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Basic Problem
Let F be a field.
Let A1, A2, . . . , Ak be n × n matrices with entries from F .
Problem : What is a polynomial f such that f (Ai) = 0 for all i?

Answers:
Use characteristic polynomials.
Let χi be the characteristic polynomial of Ai .
Take f = χ1χ2 · · · χk .
Use minimal polynomials.
Let µi be the minimal polynomial of Ai .
Take f = µ1µ2 · · · µk .
We really just need the least common multiple of all the min. polys.
Let ϕ = lcm(µ1, . . . , µk).
▶ ϕ is the unique monic polynomial in F [x ] of minimal degree that kills all the Ai
▶ Any polynomial in F [x ] that kills all the Ai is a multiple of ϕ.

All the polynomials above have coefficients from F .
What if we allow polynomials with matrix coefficients?
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Null Ideals
Let R be a ring (associative, with identity, not necessarily commutative) and S ⊆ R.

Definition
The null ideal of S in R is NR(S) = {f ∈ R[x ] | f (a) = 0 for all a ∈ S}.
We will write just N(S) if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.
This means that polynomials can only be evaluated when the indeterminate
appears to the right of any coefficients

Small example:
Let f (x) = cx , g(x) = dx (c, d , ∈ R), and h(x) = f (x)g(x)
In R[x ], h(x) = (cx)(dx) = cdx2

To evaluate (cx)(dx), we must first express it as cdx2

So, h(a) = cda2 while f (a)g(a) = cada
It is possible that h(a) ̸= f (a)g(a)!

Problem V.2 : Understand null ideals of subsets of matrix rings.
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Basic Properties of Null Ideals

S ⊆ R NR(S) = {f ∈ R[x ] | f (a) = 0 for all a ∈ S}
Easy observations:

1. For any ring R, NR(S) is a left R[x ]-module.

2. When R is commutative, then NR(S) is a (two-sided) ideal of R[x ].

3. When R is an integral domain, NR(S) ̸= {0} if and only if S is finite.

4. When R is an integral domain and S = {a1, . . . , ak},
NR(S) is generated by (x − a1) · · · (x − ak).

Each of #2, #3, and #4 can fail if R is noncommutative.

Example: #4 need not hold if R is noncommutative.
Let a, b ∈ R be such that ab ̸= ba.
Let h(x) = (x − a)(x − b) = x2 − (a + b)x + ab.
Then, h(b) = 0, but h(a) = ab − ba ̸= 0.
So, (x − a)(x − b) /∈ NR({a, b})
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Matrix Examples

Let F be a field, char(F ) ̸= 2. Let R = M2(F ), the ring of 2 × 2 matrices over F

Let A =
(

0 1
0 0

)
, B =

(
0 −1
0 0

)
, and C =

(
0 0
1 0

)
Let S = {A, B} and T = {A, C}

Example: Describe N(S) and N(T )

Each matrix has min. poly. x2. So, x2 ∈ N(S) and x2 ∈ N(T ).

N(S) contains linear polynomials:
(

0 b
0 d

)
x ∈ N(S) for all b, d ∈ F .

N(T ) contains no linear polynomials
Proof
▶ Suppose αx + β ∈ N(T ) (here, α, β ∈ M2(F ))
▶ Then, αA + β = 0 = αC + β ⇝ α(A − C) = 0
▶ But, A − C is invertible ⇝ α = 0 ⇝ β = 0

In fact, N(T ) is generated (as a two-sided ideal of R[x ]) by x2
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Connection to Integer-valued Polynomials
Let D be a (commutative) integral domain with field of fractions K . Let S ⊆ D.
Then,

Int(S, D) = {f ∈ K [x ] | f (s) ∈ D for all s ∈ S}
is the ring of integer-valued polynomials on S.

Elements of Int(S, D) correspond to elements of null ideals in residue rings of D.

Given f ∈ K [x ], write f as f = g
d , where g ∈ D[x ] and d ∈ D.

Use a bar to denote passage from D to D/dD. Then,

f ∈ Int(S, D) ⇐⇒ g(s)
d ∈ D for all s ∈ S

⇐⇒ g(s) ∈ dD for all s ∈ S
⇐⇒ g ∈ ND(S)

Null ideals can give information about Int(S, D) even in noncommutative
settings.
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Integer-valued Polynomials over Matrix Rings
D: integral domain, K : fraction field of D, S ⊆ D

Int(S, D) = {f ∈ K [x ] | f (s) ∈ D for all s ∈ S}

We will make a “matrix version” of Int(S, D).
Mn(D): n × n matrices over D, Mn(K ): n × n matrices over K

Embed K ↪→ Mn(K ) by a 7→ scalar matrix aI

For S ⊆ Mn(D), we define

Int(S, Mn(D)) := {f ∈ Mn(K )[x ] | f (A) ∈ Mn(D) for all A ∈ S}

Big question here: Is Int(S, Mn(D)) a ring?
Int(S, Mn(D)) is closed under addition (easy)

Is it closed under multiplication?

