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Preliminaries

Let Z and N denote the set of integers and non-negative integers
respectively.

Numerical Semigroup

A submonoid S of N is called a numerical semigroup if N \ S is finite.
Equivalently, there exist m0,m1, . . . ,mp ∈ N with
gcd(m0,m1, . . . ,mp) = 1 such that

S := ⟨m0,m1, . . . ,mp⟩ =

{
p∑

i=0

λimi | λi ∈ N

}
.

Here S is called the numerical semigroup generated by m0,m1, . . . ,mp.
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Let f be the largest integer such that f /∈ S, then f is called the
Frobenius number of S, and denoted by F(S).

An element f ∈ Z \ S is called a pseudo-Frobenius number if
f + s ∈ S for all s ∈ S \ {0}. We will denote the set of
pseudo-Frobenius numbers of S by PF(S).

A numerical semigroup S is symmetric if PF(S) = {F(S)}.

A numerical semigroup S is pseudo symmetric if
PF(S) = {F(S),F(S)/2}.
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Affine Semigroup (pointed)

An affine semigroup is a finitely generated submonoid S of Nr

minimally generated by a1, . . . , an, and denoted by S = ⟨a1, . . . , an⟩.
The cardinality of the minimal generating set of S is called the
embedding dimension of S, denoted by e(S).

Affine Semigroup Ring

Let S be an affine semigroup in Nr minimally generated by a1, . . . , an.
The semigroup ring K[S] = K[ta1 , . . . , tan ] of S is a K-subalgebra of the
polynomial ring K[t1, . . . , tr] over the field K, where tai = tai11 · · · taird

for ai = (ai1, . . . , air).
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Let R = K[x1, . . . , xn] and define a map

π : R → K[S]

xi 7→ tai , i = 1, . . . , n.

Note that π is a surjective K-algebra homomorphism, and thus

K[S] ∼=
R

Ker(π)
.

Set deg xi = ai for all i = 1, . . . , n. With this grading R is a
multi-graded ring. For a monomial xu := xu1

1 · · ·xun
n , the S-degree

of xu is defined as degSx
u =

∑n
i=1 uiai.

Let IS denote the kernel of π. Then

IS = (xu − xv | degSxu = degSx
v) .

Therefore, IS is a graded homogeneous ideal of R. Thus, K[S] has
a graded structure inherited from R.
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pseudo-Frobenius elements in Affine Semigroups

Let S be the affine semigroup minimally generated by
{a1, . . . , an} ⊆ Nr. Consider the cone of S in Qr

≥0,

C(S) :=

{
n∑

i=1

λiai | λi ∈ Q≥0, i = 1, . . . , n

}

and set H(S) := (C(S) \ S) ∩ Nr.

Definition

An element f ∈ H(S) is called a pseudo-Frobenius element of S if
f + s ∈ S for all s ∈ S \ {0}. The set of pseudo-Frobenius elements of S
is denoted by PF(S). In particular,

PF(S) = {f ∈ H(S) | f + aj ∈ S, ∀j ∈ [1, n]}.
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Example:

Let S = ⟨(0, 1), (3, 0), (4, 0), (5, 0), (1, 4), (2, 7)⟩.
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H(S)= set of all red points.

PF(S) = {(1, 3), (2, 6)}.
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Pseudo-Frobenius elements in Affine Semigroups

Remark

Pseudo-Frobenius elements may not exist. Let

S = ⟨(2, 0), (1, 1), (0, 2)⟩.

Then S is the subset of points in N2 whose sum of coordinates is even.
Thus, we have that H(S) + S = H(S). Therefore PF(S) = ∅.

If H(S) is finite then the set of pseudo-Frobenius elements is
always non-empty.
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MPD-semigroup

Let R = K[x1, . . . , xn], we say that S = ⟨a1, . . . , an⟩ satisfies the
maximal projective dimension (MPD) property if

pdimRK[S] = n− 1.

Equivalently, depthRK[S] = 1.

(Garcia-Garcia et al., 2019), proved that S is an MPD-semigroup
if and only if PF(S) ̸= ∅.
In particular, if S is a MPD-semigroup then b ∈ S is the S-degree
of the (n− 2)th minimal syzygy of K[S] if and only if

b ∈ {a+
∑n

i=1 ai | a ∈ PF(S)} .
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The cardinality of PF(S) is equal to the last Betti number of K[S].
We call it the Betti-type of S.

