Affine Semigroups of Maximal Projective Dimension

Om Prakash (joint work with Kriti Goel and Indranath Sengupta)

Indian Institute of Technology Gandhinagar

Conference on Rings and Factorizations, Graz July 13, 2023

- Preliminaries
- Pseudo-Frobenius elements in Affine Semigroups
- Gluing of MPD-semigroups
- Unboundedness of Betti-type of MPD-semigroups
- Extended Wilf's conjecture

Let \mathbbm{Z} and \mathbbm{N} denote the set of integers and non-negative integers respectively.

Numerical Semigroup

A submonoid S of \mathbb{N} is called a numerical semigroup if $\mathbb{N} \setminus S$ is finite. Equivalently, there exist $m_0, m_1, \ldots, m_p \in \mathbb{N}$ with $gcd(m_0, m_1, \ldots, m_p) = 1$ such that

$$S := \langle m_0, m_1, \dots, m_p \rangle = \left\{ \sum_{i=0}^p \lambda_i m_i \mid \lambda_i \in \mathbb{N} \right\}.$$

Here S is called the numerical semigroup generated by m_0, m_1, \ldots, m_p .

- Let f be the largest integer such that $f \notin S$, then f is called the Frobenius number of S, and denoted by F(S).
- An element $f \in \mathbb{Z} \setminus S$ is called a pseudo-Frobenius number if $f + s \in S$ for all $s \in S \setminus \{0\}$. We will denote the set of pseudo-Frobenius numbers of S by PF(S).
- A numerical semigroup S is symmetric if $PF(S) = {F(S)}$.
- A numerical semigroup S is pseudo symmetric if $PF(S) = {F(S), F(S)/2}.$

Affine Semigroup (pointed)

An affine semigroup is a finitely generated submonoid S of \mathbb{N}^r minimally generated by a_1, \ldots, a_n , and denoted by $S = \langle a_1, \ldots, a_n \rangle$. The cardinality of the minimal generating set of S is called the embedding dimension of S, denoted by e(S).

Affine Semigroup Ring

Let S be an affine semigroup in \mathbb{N}^r minimally generated by a_1, \ldots, a_n . The semigroup ring $\mathbb{K}[S] = \mathbb{K}[\mathbf{t}^{a_1}, \ldots, \mathbf{t}^{a_n}]$ of S is a \mathbb{K} -subalgebra of the polynomial ring $\mathbb{K}[t_1, \ldots, t_r]$ over the field \mathbb{K} , where $\mathbf{t}^{a_i} = t_1^{a_{i1}} \cdots t_d^{a_{ir}}$ for $a_i = (a_{i1}, \ldots, a_{ir})$. • Let $R = \mathbb{K}[x_1, \dots, x_n]$ and define a map $\pi: R \to \mathbb{K}[S]$

 $x_i \mapsto \mathbf{t}^{a_i}, i = 1, \dots, n.$

Note that π is a surjective K-algebra homomorphism, and thus

$$\mathbb{K}[S] \cong \frac{R}{\operatorname{Ker}(\pi)}.$$

- Set deg $x_i = a_i$ for all i = 1, ..., n. With this grading R is a multi-graded ring. For a monomial $\mathbf{x}^u := x_1^{u_1} \cdots x_n^{u_n}$, the S-degree of \mathbf{x}^u is defined as deg_S $\mathbf{x}^u = \sum_{i=1}^n u_i a_i$.
- Let I_S denote the kernel of π . Then

$$I_S = (\mathbf{x}^u - \mathbf{x}^v \mid \deg_S \mathbf{x}^u = \deg_S \mathbf{x}^v).$$

Therefore, I_S is a graded homogeneous ideal of R. Thus, $\mathbb{K}[S]$ has a graded structure inherited from R.

Om Prakash

MPD-semigroups

pseudo-Frobenius elements in Affine Semigroups

• Let S be the affine semigroup minimally generated by $\{a_1, \ldots, a_n\} \subseteq \mathbb{N}^r$. Consider the cone of S in $\mathbb{Q}_{>0}^r$,

$$\mathfrak{C}(S) := \left\{ \sum_{i=1}^{n} \lambda_i a_i \mid \lambda_i \in \mathbb{Q}_{\geq 0}, i = 1, \dots, n \right\}$$

and set
$$\mathcal{H}(S) := (\mathfrak{C}(S) \setminus S) \cap \mathbb{N}^r$$
.

Definition

An element $f \in \mathcal{H}(S)$ is called a **pseudo-Frobenius element** of S if $f + s \in S$ for all $s \in S \setminus \{0\}$. The set of pseudo-Frobenius elements of S is denoted by PF(S). In particular,

$$PF(S) = \{ f \in \mathcal{H}(S) \mid f + a_j \in S, \forall j \in [1, n] \}.$$

Example:

Let $S = \langle (0,1), (3,0), (4,0), (5,0), (1,4), (2,7) \rangle$.

