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Int(D)

Definition 1
Let D be a domain with quotient field K . The ring of
integer-valued polynomials on D is

Int(D) = {F ∈ K [x ] | ∀ a ∈ D, F (a) ∈ D} ⊆ K [x ]

=⇒ F = g
b is in Int(D) if and only if b | g(a) for all a ∈ D.

Example
1 D[x ] ⊆ Int(D)

2 x(x−1)
2 ∈ Int(Z) ; xp−x

p ∈ Int(Z) ⇐= ap ≡ a (mod p) ∀ a ∈ Z
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Non-unique factorizations in Int(D)

• Int(D) in general is not a unique factorization domain e.g., in
Int(Z),

x(x − 1)(x − 3)
2 = x(x − 1)

2 · (x − 3)

= x(x − 3)
2 · (x − 1)

(Frisch, N., Rissner, 2019) Given any finite multi-set of integers
greater than one, say {2, 4, 5, 5}, there exists H ∈ Int(D) such that

H = h1 · h2

= f1 · f2 · f3 · f4
= g1 · g2 · g3 · g4 · g5

= `1 · `2 · `3 · `4 · `5
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Absolute irreducibility

Definition 2
Let R be a commutative ring with identity.

1 A non-zero non-unit r ∈ R is said to be irreducible in R if
whenever r = ab, then either a or b is a unit.

2 An irreducible element r ∈ R is called absolutely irreducible
if for all natural numbers n, every factorization of rn is
essentially the same as rn = r · · · r , e.g., in Int(Z),(x

n
)

= x(x−1)(x−2)···(x−n+1)
n! (Rissner, Windisch, 2021)

3 If r is irreducible but there exists a natural number n > 1 such
that rn has other factorizations essentially different from
rn = r · · · r , then r is called non-absolutely irreducible.
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Examples of non-absolutely irreducible elements

In Z[
√
−14]

•

•3 •3 •3 •3

34
•

•
5 + 2

√
−14

•
5− 2

√
−14

Every irreducible element of OK is absolutely irreducible if
and only if OK is a UFD. (Chapman and Krause, 2012)
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Non-absolutely irreducible elements in Int(Z)

Consider f = x(x+2)(x2+3)
4 ∈ Int(Z).

•

•
x(x+2)(x2+3)

4
•

x(x+2)(x2+3)
4

f 2
•

•
x2(x2+3)

4

•
(x+2)2(x2+3)

4

• See (N, 2020) for
general constructions
of non-absolutely
irreducibles in Int(Z).
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Chapman-Krause Criterion

Lemma 1 (Chapman and Krause, 2012)
Let D be an integral domain and c ∈ D an irreducible element.
Then the following are equivalent:

1 c is absolutely irreducible.

2 For every irreducible b which is not associated to c there
exists a prime ideal P of D such that b ∈ P and c 6∈ P.
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Split absolutely irreducibles

Goal:
Let (R, M) be a discrete valuation domain (DVR) with quotient
field K and finite residue field. Let

f =
∏

s∈S(x − s)ms

c ∈ Int(R) (?)

where ∅ 6= S ⊆ R, each ms is a positive integer, and c ∈ R \ {0}.
We characterize the absolutely irreducible elements of the form (?).
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Posh set of a polynomial

Definition 1
The posh set of a polynomial F ∈ K [x ] is,

P(F ) =
{

r ∈ R | v(F (r)) > min
t∈R

v(F (t))
}

.

If F ∈ Int(R), then mint∈R v(F (t)) = v(dF ).

Recall: the fixed divisor of F ∈ Int(R) is the ideal

dF = gcd[F (a) | a ∈ R].

⇒ a ∈ P(F ) iff F ∈ Ma where Ma = {G ∈ Int(R) : v(G(a)) > 0}}.
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Balanced sets

Definition 2
Let (R, M) be a DVR and S ⊆ R a finite set. An M-adic
partition C of R is a finite partition of R into residue classes of
powers of M. That is

C = {s + Mns | s ∈ S}

such that R =
⋃

s∈S(s + Mns ) and (s + Mns ) ∩ (t + Mnt ) = ∅ for
s 6= t. We say that the set S is a set of representatives of C.