Example

Let S = ⟨a1 = (2, 11), a2 = (3, 0), a3 = (5, 9), a4 = (7, 4)⟩. Then, by
Macaulay2, we have graded minimal free resolution of K[S],

0 → R(−(81, 93))⊕R(−(94, 82)) → R6 → R5 → R → K[S] → 0.

Therefore, pdimRK[S] = 3. Hence, S is MPD. Also, we have

PF(S) =

{
(81, 93)−

4∑
i=1

ai, (94, 82)−
4∑

i=1

ai

}
.

Therefore, PF(S) = {(64, 89), (77, 58)}.
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Gluing of MPD-semigroups

Definition

Let G(S) be the group generated by S. Let A be the minimal
generating system of S and A = A1 ∪A2 be a nontrivial partition of A.
Let Si be the submonoid of Nd generated by Ai, i ∈ 1, 2. Then
S = S1 + S2. We say that S is the gluing of S1 and S2 along s if
(1) s ∈ S1 ∩ S2 and,
(2) G(S1) ∩G(S2) = sZ.
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Theorem (– , Goel, Sengupta)

Let S be a gluing of S1 and S2. Then S is MPD if and only if S1 and
S2 are MPD. Moreover,

PF(S) = {f + g + s | f ∈ PF(S1), g ∈ PF(S2)}.

Sketch of proof:

If S1 and S2 are MPD-semigroups then by [Garcia-Garcia et. el,
2020], S is an MPD-semigroup.

Let the embedding dimensions of S1 and S2 are n1 and n2

respectively. Suppose without loss of generality that S1 is not an
MPD-semigroup. Therefore, we have

pdimR1
K[S1] < n1 − 1,

where R1 = k[x1, . . . , xn1 ].
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Also, by Auslander-Buchsbaum formula,

pdimR2
K[S2] ≤ n2 − 1,

where R2 = k[x1, . . . , xn2 ].

For R = k[x1, . . . , xn1+n2 ], we have

pdimRK[S] = pdimR1
K[S1] + pdimR2

K[S2] + 1 < n1 + n2 − 1.

Since, S is MPD, this is a contradiction.

Now set, T = {f + g + s | f ∈ PF(S1), g ∈ PF(S2)}. Then
T ⊂ PF(S).

Now, by the minimal graded free resolution of semigroup ring
associated to gluing of affine semigroups (see Gimenez and
Srinivasan, 2019), we can deduce that

|PF(S)| = |PF(S1)| · |PF(S2)|.

Therefore, to complete the proof, it is sufficient to show that if
f + g + d, f ′ + g′ + d ∈ T such that f + g + d = f ′ + g′ + d then
f = f ′ and g = g′.
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Unboundedness of Betti-type

Motivated by an example of Jafari and Yaghmaei (2022), we construct
the following class of examples.

Let a ≥ 3 be an odd natural number and p ∈ Z+. Define

Sa,p = ⟨(a, 0), (0, ap), (a+ 2, 2), (2, 2 + ap)⟩.

Define the set

∆ = {(ap(a+ 2)− (ℓ+ 2)a− 2, ap(ℓ+ 2)− 2) | 0 ≤ ℓ < ap − 1} .

Proposition (– , Sengupta)

Sa,p is an MPD-semigroup and ∆ ⊆ PF(Sa,p).
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Unboundedness of Betti-type

Theorem (– , Sengupta)

For each e ≥ 4, there exists a class of MPD-semigroups of embedding
dimension e in N2 such that the Betti-type is not a bounded function
in terms of the embedding dimension e.

Definition

Let ≺ be a term order on Nd. Then F (S)≺ = max≺H(S), if it exists, is
called a Frobenius element of S. Note that Frobenius elements of S
may not exist. However, if |H(S)| < ∞, then S has Frobenius elements.
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Hilbert Series and Frobenius Elements

The Hilbert series of an affine semigroup algebra K[S] is defined as

H(K[S], t) =
∑
s∈S

ts,

the formal sum of all monomials ts = ts11 · · · tsrr , where s ∈ S. It can be
written as a rational function of the form

H(K[S], t) =
K(t1, . . . , tr)∏n
i=1(1− tai)

,

where K(t1, . . . , tr) is a polynomial in Z[t1, . . . , tr].
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Let exp(LT≺ K(K[S]; t)) be the exponent of the leading term of
K(K[S]; t)) with respect to ≺.

