Split absolutely irreducible integer-valued polynomials over discrete valuation domains

Sarah Nakato

(joint work with Sophie Frisch and Roswitha Rissner)
Conference on Rings and Factorizations 2023

July 13, 2023
FШF
Der Wissenschaftsfonds.

Outline

- Preliminaries on integer-valued polynomials
- Absolute irreducibility
- Split absolutely irreducible integer-valued polynomials

$\operatorname{lnt}(\mathbf{D})$

Definition 1

Let D be a domain with quotient field K. The ring of integer-valued polynomials on D is

$$
\operatorname{Int}(D)=\{F \in K[x] \mid \forall a \in D, F(a) \in D\} \subseteq K[x]
$$

$\Longrightarrow F=\frac{g}{b}$ is in $\operatorname{lnt}(D)$ if and only if $b \mid g(a)$ for all $a \in D$.
Example
(1) $D[x] \subseteq \operatorname{lnt}(D)$
(2) $\frac{x(x-1)}{2} \in \operatorname{lnt}(\mathbb{Z}) ; \frac{x^{p}-x}{p} \in \operatorname{lnt}(\mathbb{Z}) \Longleftarrow a^{p} \equiv a(\bmod p) \forall a \in \mathbb{Z}$

Non-unique factorizations in $\operatorname{Int}(\mathbf{D})$

- $\operatorname{lnt}(D)$ in general is not a unique factorization domain e.g., in $\operatorname{lnt}(\mathbb{Z})$,

$$
\begin{aligned}
\frac{x(x-1)(x-3)}{2} & =\frac{x(x-1)}{2} \cdot(x-3) \\
& =\frac{x(x-3)}{2} \cdot(x-1)
\end{aligned}
$$

(Frisch, N., Rissner, 2019) Given any finite multi-set of integers greater than one, say $\{2,4,5,5\}$, there exists $H \in \operatorname{Int}(D)$ such that

$$
\begin{aligned}
H & =h_{1} \cdot h_{2} \\
& =f_{1} \cdot f_{2} \cdot f_{3} \cdot f_{4} \\
& =g_{1} \cdot g_{2} \cdot g_{3} \cdot g_{4} \cdot g_{5} \\
& =\ell_{1} \cdot \ell_{2} \cdot \ell_{3} \cdot \ell_{4} \cdot \ell_{5}
\end{aligned}
$$

Absolute irreducibility

Definition 2

Let R be a commutative ring with identity.
(1) A non-zero non-unit $r \in R$ is said to be irreducible in R if whenever $r=a b$, then either a or b is a unit.
(2) An irreducible element $r \in R$ is called absolutely irreducible if for all natural numbers n, every factorization of r^{n} is essentially the same as $r^{n}=r \cdots r$, e.g., in $\operatorname{Int}(\mathbb{Z})$, $\binom{x}{n}=\frac{x(x-1)(x-2) \cdots(x-n+1)}{n!}$ (Rissner, Windisch, 2021)
(3) If r is irreducible but there exists a natural number $n>1$ such that r^{n} has other factorizations essentially different from $r^{n}=r \cdots r$, then r is called non-absolutely irreducible.

Examples of non-absolutely irreducible elements

$$
\ln \mathbb{Z}[\sqrt{-14}]
$$

Every irreducible element of \mathcal{O}_{K} is absolutely irreducible if and only if $\mathcal{O}_{\mathbf{K}}$ is a UFD. (Chapman and Krause, 2012)

Non-absolutely irreducible elements in $\operatorname{Int}(\mathbb{Z})$

Consider $f=\frac{x(x+2)\left(x^{2}+3\right)}{4} \in \operatorname{Int}(\mathbb{Z})$.
$\frac{x(x+2)\left(x^{2}+3\right)}{4} \quad \frac{x(x+2)\left(x^{2}+3\right)}{4}$

- See (N, 2020) for general constructions of non-absolutely irreducibles in $\operatorname{Int}(\mathbb{Z})$.

$$
\frac{x^{2}\left(x^{2}+3\right)}{4} \quad \frac{(x+2)^{2}\left(x^{2}+3\right)}{4}
$$

Chapman-Krause Criterion

Lemma 1 (Chapman and Krause, 2012)
Let D be an integral domain and $c \in D$ an irreducible element.
Then the following are equivalent:
(1) c is absolutely irreducible.
(2) For every irreducible b which is not associated to c there exists a prime ideal P of D such that $b \in P$ and $c \notin P$.

