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Frames and topological spaces: adjoint functors

@ A frame is a complete lattice which satisfies the infinite distributive law:

aN Vs= V(aAs).
sES s€S

A frame map is a lattice map that preserves arbitrary joins. The category of
frames and frame maps is denoted by Frm.
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@ an element a of a frame F is finite if for every subset S C F with a < \/Ss, =
S
a finite subset S’ C S with a < V s. A frame is called coherent if every

seS
element of the frame can be expressed as a join of finite elements and the

finite elements form a sublattice.
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Hochster dual

For a spectral space X,
@ Hochster considered a new topology on X by taking as basic open subsets
the closed sets with quasi-compact complements.

@ The space so obtained called Hochster dual of X and denoted by XV.

@ |t is also a spectral space.
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P. Balmer, The spectrum of prime ideals in tensor triangulated categories, J.
Reine Angew. Math., Vol. 588, 149-168 (2005).
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@ In general, classification of all objects of T is a wild problem.

@ However, Balmer showed that using subsets of Spec(T), one can always
classify objects of T modulo the basic operation: : cones, direct summands
and tensor product.
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Mathematics Research Notices, Vol. 2022, no. 22, 17766-17796 (2021).

@ Introduced a notion of spectrum of a noncomm. TT cat.
@ provided similar classification of thick ® ideals following Balmer.

@ Question: Can Koch and Pitsch’s point free approach be used in this
noncomm. setup? Will it simplify the classification?

@ We show that it is possible under an assumption which is satisfied by a large
class of non-comm. TT categories.

7/18



Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

o triangulated subcat K C T: forevery a— b — c — Xain T, if two out
of a, b, ¢ belongs to K, so does the third.

8/18



Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

o triangulated subcat K C T: forevery a— b — c — Xain T, if two out
of a, b, ¢ belongs to K, so does the third.
@ thick subcat: triangulated + a® b K = a,be K

8/18



Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

o triangulated subcat K C T: forevery a— b — c — Xain T, if two out
of a, b, ¢ belongs to K, so does the third.

@ thick subcat: triangulated + a® b K = a,be K

@ thick ®-ideal : thick subcat K s.t for all a € K, both a® b, b® a € K for all
beT

8/18



Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

triangulated subcat K C T: for every a — b —> ¢ —> Xain T, if two out
of a, b, ¢ belongs to K, so does the third.

@ thick subcat: triangulated + a® b K = a,be K
@ thick ®-ideal : thick subcat K s.t for all a € K, both a® b, b® a € K for all

beT
prime ideal : proper thick ®-ideal P of T s.t for all thick tensor ideals | and J

of T,
IQRJCP —= ICPorJCP

We denote by Spc(T) the collection of all prime ideals of T.

8/18



Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

o triangulated subcat K C T: forevery a— b — c — Xain T, if two out
of a, b, ¢ belongs to K, so does the third.

@ thick subcat: triangulated + a® b K = a,be K

@ thick ®-ideal : thick subcat K s.t for all a € K, both a® b, b® a € K for all

beT
@ prime ideal : proper thick ®-ideal P of T s.t for all thick tensor ideals | and J

of T,
IQRJCP —= ICPorJCP

We denote by Spc(T) the collection of all prime ideals of T.
@ complete prime ideal : prime ideals which also satisfies

aRbeP — acPorbecP

8/18



Noncomm. Balmer's spectrum(Nakano, Vashaw, Yakimov)

triangulated subcat K C T: for every a — b —> ¢ —> Xain T, if two out
of a, b, ¢ belongs to K, so does the third.
@ thick subcat: triangulated + a® b K = a,be K
@ thick ®-ideal : thick subcat K s.t for all a € K, both a® b, b ® a € K for all
beT
prime ideal : proper thick ®-ideal P of T s.t for all thick tensor ideals | and J
of T,

IRJCP = ICPorJCP
We denote by Spc(T) the collection of all prime ideals of T.
complete prime ideal : prime ideals which also satisfies

aRbeP — acPorbecP

The noncomm. NVY spectrum Spc(K): collection of prime ideals of K
endowed with Zariski-like topology given by closed sets of the form

V(S) = {P € Spc(K) | PN S = 0}

for all subsets S of K.
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Noncomm. support datum and universal property

Let X(X) denote the collection of all closed subsets of a topological space X.

Definition (Nakano, Vashaw, Yakimov)

A (noncommutative) support datum on T is a pair (X, o) where X is a top space
and o isamap T — X (X) s.t:

(1) o(0) =0 and o(1) = X

(2) o(a® b) =0c(a)Ua(b), Va,be Ob(T)

(3) o(32a) = o(a), Vae Ob(T)

(4) Ifa— B — ¢ — Y a'is a distinguished triangle, then o(a) C o(b)Uo(c)
(5) Ucconyo(a®c®b) =o(a)No(b), VabeT
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(4) Ifa— B — ¢ — Y a'is a distinguished triangle, then o(a) C o(b)Uo(c)
(5) Ucconyo(a®c®b) =o(a)No(b), VabeT

o V:T — Xy(Spc(T)), a+— supp(a) gives a support datum.

