Apéry sets and the ideal class monoid of a numerical semigroup

Pedro A. García Sánchez

Departamento de Álgebra and IMAG, Universidad de Granada joint work with L. Casabella and M. D'Anna

Conference on Rings and Factorizations 2023, Graz

Funded by *Proyecto de Excelencia de la Junta de Andalucía (ProyExcel_00868)*. Proyecto financiado en la convocatoria 2021 de Ayudas a Proyectos de Excelencia, en régimen de concurrencia competitiva, destinadas a entidades calificadas como Agentes del Sistema Andaluz del Conocimiento, en el ámbito del Plan Andaluz de Investigación, Desarrollo e Innovación (PAIDI 2020). Consejería de Universidad, Investigación e Innovación de la Junta de Andalucía.

Background

Barucci and Khouja introduced the concept of ideal class semigroup associated to a numerical semigroup

They were mainly interested in the following aspects

- find bounds for the cardinality
- describe the generators
- study the reduction number

The ideal class monoid of a numerical semigroup

Let S be a numerical semigroup, that is, a submonoid of $(\mathbb{N},+)$ such that $\mathrm{G}(S)=\mathbb{N}\setminus S$ has finitely many elements (gaps)

An ideal of S is a set I of integers such that

- $\bullet \ I+S\subseteq I$
- $z+I\subseteq S$ for some integer z

Let $\mathcal{I}(S)$ be the set of ideals of S

We write $I\sim J$ if there exists $z\in\mathbb{Z}$ such that I=z+J

The **ideal class monoid** of S is

$$\mathcal{C}\ell(S)=\mathcal{I}(S)/\sim$$

Addition is defined as $\left[I\right] + \left[J\right] = \left[I+J\right]$

First properties

Let

$${\mathcal I}_0(S)=\{I\in {\mathcal I}(S): \min(I)=0\}$$

It follows easily that

$$\mathcal{C}\ell(S)\cong\mathcal{I}_0(S), [I]\mapsto-\min(I)+I$$

For $I\in \mathcal{I}_0(S)$, there exists $g_1,\ldots,g_k\in \mathrm{G}(S)$ such that $I=\{0,g_1,\ldots,g_k\}+S$

Moreover, $\{g_1,\ldots,g_k\}$ can be taken to be an anti-chain with respect to $a\leq_S b ext{ if }b-a\in S$

From this we can derive that

$$2^{\mathrm{m}(S)-1} + \mathrm{g}(S) - \mathrm{m}(S) + 1 \le |\mathcal{C}\ell(S)| \le 2^{\mathrm{g}(S)} - 2^{\mathrm{g}(S) - \mathrm{t}(S)} + 1$$

Apéry sets

Let S be a numerical semigroup with multiplicity m, and let $I\in \mathcal{I}_0(S)$ $\operatorname{Ap}(I)=\{i\in I:i-m
ot\in I\}$

Notice that if $i \in I$, then $i + km \in I$ for every non-negative integer k; thus

$$\mathrm{Ap}(I) = \{w_0(I) = 0, w_1(I), \dots, w_{m-1}(I)\}$$

where $w_i(I) = \min(I \cap (i+m\mathbb{N}))$

Observe that $I = \operatorname{Ap}(I) + S$

 $A=\{0,w_1,\ldots,w_{m-1}\}=\operatorname{Ap}(I)$ for some $I\in\mathcal{I}_0(S)$ if and only if $w_i+w_j(S)\geq w_{i+j}$ for all $i,j\in\{0,\ldots,m-1\}$ (i+j taken modulo m)

Kunz coordinates

For every $i \in \{0, \ldots, m-1\}$, $w_i(I) = k_i(I)m + i$ The tuple $(k_1(I), \ldots, k_{m-1}(I))$ are the Kunz coordinates of IA tuple (x_1, \ldots, x_{m-1}) are the Kunz coordinates of an ideal in $\mathcal{I}_0(S)$ if and only if $x_i \leq k_i(S)$, for all $i \in \{1, \ldots, m-1\}$, $x_{i+j} - x_i \leq k_j(S)$, for every $i, j \in \{1, \ldots, m-1\}$, i + j < m, $x_{i+j-m} - x_i \leq k_j(S) + 1$, for every $i, j \in \{1, \ldots, m-1\}$, i + j > m.

In particular,

$$|\mathcal{C}\ell(S)| \leq (k_1(S)+1) imes \cdots imes (k_{\mathrm{m}(S)-1}(S)+1)$$

Canonical ideal

Let S be a numerical semigroup. The **canonical ideal** of S is

$$\mathrm{K}(S) = \{x \in \mathbb{Z}: \mathrm{F}(S) - x
ot\in S\}$$

Let $f = \operatorname{F}(S) \mod \operatorname{m}(S)$

Then $I = \operatorname{K}(S)$ if and only if

$$w_i(I) = w_f(S) - w_j(S)$$
for all $i,j \in \{0,\ldots,\mathrm{m}(S)-1\}$ with $i+j \equiv f \pmod{\mathrm{m}(S)}$ In particular,

$$\mathrm{K}(S) = \mathrm{F}(S) - \mathrm{Maximals}_{\leq_S}(\mathbb{Z} \setminus S) + S$$

Reduction number

Let I be an ideal of a numerical semigroup S with multiplicity m

The **reduction number** of I, $\mathbf{r}(I)$, is the least non-negative integer r such that (r+1)I = rI