- $\mathcal{H}(S)$ = set of all red points.
- $PF(S) = \{(1,3), (2,6)\}.$

Om Prakash

Remark

Pseudo-Frobenius elements may not exist. Let

 $S = \langle (2,0), (1,1), (0,2) \rangle.$

Then S is the subset of points in \mathbb{N}^2 whose sum of coordinates is even. Thus, we have that $\mathcal{H}(S) + S = \mathcal{H}(S)$. Therefore $PF(S) = \emptyset$.

• If $\mathcal{H}(S)$ is finite then the set of pseudo-Frobenius elements is always non-empty.

MPD-semigroup

Let $R = \mathbb{K}[x_1, \ldots, x_n]$, we say that $S = \langle a_1, \ldots, a_n \rangle$ satisfies the **maximal projective dimension (MPD)** property if

$$\mathrm{pdim}_R \mathbb{K}[S] = n - 1.$$

Equivalently, depth_R $\mathbb{K}[S] = 1$.

- (Garcia-Garcia et al., 2019), proved that S is an MPD-semigroup if and only if $PF(S) \neq \emptyset$.
- In particular, if S is a MPD-semigroup then $b \in S$ is the S-degree of the (n-2)th minimal syzygy of $\mathbb{K}[S]$ if and only if

$$b \in \left\{ a + \sum_{i=1}^{n} a_i \mid a \in \operatorname{PF}(S) \right\}.$$

The cardinality of PF(S) is equal to the last Betti number of K[S].
We call it the Betti-type of S.

Example

Let $S = \langle a_1 = (2, 11), a_2 = (3, 0), a_3 = (5, 9), a_4 = (7, 4) \rangle$. Then, by Macaulay2, we have graded minimal free resolution of $\mathbb{K}[S]$,

$$0 \to R(-(81,93)) \oplus R(-(94,82)) \to R^6 \to R^5 \to R \to \mathbb{K}[S] \to 0.$$

Therefore, $\operatorname{pdim}_R \mathbb{K}[S] = 3$. Hence, S is MPD. Also, we have

$$PF(S) = \left\{ (81, 93) - \sum_{i=1}^{4} a_i, (94, 82) - \sum_{i=1}^{4} a_i \right\}.$$

Therefore, $PF(S) = \{(64, 89), (77, 58)\}.$

Definition

Let G(S) be the group generated by S. Let A be the minimal generating system of S and $A = A_1 \cup A_2$ be a nontrivial partition of A. Let S_i be the submonoid of \mathbb{N}^d generated by $A_i, i \in 1, 2$. Then $S = S_1 + S_2$. We say that S is the **gluing** of S_1 and S_2 along s if (1) $s \in S_1 \cap S_2$ and, (2) $G(S_1) \cap G(S_2) = s\mathbb{Z}$. Theorem (-, Goel, Sengupta)

Let S be a gluing of S_1 and S_2 . Then S is MPD if and only if S_1 and S_2 are MPD. Moreover,

$$\operatorname{PF}(S) = \{ f + g + s \mid f \in \operatorname{PF}(S_1), g \in \operatorname{PF}(S_2) \}.$$

Sketch of proof:

- If S_1 and S_2 are MPD-semigroups then by [Garcia-Garcia et. el, 2020], S is an MPD-semigroup.
- Let the embedding dimensions of S_1 and S_2 are n_1 and n_2 respectively. Suppose without loss of generality that S_1 is not an MPD-semigroup. Therefore, we have

$$\operatorname{pdim}_{R_1} \mathbb{K}[S_1] < n_1 - 1,$$

where $R_1 = k[x_1, ..., x_{n_1}].$

• Also, by Auslander-Buchsbaum formula,

$$\mathrm{pdim}_{R_2}\mathbb{K}[S_2] \le n_2 - 1,$$

where $R_2 = k[x_1, ..., x_{n_2}].$ • For $R = k[x_1, ..., x_{n_1+n_2}]$, we have

 $\mathrm{pdim}_R\mathbb{K}[S] = \mathrm{pdim}_{R_1}\mathbb{K}[S_1] + \mathrm{pdim}_{R_2}\mathbb{K}[S_2] + 1 < n_1 + n_2 - 1.$

Since, S is MPD, this is a contradiction.