Definition 3
Let (R, M) be a DVR. We call S ⊆ R balanced if, when we take
for each s ∈ S the minimal ns such that s + Mns contains no other
element of S, the resulting M-adic neighborhoods s + Mns cover R.
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Balanced sets cont’d

Example 1
Let R = Z(2). Then S = {0, 2, 3} is a balanced set with partition
C = {0 + (4), 2 + (4), 3 + (2)}.

(mod 20) •

•0(mod 21) •3•

• 20 •(mod 22)
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The M-adic partition associated to a finite set

Lemma 4
Let S ⊆ R be a finite set. Then there exists a uniquely determined
M-adic partition

CS = {s + Mns | s ∈ S}

of R such that every residue class s + Mns that occurs as a block
of CS contains both a residue class of Mns+1 intersecting S and a
residue class of Mns+1 disjoint from S.
The partition CS of R is called the partition associated to S.
Example 2
Let R = Z(2) and S = {0, 2, 3}. Then

CS = {0 + (4), 2 + (4), 3 + (2)}

• 0 + (4) = 0 + (8) ∪ 4 + (8)
• 2 + (4) = 2 + (8) ∪ 6 + (8)
• 3 + (2) = 3 + (4) ∪ 1 + (4) 11



Rich neighborhoods and poor neighborhoods

Definition 5
Let S ⊆ R be a finite set and CS = {s + Mns | s ∈ S} the partition
associated to it;

1 An S-rich neighborhood is a residue class s + Mns+1 with
s ∈ S.

2 An S-poor neighborhood is a residue class of the form
r + Mns+1 disjoint from S where r ∈ (s + Mns ) for some
s ∈ S.

3 The rich set of S, denoted by R(S), is the union of the rich
neighborhoods, that is,

R(S) =
⋃
s∈S

s + Mns+1

4 For F ∈ K [x ] that splits over R, the rich set of F , denoted
by R(F ), is the rich set of the set of its roots S.
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The partition matrix

Lemma 6
Let S ⊆ R be a finite set and g =

∏
s∈S(x − s)ms with ms ∈ N for

s ∈ S. Then R(g) ⊆ P(g).

Definition 7
Let S be a set of representatives of the M−adic partition

C = {s + Mns | s ∈ S}.

The partition matrix of C is
AC = (as,t)s,t∈S where

as,t =
{

ns s = t
v(s − t) s 6= t

.
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The equalizing polynomial of a balanced set

Definition 8
Let S ⊆ R be a balanced set and A the partition matrix of the
partition associated to S. We define the equalizing polynomial of
S as

g =
∏
s∈S

(x − s)ms ,

where (ms)s∈S is the uniquely determined solution to Ax̄ = ē with
x = (xs | s ∈ S)ᵀ and e = (e, e, . . . , e)ᵀ.

Lemma 9
Let S ⊆ R be a balanced set and g the equalizing polynomial of S.
Then R(g) = P(g).
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The equalizing polynomial of a balanced set

Example 3
For R = Z(2), S = {0, 2, 3} and C = {0 + (4), 2 + (4), 3 + (2)}.2 1 0

1 2 0
0 0 1


x0

x2
x3

 =

e
e
e


Gives x0 = x2 = 1 and x3 = 3, thus the equalizing polynomial of S
is

g = x(x − 2)(x − 3)3.

The resulting polynomial g
2e = x(x−2)(x−3)3

23 is absolutely irreducible
in Int(Z(2)).
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Main results

Theorem 2
Let S ⊆ R be a balanced set, g the equalizing polynomial of S,
and c = d(g). Then F = g

c is absolutely irreducible in Int(R).

Theorem 3
Let S ⊆ R be a finite set and for each s ∈ S, ms ∈ N. Let

g =
∏
s∈S

(x − s)ms and F = g
c

Then F is absolutely irreducible in Int(R) if and only if
1 S is balanced.
2 g is the equalizing polynomial of S.
3 c is a generator of the fixed divisor of g .
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The bijection

Corollary 1
Let R be a DVR. The absolutely irreducible polynomials of Int(R)
of the form

F =
∏

s∈S(x − s)ms

c
correspond bijectively to balanced sets S ⊆ R, that is,

• given an absolutely irreducible polynomial F =
∏

s∈S(x−s)ms

c ,
map F to its set of roots S.
• Conversely, given a balanced finite set S ⊆ R, let g be its

equalizing polynomial and c ∈ R a generator of the fixed
divisor of g , and map S to F = g

c .
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