On Waring numbers of Henselian rings and fields General results

Piotr Miska
Jagiellonian University in Kraków, Poland Joint work with Tomasz Kowalczyk

July 14th 2023
Rings and Factorizations, Graz 2023

Some definitions

Piotr Miska

On Waring numbers of Henselian rings and fields

Some definitions

Let R be a commutative ring with 1 and $n \in \mathbb{N}_{+}$.

Some definitions

Let R be a commutative ring with 1 and $n \in \mathbb{N}_{+}$.
We define the n-length of $a \in R$:

$$
\ell_{n}(a)=\ell_{n, R}(a)=\inf \left\{g \in \mathbb{N}_{+}: a=\sum_{j=1}^{g} a_{j}^{n} \text { for some } a_{1}, \ldots, a_{g} \in R\right\}
$$

and the nth level of R as

$$
s_{n}(R):=\ell_{n}(-1)
$$

Some definitions

Let R be a commutative ring with 1 and $n \in \mathbb{N}_{+}$.
We define the n-length of $a \in R$:

$$
\ell_{n}(a)=\ell_{n, R}(a)=\inf \left\{g \in \mathbb{N}_{+}: a=\sum_{j=1}^{g} a_{j}^{n} \text { for some } a_{1}, \ldots, a_{g} \in R\right\}
$$

and the nth level of R as

$$
s_{n}(R):=\ell_{n}(-1)
$$

We call R real if $s_{2}(R)=\infty$.

Let R be a commutative ring with 1 and $n \in \mathbb{N}_{+}$.
We define the n-length of $a \in R$:

$$
\ell_{n}(a)=\ell_{n, R}(a)=\inf \left\{g \in \mathbb{N}_{+}: a=\sum_{j=1}^{g} a_{j}^{n} \text { for some } a_{1}, \ldots, a_{g} \in R\right\}
$$

and the nth level of R as

$$
s_{n}(R):=\ell_{n}(-1)
$$

We call R real if $s_{2}(R)=\infty$.
By nth Waring number of R we mean

$$
w_{n}(R)=\sup \left\{\ell_{n}(a): a \in R, \ell_{n}(a)<\infty\right\}
$$

An overview of well known results

An overview of well known results

Lagrange Four Square Theorem
$w_{2}(\mathbb{Z})=w_{2}(\mathbb{Q})=4$

An overview of well known results

Lagrange Four Square Theorem

$$
w_{2}(\mathbb{Z})=w_{2}(\mathbb{Q})=4
$$

Theorem (Hoffman, 1999)
For each $d \in \mathbb{N}_{+}$there exists a real field K with $w_{2}(K)=d$.

An overview of well known results

Lagrange Four Square Theorem

$$
w_{2}(\mathbb{Z})=w_{2}(\mathbb{Q})=4
$$

Theorem (Hoffman, 1999)
For each $d \in \mathbb{N}_{+}$there exists a real field K with $w_{2}(K)=d$.

Theorem (Choi, Dai, Lam, Reznick, 1982)
If K is a real field and $s \geq 2$, then

$$
w_{2}(\mathbb{Z}[x])=w_{2}\left(K\left[x_{1}, \ldots, x_{s}\right]\right)=\infty .
$$

An overview of well known results

Lagrange Four Square Theorem

$$
w_{2}(\mathbb{Z})=w_{2}(\mathbb{Q})=4
$$

Theorem (Hoffman, 1999)
For each $d \in \mathbb{N}_{+}$there exists a real field K with $w_{2}(K)=d$.
Theorem (Choi, Dai, Lam, Reznick, 1982)
If K is a real field and $s \geq 2$, then

$$
w_{2}(\mathbb{Z}[x])=w_{2}\left(K\left[x_{1}, \ldots, x_{s}\right]\right)=\infty .
$$

Theorem (Choi, Lam, Reznick, 1995)

$$
s+2 \leq w_{2}\left(\mathbb{R}\left(x_{1}, x_{2}, \ldots, x_{s}\right)\right) \leq 2^{s}, s \in \mathbb{N}_{\geq 2}
$$

