Split absolutely irreducible integer-valued polynomials over discrete valuation domains

Sarah Nakato

(joint work with Sophie Frisch and Roswitha Rissner)

Conference on Rings and Factorizations 2023

July 13, 2023

Der Wissenschaftsfonds.

Outline

• Preliminaries on integer-valued polynomials

• Absolute irreducibility

• Split absolutely irreducible integer-valued polynomials

Int(D)

Definition 1

Let D be a domain with quotient field K. The ring of integer-valued polynomials on D is

$\mathsf{Int}(D) = \{F \in K[x] \mid \forall \ a \in D, F(a) \in D\} \subseteq K[x]$

 \implies $F = \frac{g}{b}$ is in Int(D) if and only if $b \mid g(a)$ for all $a \in D$.

Example

• $D[x] \subseteq Int(D)$

$$\textbf{2} \ \ \frac{x(x-1)}{2} \in \mathsf{Int}(\mathbb{Z}) \ ; \ \ \frac{x^p - x}{p} \in \mathsf{Int}(\mathbb{Z}) \Longleftarrow a^p \equiv a \ (\mathsf{mod} \ p) \ \forall \ a \in \mathbb{Z}$$

Non-unique factorizations in Int(**D**)

 Int(D) in general is not a unique factorization domain e.g., in Int(Z),

$$\frac{x(x-1)(x-3)}{2} = \frac{x(x-1)}{2} \cdot (x-3)$$
$$= \frac{x(x-3)}{2} \cdot (x-1)$$

(Frisch, N., Rissner, 2019) Given any finite multi-set of integers greater than one, say $\{2, 4, 5, 5\}$, there exists $H \in Int(D)$ such that

$$H = h_1 \cdot h_2$$

= $f_1 \cdot f_2 \cdot f_3 \cdot f_4$
= $g_1 \cdot g_2 \cdot g_3 \cdot g_4 \cdot g_5$
= $\ell_1 \cdot \ell_2 \cdot \ell_3 \cdot \ell_4 \cdot \ell_5$

Absolute irreducibility

Definition 2

Let R be a commutative ring with identity.

- A non-zero non-unit $r \in R$ is said to be **irreducible** in R if whenever r = ab, then either a or b is a unit.
- An irreducible element r ∈ R is called absolutely irreducible if for all natural numbers n, every factorization of rⁿ is essentially the same as rⁿ = r ··· r, e.g., in Int(Z), (^x_n) = x(x-1)(x-2)···(x-n+1)/n! (Rissner, Windisch, 2021)
- If r is irreducible but there exists a natural number n > 1 such that rⁿ has other factorizations essentially different from rⁿ = r ··· r, then r is called non-absolutely irreducible.

Examples of non-absolutely irreducible elements

 $\ln \mathbb{Z}[\sqrt{-14}]$ $5+2\sqrt{-14}$ $5-2\sqrt{-14}$

Every irreducible element of \mathcal{O}_{K} is absolutely irreducible if and only if \mathcal{O}_{K} is a UFD. (Chapman and Krause, 2012)

Non-absolutely irreducible elements in $Int(\mathbb{Z})$

 See (N, 2020) for general constructions of non-absolutely irreducibles in Int(Z).

Chapman-Krause Criterion

Lemma 1 (Chapman and Krause, 2012)

Let D be an integral domain and $c \in D$ an irreducible element. Then the following are equivalent:

- c is absolutely irreducible.
- ② For every irreducible *b* which is not associated to *c* there exists a prime ideal *P* of *D* such that *b* ∈ *P* and *c* ∉ *P*.

Split absolutely irreducibles

Goal:

Let (R, M) be a discrete valuation domain (DVR) with quotient field K and finite residue field. Let

$$f = \frac{\prod_{s \in S} (x - s)^{m_s}}{c} \in \operatorname{Int}(R)$$
 (*)

where $\emptyset \neq S \subseteq R$, each m_s is a positive integer, and $c \in R \setminus \{0\}$. We characterize the absolutely irreducible elements of the form (*).