Theorem (Nakano, Vashaw, Yakimov)

The support V is final among all the support data o of K such that o(A) is closed
for each A € Ob(T).

9/18



Radical ideals form a frame

Borrowing idea from noncomm. ring theory, we defined

Definition (—, Mallick)

The radical closure of a thick tensor ideal | of a noncomm. tt-category K:

\/i:sz

ICcP

where P denotes prime ideals of K. If l'is s.t | = /1, we call I radical.
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Definition (—, Mallick)

The radical closure of a thick tensor ideal | of a noncomm. tt-category K:

\fl;:ﬂp

ICcP

where P denotes prime ideals of K. If I is s.t | = v/1, we call | radical.

Assumption : All primes of K are complete primes.

Proposition (—, Mallick)

Let Radk denote poset of radical ideals of a noncomm. tt-category K satisfying
Assumption. Then, Radk is a frame with following meet and join operations:

b AL =[]k V= U

Jjed JjeJ
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Radical ideals form a coherent frame

Let S be a set of objects in a noncomm. tt-category K. We define G(S) to be the
set of objects of the forms:
(1) an iterated suspension or desuspension of an object in S,

(
(
(4
(5) or a direct summand of an object in S.

If 'is a thick tensor ideal containing S, then clearly G(S) C I. Hence, by
induction, G¥(S) := [UJ,en G"(S) C I. It may be easily verified that G¥(S) is
itself a thick tensor ideal and therefore it is the smallest thick tensor ideal
containing S. We will denote it by (S).

)
) or a finite sum of objects in S,

) or objects of the form s® t and t ® s with s € S and t € K,
)

)

w N

or an extension of two objects in S,
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Radical ideals form a coherent frame (cont.)

Theorem (—, Mallick)

The poset of radical ideals Radk of a noncomm. tt-category K satisfying
Assumption forms a coherent frame.
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Radical ideals form a coherent frame (cont.)

Theorem (—, Mallick)

The poset of radical ideals Radk of a noncomm. tt-category K satisfying
Assumption forms a coherent frame.

Zariski spectrum: Specrad(K) the spectral space associated to Radk
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Classification: Spc(K) and radical ideals

Theorem (—, Mallick)

Let K be a noncomm. tt-category satisfying Assumption. Then,

(1) the frame-theoretic points of Radk correspond bijectively to prime thick
tensor ideals in K.

(2) Under the above correspondence, a finite element \/k of Rady corresponds
to the set of prime thick tensor ideals {P € Spc(K) | k ¢ P}.
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Support and universal property

we introduce a notion of support for a noncomm. tt-category:

Definition (—, Mallick)

A support on K is a pair (F, d) where F is a frame and d : Ob(K) — F is a map
satisfying:
(1) d(0) =0 and d(1) =1

(2) d(>° k) =d(k) VkeK

(3) d(kat)=d(k)Vd(t) Vk,t eK

(4) d(k@t)=d(k)And(t)=d(t® k) Vk,teK

(5) If k —t — r — > k is a triangle in K, then d(t) < d(k) V d(r)
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A support on K is a pair (F, d) where F is a frame and d : Ob(K) — F is a map
satisfying:
(1) d(0) =0 and d(1) =1

(2) d(>° k) =d(k) VkeK

(3) d(kat)=d(k)Vd(t) Yk,t e K

(4) d(k@t)=d(k)And(t)=d(t® k) Vk,teK

(5) If k —t — r — > k is a triangle in K, then d(t) < d(k) V d(r)

Theorem (—, Mallick)

Let K be a noncomm. tt-category satisfying Assumption.

o Then the assignment s : Ob(K) — Radk, k — vk is a support. Moreover,
it is initial among all supports.

@ From this frame theoretic support datum, one can reconstruct the support
datum on Spc(K) as described by NVY.
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Nullstellensatz-like result

o Classical fact: closed subspaces of Spec(R) +—  radical ideals of R

@ Finocchiaro, Fontana and Spirito: this bijection is indeed a homeomorphism.

@ Banerjee: radical thick ®-ideals of a tt-category T shomee, open subsets of
Spec(T) in inverse topology.

Theorem (—, Mallick)

Let K be a noncomm. tt-category satisfying Assumption. The following spaces
are spectral and there is a homeomorphism between them:

(1) The frame Rady of radical thick tensor ideals of K endowed with the
topology generated by the open sets

{IcRadk | k¢1} VkeK. (1)

(2) The poset Q(Spc(K)Y) of open subsets of Spc(K)V (or equivalently, open
subsets of Specz.,(K)) endowed with the topology generated by the open sets

(VeQSpc(K)Y) | VB UL VY UeQSpe(K)Y). (2)
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Can we remove the Assumption?
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