An overview of well known results

An overview of well known results

If $s_{2}(R)<\infty$ (R is a nonreal ring), then

$$
s_{2}(R) \leq w_{2}(R) \leq s_{2}(R)+2 .
$$

An overview of well known results

If $s_{2}(R)<\infty(R$ is a nonreal ring), then

$$
s_{2}(R) \leq w_{2}(R) \leq s_{2}(R)+2 .
$$

If additionally $2 \in R^{*}$, then

$$
a=\left(\frac{a+1}{2}\right)^{2}-\left(\frac{a-1}{2}\right)^{2},
$$

so

$$
s_{2}(R) \leq w_{2}(R) \leq s_{2}(R)+1
$$

An overview of well known results

If $s_{2}(R)<\infty(R$ is a nonreal ring), then

$$
s_{2}(R) \leq w_{2}(R) \leq s_{2}(R)+2 .
$$

If additionally $2 \in R^{*}$, then

$$
a=\left(\frac{a+1}{2}\right)^{2}-\left(\frac{a-1}{2}\right)^{2},
$$

so

$$
s_{2}(R) \leq w_{2}(R) \leq s_{2}(R)+1 .
$$

Theorem (Dai, Lam, Peng, 1980)

Let $s \in \mathbb{N}_{+}$and $A_{s}=\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{s}\right] /\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{s}^{2}+1\right)$. Then $s_{2}\left(A_{s}\right)=s$.

An overview of well known results

If $s_{2}(R)<\infty(R$ is a nonreal ring), then

$$
s_{2}(R) \leq w_{2}(R) \leq s_{2}(R)+2
$$

If additionally $2 \in R^{*}$, then

$$
a=\left(\frac{a+1}{2}\right)^{2}-\left(\frac{a-1}{2}\right)^{2}
$$

so

$$
s_{2}(R) \leq w_{2}(R) \leq s_{2}(R)+1
$$

Theorem (Dai, Lam, Peng, 1980)

Let $s \in \mathbb{N}_{+}$and $A_{s}=\mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{s}\right] /\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{s}^{2}+1\right)$. Then $s_{2}\left(A_{s}\right)=s$.

Theorem (Pfister, 1965)

If K is a nonreal field, then $s_{2}(K)=2^{d}$ for some $d \in \mathbb{N}$. On the other hand, for each $d \in \mathbb{N}$ there exists a field K with $s_{2}(K)=2^{d}$.

An overview of well known results

An overview of well known results

If $s_{n}(R)<\infty$ and $n!\in R^{*}$, then

$$
w_{n}(R) \leq n w_{n}(\mathbb{Z})\left(s_{n}(R)+1\right)
$$

as

$$
n!x=\sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{n-1}{r}\left[(x+r)^{n}-r^{n}\right]
$$

An overview of well known results

If $s_{n}(R)<\infty$ and $n!\in R^{*}$, then

$$
w_{n}(R) \leq n w_{n}(\mathbb{Z})\left(s_{n}(R)+1\right)
$$

as

$$
n!x=\sum_{r=0}^{n-1}(-1)^{n-1-r}\binom{n-1}{r}\left[(x+r)^{n}-r^{n}\right]
$$

Theorem (Becker, 1982)

If K is a field and $d \in \mathbb{N}_{+}$, then

$$
w_{2}(K)<\infty \Longleftrightarrow w_{2 d}(K)<\infty .
$$

An overview of well known results

An overview of well known results

Theorem (Ryley, 1825)

$$
w_{3}(\mathbb{Q})=3
$$

as

$$
\begin{gathered}
\left(p^{3}+q r\right)^{3}+\left(-p^{3}+p r\right)^{3}+(-q r)^{3}=a\left(6 a v p^{2}\right)^{3}, \\
\{p, q, r\}=\left\{a^{2}+3 v^{3}, a^{2}-3 v^{3}, 36 a^{2} v^{3}\right\} .
\end{gathered}
$$