Posh set of a polynomial

Definition 1 The **posh set** of a polynomial $F \in K[x]$ is,

$$\mathcal{P}(F) = \left\{ r \in R \mid v(F(r)) > \min_{t \in R} v(F(t)) \right\}.$$

If $F \in Int(R)$, then $\min_{t \in R} v(F(t)) = v(d_F)$.

Recall: the **fixed divisor** of $F \in Int(R)$ is the ideal

$$\mathsf{d}_F = \mathsf{gcd}[F(a) \mid a \in R].$$

 $\Rightarrow a \in \mathcal{P}(F) \text{ iff } F \in M_a \text{ where } M_a = \{G \in Int(R) : v(G(a)) > 0\}\}.$

Balanced sets

Definition 2 Let (R, M) be a DVR and $S \subseteq R$ a finite set. An *M*-adic partition *C* of *R* is a finite partition of *R* into residue classes of powers of *M*. That is

$$\mathcal{C} = \{s + M^{n_s} \mid s \in S\}$$

such that $R = \bigcup_{s \in S} (s + M^{n_s})$ and $(s + M^{n_s}) \cap (t + M^{n_t}) = \emptyset$ for $s \neq t$. We say that the set S is a set of representatives of C.

Definition 3

Let (R, M) be a DVR. We call $S \subseteq R$ balanced if, when we take for each $s \in S$ the minimal n_s such that $s + M^{n_s}$ contains no other element of S, the resulting M-adic neighborhoods $s + M^{n_s}$ cover R.

Balanced sets cont'd

The *M*-adic partition associated to a finite set

Lemma 4

Let $S \subseteq R$ be a finite set. Then there exists a uniquely determined *M*-adic partition

$$\mathcal{C}_S = \{s + M^{n_s} \mid s \in S\}$$

of R such that every residue class $s + M^{n_s}$ that occurs as a block of C_S contains both a residue class of M^{n_s+1} intersecting S and a residue class of M^{n_s+1} disjoint from S.

The partition C_S of R is called the **partition associated to** S. Example 2

Let $R = \mathbb{Z}_{(2)}$ and $S = \{0, 2, 3\}$. Then

$$C_S = \{0 + (4), 2 + (4), 3 + (2)\}$$

•
$$0 + (4) = 0 + (8) \cup 4 + (8)$$

• $2 + (4) = 2 + (8) \cup 6 + (8)$
• $3 + (2) = 3 + (4) \cup 1 + (4)$

Rich neighborhoods and poor neighborhoods

Definition 5

Let $S \subseteq R$ be a finite set and $C_S = \{s + M^{n_s} \mid s \in S\}$ the partition associated to it;

- An *S*-rich neighborhood is a residue class $s + M^{n_s+1}$ with $s \in S$.
- ② An *S*-poor neighborhood is a residue class of the form $r + M^{n_s+1}$ disjoint from *S* where $r \in (s + M^{n_s})$ for some *s* ∈ *S*.
- The rich set of S, denoted by R(S), is the union of the rich neighborhoods, that is,

$$\mathcal{R}(S) = igcup_{s \in S} s + M^{n_s + 1}$$

● For F ∈ K[x] that splits over R, the rich set of F, denoted by R(F), is the rich set of the set of its roots S.

The partition matrix

Lemma 6 Let $S \subseteq R$ be a finite set and $g = \prod_{s \in S} (x - s)^{m_s}$ with $m_s \in \mathbb{N}$ for $s \in S$. Then $\mathcal{R}(g) \subseteq \mathcal{P}(g)$.

