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Some definitions

Let R be a commutative ring with 1 and n ∈ N+.
We define the n-length of a ∈ R:

`n(a) = `n,R(a) = inf

g ∈ N+ : a =

g∑
j=1

anj for some a1, . . . , ag ∈ R


and the nth level of R as

sn(R) := `n(−1).

We call R real if s2(R) =∞.
By nth Waring number of R we mean

wn(R) = sup{`n(a) : a ∈ R, `n(a) <∞}.
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An overview of well known results

Lagrange Four Square Theorem

w2(Z) = w2(Q) = 4

Theorem (Hoffman, 1999)

For each d ∈ N+ there exists a real field K with w2(K ) = d .

Theorem (Choi, Dai, Lam, Reznick, 1982)

If K is a real field and s ≥ 2, then

w2(Z[x ]) = w2(K [x1, . . . , xs ]) =∞.

Theorem (Choi, Lam, Reznick, 1995)

s + 2 ≤ w2(R(x1, x2, . . . , xs)) ≤ 2s , s ∈ N≥2
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An overview of well known results

If s2(R) <∞ (R is a nonreal ring), then

s2(R) ≤ w2(R) ≤ s2(R) + 2.

If additionally 2 ∈ R∗, then

a =

(
a+ 1

2

)2
−
(
a− 1

2

)2
,

so
s2(R) ≤ w2(R) ≤ s2(R) + 1.

Theorem (Dai, Lam, Peng, 1980)

Let s ∈ N+ and As = R[x1, x2, . . . , xs ]/(x21 + x22 + · · ·+ x2s + 1).
Then s2(As) = s.

Theorem (Pfister, 1965)

If K is a nonreal field, then s2(K ) = 2d for some d ∈ N. On the
other hand, for each d ∈ N there exists a field K with s2(K ) = 2d .
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An overview of well known results

If sn(R) <∞ and n! ∈ R∗, then

wn(R) ≤ nwn(Z)(sn(R) + 1)

as

n!x =
n−1∑
r=0

(−1)n−1−r
(
n − 1
r

)
[(x + r)n − rn].

Theorem (Becker, 1982)

If K is a field and d ∈ N+, then

w2(K ) <∞ ⇐⇒ w2d(K ) <∞.
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An overview of well known results

Theorem (Ryley, 1825)

w3(Q) = 3

as
(p3 + qr)3 + (−p3 + pr)3 + (−qr)3 = a(6avp2)3,

{p, q, r} = {a2 + 3v3, a2 − 3v3, 36a2v3}.

The identity of Israel(
27m3 − n9

27m2n2 + 9mn5 + 3n8

)3
+

(
−27m3 + 9mn6 + n9

27m2n2 + 9mn5 + 3n8

)3
+

(
27m2n3 + 9mn6

27m2n2 + 9mn5 + 3n8

)3
= m

shows that w3(K ) ≤ 3 for any field K .
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Henselian rings

We say that a local ring R is Henselian, if for every f ∈ R[x ] and
b ∈ R such that f (b) ∈ m and f ′(b) 6∈ m there exists a ∈ R such
that f (a) = 0 and a ≡ b (mod m).
If R is a valuation ring with valuation ν, then R is Henselian if and
only if for every f ∈ R[x ] and b ∈ R such that
ν(f (b)) > 2ν(f ′(b)), then there exists an element a ∈ R such that
f (a) = 0 and ν(a− b) > ν(f ′(b)).
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Preliminary results

Fact

Let ϕ : R → S be a homomorphism of rings. Then for any x ∈ R
and for any positive integer n > 1 the following inequality holds
`n(ϕ(x)) ≤ `n(x). If ϕ is an epimorphism, then wn(S) ≤ wn(R).

Fact

If S a localization of a ring R, then wn(S) ≤ wn(R).

Proof.

Follows from the fact that

`n,S

(a
b

)
≤ `n,R(abn−1),

where a, b ∈ R and a
b ∈ S .
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Preliminary results

Let p be a prime integer and n be a positive integer written in the
form n = pkm, where p does not divide m and k ≥ 0. We then say
that m is the p-free part of n. We extend this definition to the
case p = 0 and put m = n.

Fact

Let R be a ring of prime characteristic p and n > 1 be a positive
integer. If n = pkm, where m is the p-free part of n, then

sn(R) = sm(R)

and
wn(R) ≤ wm(R).