- Now set, $T = \{f + g + s \mid f \in PF(S_1), g \in PF(S_2)\}$. Then $T \subset PF(S)$.
- Now, by the minimal graded free resolution of semigroup ring associated to gluing of affine semigroups (see Gimenez and Srinivasan, 2019), we can deduce that

 $|\operatorname{PF}(S)| = |\operatorname{PF}(S1)| \cdot |\operatorname{PF}(S2)|.$

• Therefore, to complete the proof, it is sufficient to show that if f + g + d, $f' + g' + d \in T$ such that f + g + d = f' + g' + d then f = f' and g = g'.

Om Prakash

Motivated by an example of Jafari and Yaghmaei (2022), we construct the following class of examples.

• Let $a \geq 3$ be an odd natural number and $p \in \mathbb{Z}^+$. Define

$$S_{a,p} = \langle (a,0), (0,a^p), (a+2,2), (2,2+a^p) \rangle.$$

• Define the set

$$\Delta = \{ (a^p(a+2) - (\ell+2)a - 2, a^p(\ell+2) - 2) \mid 0 \le \ell < a^p - 1 \}.$$

Proposition (-, Sengupta)

 $S_{a,p}$ is an MPD-semigroup and $\Delta \subseteq PF(S_{a,p})$.

Theorem (-, Sengupta)

For each $e \ge 4$, there exists a class of MPD-semigroups of embedding dimension e in \mathbb{N}^2 such that the Betti-type is not a bounded function in terms of the embedding dimension e.

Definition

Let \prec be a term order on \mathbb{N}^d . Then $F(S)_{\prec} = \max_{\prec} \mathcal{H}(S)$, if it exists, is called a **Frobenius element** of *S*. Note that Frobenius elements of *S* may not exist. However, if $|\mathcal{H}(S)| < \infty$, then *S* has Frobenius elements.

The Hilbert series of an affine semigroup algebra $\mathbb{K}[S]$ is defined as

$$\mathrm{H}(\mathbb{K}[S], \mathbf{t}) = \sum_{s \in S} \mathbf{t}^s,$$

the formal sum of all monomials $\mathbf{t}^s = t_1^{s_1} \cdots t_r^{s_r}$, where $s \in S$. It can be written as a rational function of the form

$$\mathrm{H}(\mathbb{K}[S],\mathbf{t}) = rac{\mathcal{K}(t_1,\ldots,t_r)}{\prod_{i=1}^n (1-\mathbf{t}^{a_i})},$$

where $\mathcal{K}(t_1,\ldots,t_r)$ is a polynomial in $\mathbb{Z}[t_1,\ldots,t_r]$.

Let $\exp(LT_{\prec} \mathcal{K}(\mathbb{K}[S]; \mathbf{t}))$ be the exponent of the leading term of $\mathcal{K}(\mathbb{K}[S]; \mathbf{t}))$ with respect to \prec .

Theorem (-, Goel, Sengupta)

Let $S = \langle a_1, \ldots, a_n \rangle \subseteq \mathbb{N}^r$ be a \mathcal{C} -semigroup such that $\mathfrak{C}(S) = \mathbb{Q}_{\geq 0}^r$. Then $F(S)_{\prec} = \exp(LT_{\prec} \mathcal{K}(\mathbb{K}[S]; \mathbf{t})) - \sum_{i=1}^n a_i$ for any term order \prec .

Example

Let
$$S = \langle a_1 = (0,1), a_2 = (2,0), a_3 = (3,0), a_4 = (1,3) \rangle$$
.

- $\operatorname{cone}(S) = \mathbb{Q}_{\geq 0}^2$ and $\mathcal{H}(S) = \{(1,0), (1,1), (1,2)\}$ is finite.
- Therefore, $\mathcal{F}(S)_{\prec} = (1,2)$ for any term order \prec .

We have,

$$H(\mathbb{K}[S]; \mathbf{t}) = \frac{1 - t_1^6 - t_1^3 t_2^3 - t_1^4 t_2^3 - t_1^2 t_2^6 + t_1^6 t_2^3 + t_1^7 t_2^3 + t_1^4 t_2^6 + t_1^5 t_2^6 - t_1^7 t_2^6}{(1 - t_2)(1 - t_1^2)(1 - t_1^3)(1 - t_1 t_2^3)}$$

Hence,

$$F(S)_{\prec} = \exp(LT_{\prec} \mathcal{K}(\mathbb{K}[S]; \mathbf{t})) - \sum_{i=1}^{4} a_4 = (7, 6) - (6, 4) = (1, 2).$$

Definition

Fix a term order \prec such that $F(S)_{\prec} = \max_{\prec} \mathcal{H}(S)$ exists.

- If PF(S) = {F(S) ⊰}, then S is called a ≺-symmetric semigroup.
- If PF(S) = {F(S)_≺, F(S)_≺/2}, then S is called ≺-pseudo-symmetric.