Theorem (– , Goel, Sengupta)

Let S = ⟨a1, . . . , an⟩ ⊆ Nr be a C-semigroup such that C(S) = Qr
≥0.

Then F(S)≺ = exp(LT≺ K(K[S]; t))−
∑n

i=1 ai for any term order ≺ .
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Example

Let S = ⟨a1 = (0, 1), a2 = (2, 0), a3 = (3, 0), a4 = (1, 3)⟩.
cone(S) = Q2

≥0 and H(S) = {(1, 0), (1, 1), (1, 2)} is finite.

Therefore, F(S)≺ = (1, 2) for any term order ≺.

We have,

H(K[S]; t) =
1− t61 − t31t

3
2 − t41t

3
2 − t21t

6
2 + t61t

3
2 + t71t

3
2 + t41t

6
2 + t51t

6
2 − t71t

6
2

(1− t2)(1− t21)(1− t31)(1− t1t32)
.

Hence,

F(S)≺ = exp(LT≺ K(K[S]; t))−
4∑

i=1

a4 = (7, 6)− (6, 4) = (1, 2).
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≺-symmetric semigroups

Definition

Fix a term order ≺ such that F (S)≺ = max≺H(S) exists.

If PF(S) = {F (S)≺}, then S is called a ≺-symmetric
semigroup.

If PF(S) = {F (S)≺, F (S)≺/2}, then S is called
≺-pseudo-symmetric.
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≺-symmetric semigroups

If H(S) is a non-empty finite set, then S is said to be a
C-semigroup, where C denotes the cone of the semigroup. When S
is a C-semigroup, we give a characterization of ≺-symmetric and
≺-pseudo-symmetric semigroups.

Theorem (– , Goel, Sengupta)

Let S be a C-semigroup and let F (S)≺ denote the Frobenius element of
S with respect to an order ≺ . Then S is a ≺-symmetric semigroup if
and only if for each g ∈ cone(S) ∩ Nd we have:

g ∈ S ⇐⇒ F (S)≺ − g /∈ S.
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≺-symmetric semigroups

Theorem (– , Goel, Sengupta)

Let S be a C-semigroup and let F (S)≺ denote the Frobenius element of
S with respect to an order ≺ . Then S is a ≺-pseudo-symmetric
semigroup if and only if F (S)≺ is even, and for each g ∈ cone(S) ∩ Nd

we have:

g ∈ S ⇐⇒ F (S)≺ − g /∈ S and g ̸= F (S)≺/2.
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Wilf’s Conjecture

⋆ Conjecture(Wilf, 1978) Let S be a numerical semigroup. Then
the following inequality is true for every numerical semigroup.

F(S) + 1 ≤ e(S) · |{s ∈ S | s < F(S)}|.

Example

Let S = ⟨5, 7, 9⟩. Then,
e(S) = 3.

S = {0, 5, 7, 9, 10, 12, 14, 15 −→}.
F(S) = 13.

{s ∈ S | s < F(S)} = {0, 5, 7, 9, 10, 12}.
F(S) + 1 = 14 < 3 · 6 = 18.
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Extended Wilf’s conjecture

Let S be a C-semigroup and ≺ be a monomial order satisfying that
every monomial is preceded only by a finite number of monomials.
Define the Frobenius number of S as

N (F (S)≺) = |H(S)|+ |{g ∈ S | g ≺ F (S)≺}|

Extended Wilf’s conjecture. (Garcia-Garcia et. al., 2018) Let S be
a C-semigroup and ≺ be a monomial order satisfying that every
monomial is preceded only by a finite number of monomials. Then

N (F (S)≺) + 1 ≤ e(S) · |{g ∈ S | g ≺ F (S)≺}|
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Extended Wilf’s conjecture

Theorem (– , Goel, Sengupta)

Let S be a C-semigroup with full cone. If S is ≺-symmetric or
≺-pseudo-symmetric semigroup, then extended Wilf’s conjecture holds.

C-semigroups with full cone have been studied in the literature as
generalized numerical semigroups. A generalized version of Wilf’s
conjecture has also been studied with this terminology, and the
generalized Wilf’s conjecture for generalized numerical semigroups
implies the extended Wilf’s conjecture for C-semigroups with full
cone (see Cisto et el., 2020).
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Thank you for your attention!
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