Definition 7

Let S be a set of representatives of the M-adic partition

$$\mathcal{C} = \{s + M^{n_s} \mid s \in S\}.$$

The **partition matrix of** C is $A_C = (a_{s,t})_{s,t \in S}$ where

$$a_{s,t} = \begin{cases} n_s & s = t \\ v(s-t) & s \neq t \end{cases}$$

The equalizing polynomial of a balanced set

Definition 8

Let $S \subseteq R$ be a balanced set and A the partition matrix of the partition associated to S. We define the **equalizing polynomial of** S as

$$g=\prod_{s\in S}(x-s)^{m_s},$$

where $(m_s)_{s \in S}$ is the uniquely determined solution to $A\bar{x} = \bar{e}$ with $\bar{x} = (x_s \mid s \in S)^{\mathsf{T}}$ and $\bar{e} = (e, e, \dots, e)^{\mathsf{T}}$.

Lemma 9

Let $S \subseteq R$ be a balanced set and g the equalizing polynomial of S. Then $\mathcal{R}(g) = \mathcal{P}(g)$.

The equalizing polynomial of a balanced set

Example 3

For $R = \mathbb{Z}_{(2)}$, $S = \{0, 2, 3\}$ and $C = \{0 + (4), 2 + (4), 3 + (2)\}$. $\begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} e \\ e \\ e \end{pmatrix}$

Gives $x_0 = x_2 = 1$ and $x_3 = 3$, thus the equalizing polynomial of S is

$$g = x(x-2)(x-3)^3.$$

The resulting polynomial $\frac{g}{2^e} = \frac{x(x-2)(x-3)^3}{2^3}$ is absolutely irreducible in $Int(\mathbb{Z}_{(2)})$.

Main results

Theorem 2 Let $S \subseteq R$ be a balanced set, g the equalizing polynomial of S, and c = d(g). Then $F = \frac{g}{c}$ is absolutely irreducible in Int(R).

Theorem 3 Let $S \subseteq R$ be a finite set and for each $s \in S$, $m_s \in \mathbb{N}$. Let

$$g = \prod_{s \in S} (x - s)^{m_s}$$
 and $F = \frac{g}{c}$

Then F is absolutely irreducible in Int(R) if and only if

- S is balanced.
- **2** g is the equalizing polynomial of S.
- c is a generator of the fixed divisor of g.

The bijection

Corollary 1

Let *R* be a DVR. The absolutely irreducible polynomials of Int(R) of the form

$$F = \frac{\prod_{s \in S} (x - s)^{m_s}}{c}$$

correspond bijectively to balanced sets $S \subseteq R$, that is,

- given an absolutely irreducible polynomial $F = \frac{\prod_{s \in S} (x-s)^{m_s}}{c}$, map F to its set of roots S.
- Conversely, given a balanced finite set S ⊆ R, let g be its equalizing polynomial and c ∈ R a generator of the fixed divisor of g, and map S to F = g/c.

References

- Paul-Jean Cahen and Jean-Luc Chabert. Integer-valued polynomials. Vol. 48. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,1997.
- Alfred Geroldinger and Franz Halter-Koch. Non-unique factorizations. Vol. 278. Pure and Applied Mathematics (Boca Raton). Algebraic, combinatorial and analytic theory. Chapman & Hall/CRC, Boca Raton, FL, 2006.
- 3. Sophie Frisch. A construction of integer-valued polynomials with prescribed sets of lengths of factorizations. Monatsh. Math. 171.3-4 (2013).
- Sophie Frisch, Sarah Nakato, and Roswitha Rissner. Sets of lengths of factorizations of integer-valued polynomials on Dedekind domains with finite residue fields. J. Algebra 528 (2019).

References

- Scott T. Chapman and Ulrich Krause. A closer look at non-unique factorization via atomic decay and strong atoms. *Progress in commutative algebra 2*. Walter de Gruyter, Berlin, 2012.
- Sarah Nakato. Non-absolutely irreducible elements in the ring of integer-valued polynomials. Communications in Algebra 48.4 (2020).
- 7. Sophie Frisch, Sarah Nakato, and Roswitha Rissner. Split absolutely irreducible integer-valued polynomials over discrete valuation domains. *J. Algebra* 602 (2022).
- Roswitha Rissner and Daniel Windisch. Absolute irreducibility of the binomial polynomials. Journal of Algebra 578 (2021).