If *H*(*S*) is a non-empty finite set, then *S* is said to be a *C*-semigroup, where *C* denotes the cone of the semigroup. When *S* is a *C*-semigroup, we give a characterization of ≺-symmetric and ≺-pseudo-symmetric semigroups.

Theorem (-, Goel, Sengupta)

Let S be a C-semigroup and let $F(S)_{\prec}$ denote the Frobenius element of S with respect to an order \prec . Then S is a \prec -symmetric semigroup if and only if for each $g \in \operatorname{cone}(S) \cap \mathbb{N}^d$ we have:

$$g \in S \iff F(S)_{\prec} - g \notin S.$$

Theorem (-, Goel, Sengupta)

Let S be a C-semigroup and let $F(S)_{\prec}$ denote the Frobenius element of S with respect to an order \prec . Then S is a \prec -pseudo-symmetric semigroup if and only if $F(S)_{\prec}$ is even, and for each $g \in \operatorname{cone}(S) \cap \mathbb{N}^d$ we have:

$$g \in S \iff F(S)_{\prec} - g \notin S \text{ and } g \neq F(S)_{\prec}/2.$$

* **Conjecture**(Wilf, 1978) Let S be a numerical semigroup. Then the following inequality is true for every numerical semigroup.

$$\mathcal{F}(S) + 1 \leq e(S) \cdot |\{s \in S \mid s < \mathcal{F}(S)\}|.$$

Example

Let $S = \langle 5, 7, 9 \rangle$. Then,

• e(S) = 3.

•
$$S = \{0, 5, 7, 9, 10, 12, 14, 15 \longrightarrow \}.$$

•
$$F(S) = 13.$$

•
$$\{s \in S \mid s < F(S)\} = \{0, 5, 7, 9, 10, 12\}.$$

•
$$F(S) + 1 = 14 < 3 \cdot 6 = 18.$$

• Let S be a C-semigroup and ≺ be a monomial order satisfying that every monomial is preceded only by a finite number of monomials. Define the Frobenius number of S as

$$\mathcal{N}(F(S)_{\prec}) = |\mathcal{H}(S)| + |\{g \in S \mid g \prec F(S)_{\prec}\}|$$

Extended Wilf's conjecture. (Garcia-Garcia et. al., 2018) Let S be a C-semigroup and \prec be a monomial order satisfying that every monomial is preceded only by a finite number of monomials. Then

$$\mathcal{N}(F(S)_{\prec}) + 1 \le e(S) \cdot |\{g \in S \mid g \prec F(S)_{\prec}\}|$$

Theorem (-, Goel, Sengupta)

Let S be a C-semigroup with full cone. If S is \prec -symmetric or \prec -pseudo-symmetric semigroup, then extended Wilf's conjecture holds.

• *C*-semigroups with full cone have been studied in the literature as generalized numerical semigroups. A generalized version of Wilf's conjecture has also been studied with this terminology, and the generalized Wilf's conjecture for generalized numerical semigroups implies the extended Wilf's conjecture for *C*-semigroups with full cone (see Cisto et el., 2020).

References

- 1. Bhardwaj, O. P., Goel, K., and Sengupta, I.: Affine semigroups of maximal projective dimension. *Collect. Math.*, 2022.
- 2. Bhardwaj, O. P., Sengupta, I.: Affine semigroups of maximal projective dimension-II. arXiv:2304.14806, 2023.
- Cisto, C., DiPasquale, M., Flores, Z., Failla, G., Peterson, C., and Utano, R.: A generalization of Wilf's conjecture for generalized numerical semigroups. *Semigroup Forum*, 101(2):303–325, 2020.
- Garcia-Garcia, J. I., Ojeda, I., Rosales, J. C., and Vigneron-Tenorio, A.: On pseudo-Frobenius elements of submonoids of N^d. Collect. Math., 71(1):189–204, 2020.
- Garcia-Garcia, J. I., Marin-Aragon, D., and Vigneron-Tenorio, A.: An extension of Wilf's conjecture to affine semigroups. *Semigroup Forum*, 96(2), 396–408, 2018.

- Gimenez, P., and Srinivasan, H.: The structure of the minimal free resolution of semigroup rings obtained by gluing. J. Pure Appl. Algebra, 223(4):1411–1426, 2019.
- Jafari, R., Yaghmaei, M.: Type and conductor of simplicial affine semigroups. J. Pure Appl. Algebra, 226(3), 106844 (2022).
- 8. Wilf, H.S.: A circle-of-lights algorithm for the "money-changing problem". Am. Math. Monthly 85(7), 562–565, 1978.

Thank you for your attention!