Split absolutely irreducibles

Goal:

Let (R, M) be a discrete valuation domain (DVR) with quotient field K and finite residue field. Let

$$
f=\frac{\prod_{s \in S}(x-s)^{m_{s}}}{c} \in \operatorname{lnt}(R)
$$

where $\emptyset \neq S \subseteq R$, each m_{s} is a positive integer, and $c \in R \backslash\{0\}$.
We characterize the absolutely irreducible elements of the form (\star).

Posh set of a polynomial

Definition 1
The posh set of a polynomial $F \in K[x]$ is,

$$
\mathcal{P}(F)=\left\{r \in R \mid v(F(r))>\min _{t \in R} v(F(t))\right\} .
$$

If $F \in \operatorname{lnt}(R)$, then $\min _{t \in R} v(F(t))=v\left(d_{F}\right)$.
Recall: the fixed divisor of $F \in \operatorname{Int}(R)$ is the ideal

$$
\mathrm{d}_{F}=\operatorname{gcd}[F(a) \mid a \in R] .
$$

$\Rightarrow a \in \mathcal{P}(F)$ iff $F \in M_{a}$ where $\left.M_{a}=\{G \in \operatorname{Int}(R): v(G(a))>0\}\right\}$.

Balanced sets

Definition 2

Let (R, M) be a DVR and $S \subseteq R$ a finite set. An M-adic partition \mathcal{C} of R is a finite partition of R into residue classes of powers of M. That is

$$
\mathcal{C}=\left\{s+M^{n_{s}} \mid s \in S\right\}
$$

such that $R=\bigcup_{s \in S}\left(s+M^{n_{s}}\right)$ and $\left(s+M^{n_{s}}\right) \cap\left(t+M^{n_{t}}\right)=\emptyset$ for $s \neq t$. We say that the set S is a set of representatives of \mathcal{C}.

Definition 3

Let (R, M) be a DVR. We call $S \subseteq R$ balanced if, when we take for each $s \in S$ the minimal n_{s} such that $s+M^{n_{s}}$ contains no other element of S, the resulting M-adic neighborhoods $s+M^{n_{s}}$ cover R.

Balanced sets cont'd

Example 1

Let $R=\mathbb{Z}_{(2)}$. Then $S=\{0,2,3\}$ is a balanced set with partition $\mathcal{C}=\{0+(4), 2+(4), 3+(2)\}$.
$\left(\bmod 2^{0}\right)$
$\left(\bmod 2^{1}\right)$
$\left(\bmod 2^{2}\right)$

The M-adic partition associated to a finite set

Lemma 4

Let $S \subseteq R$ be a finite set. Then there exists a uniquely determined M-adic partition

$$
\mathcal{C}_{S}=\left\{s+M^{n_{s}} \mid s \in S\right\}
$$

of R such that every residue class $s+M^{n_{s}}$ that occurs as a block of \mathcal{C}_{S} contains both a residue class of $M^{n_{s}+1}$ intersecting S and a residue class of $M^{n_{s}+1}$ disjoint from S.
The partition \mathcal{C}_{S} of R is called the partition associated to S.

Example 2

Let $R=\mathbb{Z}_{(2)}$ and $S=\{0,2,3\}$. Then

$$
\mathcal{C}_{S}=\{0+(4), 2+(4), 3+(2)\}
$$

- $0+(4)=0+(8) \cup 4+(8)$
- $2+(4)=2+(8) \cup 6+(8)$
- $3+(2)=3+(4) \cup 1+(4)$

Rich neighborhoods and poor neighborhoods

Definition 5

Let $S \subseteq R$ be a finite set and $\mathcal{C}_{S}=\left\{s+M^{n_{s}} \mid s \in S\right\}$ the partition associated to it;
(1) An S-rich neighborhood is a residue class $s+M^{n_{s}+1}$ with $s \in S$.
(2) An S-poor neighborhood is a residue class of the form $r+M^{n_{s}+1}$ disjoint from S where $r \in\left(s+M^{n_{s}}\right)$ for some $s \in S$.
(3) The rich set of S, denoted by $\mathcal{R}(S)$, is the union of the rich neighborhoods, that is,

$$
\mathcal{R}(S)=\bigcup_{s \in S} s+M^{n_{s}+1}
$$

(9) For $F \in K[x]$ that splits over R, the rich set of F, denoted by $\mathcal{R}(F)$, is the rich set of the set of its roots S.

The partition matrix

Lemma 6
Let $S \subseteq R$ be a finite set and $g=\prod_{s \in S}(x-s)^{m_{s}}$ with $m_{s} \in \mathbb{N}$ for $s \in S$. Then $\mathcal{R}(g) \subseteq \mathcal{P}(g)$.