Difficulty: polynomials in Mn(K )[x ] have noncommuting coefficients!
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Back to Null Ideals

Int(S, Mn(D)) := {f ∈ Mn(K )[x ] | f (A) ∈ Mn(D) for all A ∈ S}

Question: For which subsets S is Int(S, Mn(D)) a ring?

We can translate this into a question about null ideals.

Recall: given f ∈ Mn(K )[x ], write f = g
d , where g ∈ Mn(D) and d ∈ D.

A bar denotes passage from D to D/dD. Then,

f ∈ Int(S, Mn(D)) ⇐⇒ g ∈ NMn(D)(S)

Theorem
Int(S, Mn(D)) is a ring if and only if NMn(D)(S) is a two-sided ideal of
Mn(D/dD)[x ] for each d ̸= 0.
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Focus on Matrices

For the remainder of the talk, we will assume:
F is a field, R = Mn(F ), and S ⊆ Mn(F )
F corresponds to the ring of scalar matrices in Mn(F )

F ↪→ Mn(F )
a 7→ aI

N(S) = NR(S), and f ∈ N(S) has matrix coefficients

Questions to consider:
1. When is N(S) a two-sided ideal of Mn(F )[x ]?

2. When is N(S) ̸= {0}?

3. What are the generators for N(S) (as a two-sided ideal, if possible; otherwise,
as a left Mn(F )[x ]-module)?

We will focus on Question #1.
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Core Sets

Definitions
Let F be a field and S ⊆ Mn(F ).

We say S is core if N(S) is a two-sided ideal of Mn(F )[x ].

For A ∈ Mn(F ), µA is the minimal polynomial of A.

We define ϕS = lcm{µA}A∈S .
So, ϕS is the monic least common multiple of all minimal polynomials of
elements of S.

Problem V.3 : Classify/characterize the core subsets of Mn(F ).
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Initial Observations and First Results
F : field, S ⊆ Mn(F ), S is core when N(S) is a two-sided ideal

S = {A} is core if and only if A is a scalar matrix
Proof: (⇐) Evaluation at central elements behaves as usual.
For (⇒):
▶ Suppose B is such that AB ̸= BA.
▶ Then, x − A ∈ N(S), but (x − A)(x − B) /∈ N(S).

Given two subsets S1 and S2, N(S1 ∪ S2) = N(S1) ∩ N(S2).
It follows that unions of core sets are core.
Unfortunately, intersections of core sets need not be core.
(Example coming... stay tuned!)

Theorems

1. S is core if and only if N(S) is generated by ϕS . Equivalently,
S is not core if and only if there exists f ∈ N(S) with deg f < deg ϕS .

2. Assume that S is a full conjugacy class.
That is, S = {UAU−1 | U ∈ GL(n, F )} for some A ∈ Mn(F ).
Then, S is core.
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Example: Intersections of Core Sets Need Not be Core

Let F be a field, char(F ) ̸= 2

Let A =
(

0 1
0 0

)
, B =

(
0 −1
0 0

)
, and C =

(
0 0
1 0

)
Let S1 = {A, C} and S2 = {B, C}

ϕS1(x) = x2 and ϕS2(x) = x2

Neither N(S1) nor N(S2) contains a linear polynomial.
(Ultimately, this is because both A − C and B − C are invertible.)
Thus, both S1 and S2 are core (both are generated by x2)

However, S1 ∩ S2 = {C}, which is not core.
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Strategy for 2 × 2 matrices
For the sake of sanity: focus only on 2 × 2 matrices, and assume that S is finite.

Fact: A, B ∈ M2(F ) are conjugate if and only if µA = µB .
In M2(F ), “conjugacy class” = “minimal polynomial class”
Notation: Given m ∈ F [x ], let C(m) = {A ∈ M2(F ) | µA = m}.

Overall (and ultimately successful!) strategy to decide if S is core:
1. Partition S into conjugacy classes:

S = S1 ∪ S2 ∪ · · · ∪ Sk

each Si = (S ∩ C(mi)) for some mi ∈ F [x ]

2. Each Si is a subset of a conjugacy class.
Find necessary and sufficient conditions for a subset of a conjugacy class to
be core.
This is not too difficult!

