. Paris 356 (2018), no. 4, 365–375.
- [3] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60.
- [4] P.T Johnstone, Stone spaces, volume 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1986. Reprint of the 1982 edition.
- [5] J. Kock and W. Pitsch, Hochster duality in derived categories and point-free reconstruction of schemes, Trans. Amer. Math. Soc. 369 (2017), no. 1, 223–261.
- [6] V. Mallick and S. Ray, *Noncommutative tensor triangulated categories and coherent frames*, C. R. Math. Acad. Sci. Paris (to appear) (2023).
- [7] Daniel K Nakano, Kent B Vashaw, and Milen T Yakimov, Noncommutative tensor triangular geometry, American Journal of Mathematics 144 (2022), no. 6, 1681–1724.
- [8] _____, Noncommutative Tensor Triangular Geometry and the Tensor Product Property for Support Maps, International Mathematics Research Notices 2022 (2021), 17766–17796.

Thank You!