An overview of well known results

Theorem (Ryley, 1825)

$$
w_{3}(\mathbb{Q})=3
$$

as

$$
\begin{gathered}
\left(p^{3}+q r\right)^{3}+\left(-p^{3}+p r\right)^{3}+(-q r)^{3}=a\left(6 a v p^{2}\right)^{3} \\
\{p, q, r\}=\left\{a^{2}+3 v^{3}, a^{2}-3 v^{3}, 36 a^{2} v^{3}\right\}
\end{gathered}
$$

The identity of Israel

$$
\begin{aligned}
\left(\frac{27 m^{3}-n^{9}}{27 m^{2} n^{2}+9 m n^{5}+3 n^{8}}\right)^{3} & +\left(\frac{-27 m^{3}+9 m n^{6}+n^{9}}{27 m^{2} n^{2}+9 m n^{5}+3 n^{8}}\right)^{3} \\
& +\left(\frac{27 m^{2} n^{3}+9 m n^{6}}{27 m^{2} n^{2}+9 m n^{5}+3 n^{8}}\right)^{3}=m
\end{aligned}
$$

shows that $w_{3}(K) \leq 3$ for any field K.

Henselian rings

Henselian rings

We say that a local ring R is Henselian, if for every $f \in R[x]$ and $b \in R$ such that $f(b) \in \mathfrak{m}$ and $f^{\prime}(b) \notin \mathfrak{m}$ there exists $a \in R$ such that $f(a)=0$ and $a \equiv b(\bmod \mathfrak{m})$.

Henselian rings

We say that a local ring R is Henselian, if for every $f \in R[x]$ and $b \in R$ such that $f(b) \in \mathfrak{m}$ and $f^{\prime}(b) \notin \mathfrak{m}$ there exists $a \in R$ such that $f(a)=0$ and $a \equiv b(\bmod \mathfrak{m})$.
If R is a valuation ring with valuation ν, then R is Henselian if and only if for every $f \in R[x]$ and $b \in R$ such that $\nu(f(b))>2 \nu\left(f^{\prime}(b)\right)$, then there exists an element $a \in R$ such that $f(a)=0$ and $\nu(a-b)>\nu\left(f^{\prime}(b)\right)$.

Preliminary results

Piotr Miska

On Waring numbers of Henselian rings and fields

Preliminary results

Fact
Let $\varphi: R \rightarrow S$ be a homomorphism of rings. Then for any $x \in R$ and for any positive integer $n>1$ the following inequality holds $\ell_{n}(\varphi(x)) \leq \ell_{n}(x)$. If φ is an epimorphism, then $w_{n}(S) \leq w_{n}(R)$.

Preliminary results

Fact

Let $\varphi: R \rightarrow S$ be a homomorphism of rings. Then for any $x \in R$ and for any positive integer $n>1$ the following inequality holds $\ell_{n}(\varphi(x)) \leq \ell_{n}(x)$. If φ is an epimorphism, then $w_{n}(S) \leq w_{n}(R)$.

Fact

If S a localization of a ring R, then $w_{n}(S) \leq w_{n}(R)$.

Proof.

Follows from the fact that

$$
\ell_{n, S}\left(\frac{a}{b}\right) \leq \ell_{n, R}\left(a b^{n-1}\right)
$$

where $a, b \in R$ and $\frac{a}{b} \in S$.

Preliminary results

Let p be a prime integer and n be a positive integer written in the form $n=p^{k} m$, where p does not divide m and $k \geq 0$. We then say that m is the p-free part of n. We extend this definition to the case $p=0$ and put $m=n$.

Preliminary results

Let p be a prime integer and n be a positive integer written in the form $n=p^{k} m$, where p does not divide m and $k \geq 0$. We then say that m is the p-free part of n. We extend this definition to the case $p=0$ and put $m=n$.