3. Figure out what happens when the Si are combined back into the original S.
This gets wild.

Nicholas J. Werner (SUNY at Old Westbury) Null Ideals of Subsets of Matrix Rings July 12, 2023 13 / 20



Strategy for 2 × 2 matrices
For the sake of sanity: focus only on 2 × 2 matrices, and assume that S is finite.

Fact: A, B ∈ M2(F ) are conjugate if and only if µA = µB .
In M2(F ), “conjugacy class” = “minimal polynomial class”
Notation: Given m ∈ F [x ], let C(m) = {A ∈ M2(F ) | µA = m}.

Overall (and ultimately successful!) strategy to decide if S is core:
1. Partition S into conjugacy classes:

S = S1 ∪ S2 ∪ · · · ∪ Sk

each Si = (S ∩ C(mi)) for some mi ∈ F [x ]

2. Each Si is a subset of a conjugacy class.
Find necessary and sufficient conditions for a subset of a conjugacy class to
be core.
This is not too difficult!

3. Figure out what happens when the Si are combined back into the original S.
This gets wild.

Nicholas J. Werner (SUNY at Old Westbury) Null Ideals of Subsets of Matrix Rings July 12, 2023 13 / 20



Strategy for 2 × 2 matrices
For the sake of sanity: focus only on 2 × 2 matrices, and assume that S is finite.

Fact: A, B ∈ M2(F ) are conjugate if and only if µA = µB .
In M2(F ), “conjugacy class” = “minimal polynomial class”
Notation: Given m ∈ F [x ], let C(m) = {A ∈ M2(F ) | µA = m}.

Overall (and ultimately successful!) strategy to decide if S is core:
1. Partition S into conjugacy classes:

S = S1 ∪ S2 ∪ · · · ∪ Sk

each Si = (S ∩ C(mi)) for some mi ∈ F [x ]

2. Each Si is a subset of a conjugacy class.
Find necessary and sufficient conditions for a subset of a conjugacy class to
be core.
This is not too difficult!

3. Figure out what happens when the Si are combined back into the original S.
This gets wild.

Nicholas J. Werner (SUNY at Old Westbury) Null Ideals of Subsets of Matrix Rings July 12, 2023 13 / 20



Strategy for 2 × 2 matrices
For the sake of sanity: focus only on 2 × 2 matrices, and assume that S is finite.

Fact: A, B ∈ M2(F ) are conjugate if and only if µA = µB .
In M2(F ), “conjugacy class” = “minimal polynomial class”
Notation: Given m ∈ F [x ], let C(m) = {A ∈ M2(F ) | µA = m}.

Overall (and ultimately successful!) strategy to decide if S is core:
1. Partition S into conjugacy classes:

S = S1 ∪ S2 ∪ · · · ∪ Sk

each Si = (S ∩ C(mi)) for some mi ∈ F [x ]

2. Each Si is a subset of a conjugacy class.
Find necessary and sufficient conditions for a subset of a conjugacy class to
be core.
This is not too difficult!

3. Figure out what happens when the Si are combined back into the original S.
This gets wild.

Nicholas J. Werner (SUNY at Old Westbury) Null Ideals of Subsets of Matrix Rings July 12, 2023 13 / 20



Strategy for 2 × 2 matrices
For the sake of sanity: focus only on 2 × 2 matrices, and assume that S is finite.

Fact: A, B ∈ M2(F ) are conjugate if and only if µA = µB .
In M2(F ), “conjugacy class” = “minimal polynomial class”
Notation: Given m ∈ F [x ], let C(m) = {A ∈ M2(F ) | µA = m}.

Overall (and ultimately successful!) strategy to decide if S is core:
1. Partition S into conjugacy classes:

S = S1 ∪ S2 ∪ · · · ∪ Sk

each Si = (S ∩ C(mi)) for some mi ∈ F [x ]

2. Each Si is a subset of a conjugacy class.
Find necessary and sufficient conditions for a subset of a conjugacy class to
be core.
This is not too difficult!

3. Figure out what happens when the Si are combined back into the original S.
This gets wild.

Nicholas J. Werner (SUNY at Old Westbury) Null Ideals of Subsets of Matrix Rings July 12, 2023 13 / 20



Core Conditions for Subsets of Conjugacy Classes

Let m ∈ F [x ] have degree 1 or 2.

Let S ⊆ C(m)

Easy case: m linear ⇝ C(m) = {A} for a scalar matrix A ⇝ S = {A} is core.

Theorems
Assume m is quadratic.