Definition 7
Let S be a set of representatives of the M-adic partition

$$
\mathcal{C}=\left\{s+M^{n_{s}} \mid s \in S\right\} .
$$

The partition matrix of \mathcal{C} is
$A_{\mathcal{C}}=\left(a_{s, t}\right)_{s, t \in S}$ where

$$
a_{s, t}=\left\{\begin{array}{ll}
n_{s} & s=t \\
v(s-t) & s \neq t
\end{array} .\right.
$$

The equalizing polynomial of a balanced set

Definition 8

Let $S \subseteq R$ be a balanced set and A the partition matrix of the partition associated to S. We define the equalizing polynomial of S as

$$
g=\prod_{s \in S}(x-s)^{m_{s}}
$$

where $\left(m_{s}\right)_{s \in S}$ is the uniquely determined solution to $A \bar{x}=\bar{e}$ with $\bar{x}=\left(x_{s} \mid s \in S\right)^{\top}$ and $\bar{e}=(e, e, \ldots, e)^{\top}$.

Lemma 9
Let $S \subseteq R$ be a balanced set and g the equalizing polynomial of S.
Then $\mathcal{R}(g)=\mathcal{P}(g)$.

The equalizing polynomial of a balanced set

Example 3

For $R=\mathbb{Z}_{(2)}, S=\{0,2,3\}$ and $\mathcal{C}=\{0+(4), 2+(4), 3+(2)\}$.

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
e \\
e \\
e
\end{array}\right)
$$

Gives $x_{0}=x_{2}=1$ and $x_{3}=3$, thus the equalizing polynomial of S is

$$
g=x(x-2)(x-3)^{3}
$$

The resulting polynomial $\frac{g}{2^{e}}=\frac{x(x-2)(x-3)^{3}}{2^{3}}$ is absolutely irreducible in $\operatorname{Int}\left(\mathbb{Z}_{(2)}\right)$.

Main results

Theorem 2

Let $S \subseteq R$ be a balanced set, g the equalizing polynomial of S, and $c=\mathrm{d}(g)$. Then $F=\frac{g}{c}$ is absolutely irreducible in $\operatorname{Int}(R)$.

Theorem 3

Let $S \subseteq R$ be a finite set and for each $s \in S, m_{s} \in \mathbb{N}$. Let

$$
g=\prod_{s \in S}(x-s)^{m_{s}} \quad \text { and } \quad F=\frac{g}{c}
$$

Then F is absolutely irreducible in $\operatorname{Int}(R)$ if and only if
(1) S is balanced.
(2) g is the equalizing polynomial of S.
(3) c is a generator of the fixed divisor of g.

The bijection

Corollary 1

Let R be a DVR. The absolutely irreducible polynomials of $\operatorname{Int}(R)$ of the form

$$
F=\frac{\prod_{s \in S}(x-s)^{m_{s}}}{c}
$$

correspond bijectively to balanced sets $S \subseteq R$, that is,

- given an absolutely irreducible polynomial $F=\frac{\prod_{s \in S}(x-s)^{m_{s}}}{c}$, map F to its set of roots S.
- Conversely, given a balanced finite set $S \subseteq R$, let g be its equalizing polynomial and $c \in R$ a generator of the fixed divisor of g, and map S to $F=\frac{g}{c}$.

References

1. Paul-Jean Cahen and Jean-Luc Chabert. Integer-valued polynomials. Vol. 48. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,1997.
2. Alfred Geroldinger and Franz Halter-Koch. Non-unique factorizations. Vol. 278. Pure and Applied Mathematics (Boca Raton). Algebraic, combinatorial and analytic theory. Chapman \& Hall/CRC, Boca Raton, FL, 2006.
3. Sophie Frisch. A construction of integer-valued polynomials with prescribed sets of lengths of factorizations. Monatsh. Math. 171.3-4 (2013).
4. Sophie Frisch, Sarah Nakato, and Roswitha Rissner. Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields. J. Algebra 528 (2019).

References

5. Scott T. Chapman and Ulrich Krause. A closer look at non-unique factorization via atomic decay and strong atoms. Progress in commutative algebra 2. Walter de Gruyter, Berlin, 2012.
6. Sarah Nakato. Non-absolutely irreducible elements in the ring of integer-valued polynomials. Communications in Algebra 48.4 (2020).
7. Sophie Frisch, Sarah Nakato, and Roswitha Rissner. Split absolutely irreducible integer-valued polynomials over discrete valuation domains. J. Algebra 602 (2022).
8. Roswitha Rissner and Daniel Windisch. Absolute irreducibility of the binomial polynomials. Journal of Algebra 578 (2021).