Fact

Let R be a ring of prime characteristic p and $n>1$ be a positive integer. If $n=p^{k} m$, where m is the p-free part of n, then

$$
s_{n}(R)=s_{m}(R)
$$

and

$$
w_{n}(R) \leq w_{m}(R)
$$

If we further assume that R is reduced, then

$$
w_{n}(R)=w_{m}(R)
$$

nth Waring numbers of Henselian rings with finite nth level

Theorem

Let R be a local ring with the maximal ideal \mathfrak{m} and the residue field k. Let n be a positive integer and m be the $\operatorname{char}(k)$-free part of n. Assume that $\operatorname{char}(k) \nmid n$ or $\operatorname{char}(R)=\operatorname{char}(k)$ and R is reduced. Then, the following statements are true.
a) We have $s_{n}(R) \geq s_{m}(k)$ and $w_{n}(R) \geq w_{m}(k)$.
b) If R is Henselian and $s_{m}(k)<\infty$, then $s_{n}(R)=s_{m}(k)$ and $w_{n}(R) \leq \max \left\{w_{m}(k), s_{m}(k)+1\right\}$.
c) If $f \in \mathfrak{m} \backslash \mathfrak{m}^{2}$ and $m>1$, then $\ell_{n}(f) \geq s_{m}(k)+1$. In particular, $w_{n}(R) \geq s_{m}(k)+1$ on condition that $\mathfrak{m} \neq \mathfrak{m}^{2}$.

nth Waring numbers of Henselian rings with finite nth level

Corollary

Let R be a Henselian local ring with the maximal ideal $\mathfrak{m} \neq \mathfrak{m}^{2}$, residue field k and $s_{m}(k)<\infty$. Let n be a positive integer and m be the $\operatorname{char}(k)$-free part of n. Assume that $\operatorname{char}(k) \nmid n$ or $\operatorname{char}(R)=\operatorname{char}(k)$ and R is reduced. Then the following holds

$$
w_{n}(R)= \begin{cases}\max \left\{w_{m}(k), s_{m}(k)+1\right\} & \text { for } m>1 \\ 1 & \text { for } m=1\end{cases}
$$

nth Waring numbers of Henselian discrete valuation rings with finite nth level

nth Waring numbers of Henselian discrete valuation rings

 with finite nth level
Theorem

Assume that R is a Henselian DVR and $s_{m}\left(R / \mathfrak{m}^{2 \nu(m)+1}\right)<\infty$.
Then $s_{n}(R)=s_{m}\left(R / \mathfrak{m}^{2 \nu(m)+1}\right)$ and
i) $w_{n}(R)=\max \left\{w_{m}\left(R / \mathfrak{m}^{2 \nu(m)+1}\right), s_{m}\left(R / \mathfrak{m}^{2 \nu(m)+1}\right)+1\right\}$ if $m>1$ and $n>2 \nu(m)+1$;
ii) $w_{n}(R)=w_{m}\left(R / \mathfrak{m}^{2 \nu(m)+1}\right)$ if $m>1$ and $n \leq 2 \nu(m)+1$;
iii) $w_{n}(R)=1$ if $m=1$.

Moreover, if $\operatorname{char}(R) \nmid n$ and every element of $R / \mathfrak{m}^{2 \nu(m)+1}$ can be written as a sum of nth powers in $R / \mathfrak{m}^{2 \nu(m)+1}$, then every element of R can be written as a sum of $w_{n}(R) n$th powers in R.

nth Waring numbers of total rings of fractions of Henselian rings with finite nth level

$n t h$ Waring numbers of total rings of fractions of Henselian rings with finite nth level

Theorem

Let R be a Henselian local ring with the total ring of fractions $Q(R) \neq R$ and the residue field k. Let n be a positive integer and m be the $\operatorname{char}(k)$-free part of n. Assume that $\operatorname{char}(k) \nmid n$ or $\operatorname{char}(R)=\operatorname{char}(k)$. Then,

$$
w_{n}(Q(R)) \leq \begin{cases}s_{m}(k)+1 & \text { for } m>1 \\ 1 & \text { for } m=1\end{cases}
$$

where the equality in the case of $m>1$ holds under assumption that R is an integral domain, $s_{m}(Q(R))=s_{m}(R)$ and there exists a nontrivial valuation $\nu: Q(R) \rightarrow \mathbb{Z} \cup\{\infty\}$ such that $R \subset R_{\nu}:=\{f \in Q(R) \mid \nu(f) \geq 0\}$. Moreover, if $\operatorname{char}(k) \nmid n$, then every element of $Q(R)$ can be written as a sum of $w_{n}(Q(R)) n$th powers in $Q(R)$.