1. If m is irreducible, then S is core if and only if |S| ≥ 2.

2. If m is reducible, then S is core if and only if there exist A, B ∈ S such that
A − B is invertible.

3. Assume F is a finite field with q elements. If |S| ≥ q + 1, then S is core.
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Combining Classes back into S

S = S1 ∪ S2 ∪ · · · ∪ Sk

each Si = (S ∩ C(mi)) for some mi ∈ F [x ]

If each Si is core, then S is core. Does the converse hold?

Theorem
Assume mi is quadratic and Si is not core.

1. Irreducible case: Assume mi is irreducible.
Then, S is not core.

2. Repeated root case: Assume mi(x) = (x − a)2 for some a ∈ F .
Then, S is not core.

3. Distinct root case: Assume mi(x) = (x − a)(x − b) for a, b ∈ F with a ̸= b.
Then, S may or may not be core.
It depends on the other classes Sj with j ̸= i .
(This is the “wild” case.)
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Some Confounding Examples
Assume char(F ) ̸= 2 and let

A1 =
(

0 0
0 1

)
, A2 =

(
−1 0
0 0

)
, A3 =

(
1 0
0 −1

)
, A4 =

(
−1 0
0 1

)
Let S = {A1, A2, A3} and T = {A1, A2, A4}. Then,

ϕS(x) = ϕT (x) = x(x − 1)(x + 1)
Conjugacy class breakdowns:

S = {A1} ∪ {A2} ∪ {A3} T = {A1} ∪ {A2} ∪ {A4}

It turns out that S is core.
This can be shown with a calculation involving Vandermonde matrices.
N(T ) contains polynomials of degree 2 such as(

1 0
0 0

)
x(x + 1) and

(
0 1
0 0

)
x(x − 1)

So, T is not core
Why is S core but T is not core????
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Some Confounding Examples
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(
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)
, A2 =

(
−1 0
0 0

)
, A3 =

(
1 0
0 −1

)
, A4 =

(
−1 0
0 1

)
S = {A1, A2, A3}, T = {A1, A2, A4}

ϕS(x) = x(x − 1)(x + 1) ϕT (x) = x(x − 1)(x + 1)

Why is S core but T is not core????

Sketch of an answer:
We need to look at left annihilators of translations A − a, where a solves µA

Translate by 0 Translate by 1 Translate by −1
A1 A1 − 0 =

( 0 0
0 1

)
A1 − 1 =

( 1 0
0 0

)
A2 A2 − 0 =

( −1 0
0 0

)
A2 + 1 =

( 0 0
0 1

)
A3 A3 − 1 =

( 0 0
0 −2

)
A3 + 1 =

( −2 0
0 0

)
A4 A4 − 1 =

( −2 0
0 0

)
A4 + 1 =

( 0 0
0 2

)
The matrix

( 1 0
0 0

)
is in the left annihilator of each of A1 − 0, A2 + 1, and

A4 + 1. So,
( 1 0

0 0
)
x(x + 1) ∈ N(T )

To obtain a similar element in N(S), we need to translate by 0, 1, and −1.
The resulting polynomial is a multiple of x(x − 1)(x + 1).
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Algorithm to decide if a finite subset of M2(F ) is core

Given a finite set S ⊆ M2(F ):
1. Partition S into conjugacy classes S = S1 ∪ · · · ∪ Sk .

For each i , let ϕi = ϕSi . Then, deg ϕi ≤ 2.

2. Determine whether each Si is core.
▶ If each Si is core, then S is core.
▶ If some Si is not core and ϕi is either irreducible quadratic or quadratic with a

repeated root, then S is not core.

3. Let S0 be the union of all the Si that are core.

Let T = S \ S0. Then, T is a union of non-core classes, and each class
corresponds to a min. poly. of the form (x − a)(x − b) with a ̸= b.

Examine the left annihilators of translates of elements of T .

These annihilators can allow us to determine whether S is core.

Is there a better method to identify core sets?
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Summary
There is a connection between null ideals and integer-valued polynomials.
This holds even in noncommutative settings! (e.g. for matrix rings)

Solved problem: Determine all the finite core subsets of M2(F )

Open problems:
1. For an integral domain D, which subsets S ⊆ Mn(D) are such that

Int(S, Mn(D)) is a ring?
▶ Are null ideals the best method to find these subsets?

2. Enumerate or estimate the number of core subsets.
▶ Are core subsets common? Are they sparse?
▶ When F is finite, how many core subsets does M2(F ) contain?

3. Classify/describe the infinite core subsets of M2(F ).

4. Identify generators of non-core subsets of M2(F ).

5. Explore null ideals and core subsets of Mn(F ) for n ≥ 3.
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THANK YOU!!
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