If we further assume that R is reduced, then

wn(R) = wm(R).
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nth Waring numbers of Henselian rings with finite nth level

Theorem

Let R be a local ring with the maximal ideal m and the residue
field k . Let n be a positive integer and m be the char(k)-free part
of n. Assume that char(k) - n or char(R) = char(k) and R is
reduced. Then, the following statements are true.

a) We have sn(R) ≥ sm(k) and wn(R) ≥ wm(k).

b) If R is Henselian and sm(k) <∞, then sn(R) = sm(k) and
wn(R) ≤ max{wm(k), sm(k) + 1}.

c) If f ∈ m\m2 and m > 1, then `n(f ) ≥ sm(k) + 1. In
particular, wn(R) ≥ sm(k) + 1 on condition that m 6= m2.
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nth Waring numbers of Henselian rings with finite nth level

Corollary

Let R be a Henselian local ring with the maximal ideal m 6= m2,
residue field k and sm(k) <∞. Let n be a positive integer and m
be the char(k)-free part of n. Assume that char(k) - n or
char(R) = char(k) and R is reduced. Then the following holds

wn(R) =

{
max{wm(k), sm(k) + 1} for m > 1

1 for m = 1
.
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nth Waring numbers of Henselian discrete valuation rings
with finite nth level

Theorem

Assume that R is a Henselian DVR and sm(R/m
2ν(m)+1) <∞.

Then sn(R) = sm(R/m
2ν(m)+1) and

i) wn(R) = max{wm(R/m
2ν(m)+1), sm(R/m

2ν(m)+1) + 1} if
m > 1 and n > 2ν(m) + 1;

ii) wn(R) = wm(R/m
2ν(m)+1) if m > 1 and n ≤ 2ν(m) + 1;

iii) wn(R) = 1 if m = 1.

Moreover, if char(R) - n and every element of R/m2ν(m)+1 can be
written as a sum of nth powers in R/m2ν(m)+1, then every element
of R can be written as a sum of wn(R) nth powers in R.
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nth Waring numbers of total rings of fractions of Henselian
rings with finite nth level

Theorem

Let R be a Henselian local ring with the total ring of fractions
Q(R) 6= R and the residue field k . Let n be a positive integer and
m be the char(k)-free part of n. Assume that char(k) - n or
char(R) = char(k). Then,

wn(Q(R)) ≤

{
sm(k) + 1 for m > 1

1 for m = 1
,

where the equality in the case of m > 1 holds under assumption
that R is an integral domain, sm(Q(R)) = sm(R) and there exists
a nontrivial valuation ν : Q(R)→ Z ∪ {∞} such that
R ⊂ Rν := {f ∈ Q(R) |ν(f ) ≥ 0}. Moreover, if char(k) - n, then
every element of Q(R) can be written as a sum of wn(Q(R)) nth
powers in Q(R).
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nth Waring numbers of valuation fields

Define Ir := {f ∈ R|ν(f ) > r}.
For a local ring R with maximal ideal m and g ∈ R we define

`∗n,R(g) = inf

{
l ∈ N+

∣∣∣∣∣ g =
l∑

i=1

gn
i for some g1, . . . , gl ∈ R, g1 6∈ m

}
.

Theorem

Let R be a Henselian valuation ring. If sm(R) <∞, then for each
g ∈ K we have

`n,K (g) = inf

{
`∗m,R(gh

n
1), `

∗
m,R

(
g

hn2

) ∣∣∣∣h1, h2 ∈ R,
g

hn2
∈ R

}
= inf

{
`∗m,R/I2ν(n)(gh

n
1), `

∗
m,R/I2ν(n)

(
g

hn2

) ∣∣∣∣h1, h2 ∈ R,
g

hn2
∈ R

}
.

Moreover, if char(K ) - n, then for every element f ∈ K we have
`n(f ) <∞.
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nth Waring numbers of valuation fields with finite nth level

Corollary

Let R be a Henselian valuation ring with the field of fractions K . If
sm(R) <∞, then we have the following inequality:

wn(K ) ≤ sn(R/I2ν(n)) + 1.

Corollary

Assume additionally that R is a DVR. If sm(R) <∞ and
n > 2ν(m) + 1, then

wn(K ) = sm(R/m
2ν(m)+1) + 1.
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nth Waring numbers of Henselian DVRs and their fields of
fractions with infinite nth level

Theorem

Let R be a DVR with the field of fractions K and the residue field
k . Take a positive integer n such that sn(k) =∞. Then

wn(K ) = wn(R) ≥ wn(k),

where the equality holds if R is Henselian.
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To be continued... (:

Thank you!
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