nth Waring numbers of valuation fields

nth Waring numbers of valuation fields

Define $I_{r}:=\{f \in R \mid \nu(f)>r\}$.

nth Waring numbers of valuation fields

Define $I_{r}:=\{f \in R \mid \nu(f)>r\}$.
For a local ring R with maximal ideal \mathfrak{m} and $g \in R$ we define
$\ell_{n, R}^{*}(g)=\inf \left\{I \in \mathbb{N}_{+} \mid g=\sum_{i=1}^{l} g_{i}^{n}\right.$ for some $\left.g_{1}, \ldots, g_{l} \in R, g_{1} \notin \mathfrak{m}\right\}$.

nth Waring numbers of valuation fields

Define $I_{r}:=\{f \in R \mid \nu(f)>r\}$.
For a local ring R with maximal ideal \mathfrak{m} and $g \in R$ we define

$$
\ell_{n, R}^{*}(g)=\inf \left\{I \in \mathbb{N}_{+} \mid g=\sum_{i=1}^{\prime} g_{i}^{n} \text { for some } g_{1}, \ldots, g_{I} \in R, g_{1} \notin \mathfrak{m}\right\}
$$

Theorem

Let R be a Henselian valuation ring. If $s_{m}(R)<\infty$, then for each $g \in K$ we have

$$
\begin{aligned}
& \ell_{n, K}(g)=\inf \left\{\ell_{m, R}^{*}\left(g h_{1}^{n}\right), \left.\ell_{m, R}^{*}\left(\frac{g}{h_{2}^{n}}\right) \right\rvert\, h_{1}, h_{2} \in R, \frac{g}{h_{2}^{n}} \in R\right\} \\
& \quad=\inf \left\{\ell_{m, R / l_{2 \nu(n)}^{*}}^{*}\left(\overline{g h_{1}^{n}}\right), \left.\ell_{m, R / l_{2 \nu(n)}^{*}}^{*}\left(\overline{\frac{g}{h_{2}^{n}}}\right) \right\rvert\, h_{1}, h_{2} \in R, \frac{g}{h_{2}^{n}} \in R\right\} .
\end{aligned}
$$

Moreover, if $\operatorname{char}(K) \nmid n$, then for every element $f \in K$ we have $\ell_{n}(f)<\infty$.

nth Waring numbers of valuation fields with finite nth level

Corollary

Let R be a Henselian valuation ring with the field of fractions K. If $s_{m}(R)<\infty$, then we have the following inequality:

$$
w_{n}(K) \leq s_{n}\left(R / I_{2 \nu(n)}\right)+1 .
$$

nth Waring numbers of valuation fields with finite nth level

Corollary

Let R be a Henselian valuation ring with the field of fractions K. If $s_{m}(R)<\infty$, then we have the following inequality:

$$
w_{n}(K) \leq s_{n}\left(R / I_{2 \nu(n)}\right)+1
$$

Corollary

Assume additionally that R is a DVR. If $s_{m}(R)<\infty$ and $n>2 \nu(m)+1$, then

$$
w_{n}(K)=s_{m}\left(R / \mathfrak{m}^{2 \nu(m)+1}\right)+1 .
$$

nth Waring numbers of Henselian DVRs and their fields of fractions with infinite inth level

nth Waring numbers of Henselian DVRs and their fields of fractions with infinite nth level

Theorem

Let R be a DVR with the field of fractions K and the residue field k. Take a positive integer n such that $s_{n}(k)=\infty$. Then

$$
w_{n}(K)=w_{n}(R) \geq w_{n}(k)
$$

where the equality holds if R is Henselian.

To be continued... (:

To be continued... (:

 Thank you!