If g is a gap of S, then

$$\mathrm{r}(\{0,g\}+S)=\min\{k\in\mathbb{N}:(k+1)g\in S\}$$

If $\{a_1,\ldots,a_h\}\subseteq\{1,\ldots,m-1\}$, then
 $\mathrm{r}(\{0,a_1,\ldots,a_h\}+S)\leq m-h$

Hasse diagram of $(\mathcal{I}_0(S), \subseteq)$

Given $I,J\in \mathcal{I}_0(S)$, we have that $I\subseteq J$ if and only if $(k_1(J),\ldots,k_{m-1}(J))\leq (k_1(I),\ldots,k_{m-1}(I))$

- $\bullet \ \min_{\subseteq}({\mathcal I}_0(S))=S$
- $ullet \ \max_{\subseteq}(\mathcal{I}_0(S)) = \mathbb{N}$
- $\bullet \; \; |\operatorname{Maximals}_{\subseteq}({\mathcal I}_0(S)\setminus\{{\mathbb N}\})| = \mathrm{m}(S)-1$
- $\bullet \ |\operatorname{Minimals}_{\subseteq}(\mathcal{I}_0(S)\setminus\{S\})| = \operatorname{t}(S) = |\operatorname{Maximals}_{\leq_S}(\mathbb{Z}\setminus S)|$
- The length of the maximal strictly ascending chain is $\operatorname{g}(S)+1=|\mathbb{N}\setminus S|+1$

Example

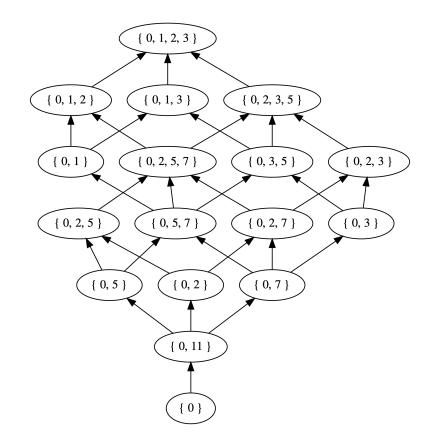
 $S=\langle 4,6,9
angle$

Maximal non-trivial ideals are of the form $\{0,1,\ldots,i-1,i+m,i+1,\ldots,m-1\}+S$

Minimal non-tivial ideals are

 $\{0,f\}+S$ with $f\in \mathrm{Maximals}_{\leq_S}(\mathbb{Z}\setminus S)$

https://numerical-semigroups.github.io/



Irreducibles, atoms, quarks and primes

Let S be a numerical semigroup

The monoid $(\mathcal{I}_0(S), +)$ is reduced (the only unit is S), and it is highly non-cancellative On $\mathcal{I}_0(S)$ we write $I \leq J$ if there exists K such that I + K = JAn ideal $I \in \mathcal{I}_0(S)$, $I \neq S$, is (using Tringali's terminology)

- irreducible if $I \neq J + K$ for all non-units J and K such that $J \prec I$ and $K \prec I$
- an atom if $I \neq J + K$ for all non-units J and K
- a **quark** if there is no non-unit J with $J \prec I$
- a **prime** if $I \preceq J + K$ for some J, K implies that $I \preceq J$ or $I \preceq K$

Irreducibles are generators

An ideal I is irreducible if and only if $I \neq J + K$ for any non-units J and K with $J \neq I \neq K$

Every ideal in $\mathcal{I}_0(S)$ can be expressed as a sum of irreducible ideals

Example

For $S=\langle 5,6,8,9
angle=\mathbb{N}\setminus\{1,2,3,4,7\}$

- Irreducibles: $\{0,g\}+S$ with g a gap, $\{0,1,3\}+S$, and $\{0,3,4\}+S$
- Atoms: $\{0,3,4\}+S$
- Quarks: $\{0,3,4\} + S$, $\{0,3\} + S$, $\{0,4\} + S$, $\{0,7\} + S$
- No primes

Quarks

Let S be a numerical semigroup

Quarks are either

- minimal ideals with respecto to inclusion: $\{0,g\}+S$ with $g\in \mathrm{Maximals}_{\leq_S}(\mathbb{Z}\setminus S)$
- irreducible non minimal ideals such that for every $g\in \mathrm{Maximals}_{\leq_S}(\mathbb{Z}\setminus S)$, $g+I\subsetneq I$

Idempotent quarks correspond to unitary extensions of ${\boldsymbol S}$

A numerical semigroup S is irreducible (symmetric or pseudo-symmetric) if and only if $\mathcal{I}_0(S)$ has at most two quarks

References

- V. Barucci, F. Khouja, On the class semigroup of a numerical semigroup, Semigroup Forum, 92 (2016), 377-392
- L. Casabella, On the class semigroup of numerical semigroups and semigroup rings, Diploma thesis, Scuola Superiore di Catania (2022)
- L. Casabella, M. D'Anna, P. A. García-Sánchez, arXiv:2302.09647
- M. Delgado, P.A. García-Sánchez, and J. Morais, NumericalSgps, A package for numerical semigroups, Version 1.3.1 (2022), (Refereed GAP package), https://gappackages.github.io/numericalsgps
- S. Tringali, An Abstract Factorization Theorem and Some Applications, J. Algebra, 602 (2022), 352-380

Thank you for your attention