Null Ideals of Subsets of Matrix Rings

Nicholas J. Werner

State University of New York at Old Westbury

July 12, 2023

Nicholas J. Werner (SUNY at Old Westbury)

Let F be a field.

Let A_1, A_2, \ldots, A_k be $n \times n$ matrices with entries from F.

Problem : What is a polynomial f such that $f(A_i) = 0$ for all i?

Let *F* be a field. Let A_1, A_2, \ldots, A_k be $n \times n$ matrices with entries from *F*. **Problem**: What is a polynomial *f* such that $f(A_i) = 0$ for all *i*?

Answers:

• Use characteristic polynomials. Let χ_i be the characteristic polynomial of A_i . Take $f = \chi_1 \chi_2 \cdots \chi_k$.

Let *F* be a field. Let $A_1, A_2, ..., A_k$ be $n \times n$ matrices with entries from *F*. **Problem**: What is a polynomial *f* such that $f(A_i) = 0$ for all *i*?

Answers:

- Use characteristic polynomials. Let χ_i be the characteristic polynomial of A_i . Take $f = \chi_1 \chi_2 \cdots \chi_k$.
- Use minimal polynomials. Let μ_i be the minimal polynomial of A_i . Take $f = \mu_1 \mu_2 \cdots \mu_k$.

Let *F* be a field. Let $A_1, A_2, ..., A_k$ be $n \times n$ matrices with entries from *F*. **Problem**: What is a polynomial *f* such that $f(A_i) = 0$ for all *i*?

Answers:

- Use characteristic polynomials. Let χ_i be the characteristic polynomial of A_i . Take $f = \chi_1 \chi_2 \cdots \chi_k$.
- Use minimal polynomials. Let μ_i be the minimal polynomial of A_i . Take $f = \mu_1 \mu_2 \cdots \mu_k$.
- We really just need the least common multiple of all the min. polys. Let $\phi = \text{lcm}(\mu_1, \dots, \mu_k)$.
 - ϕ is the unique monic polynomial in F[x] of minimal degree that kills all the A_i
 - Any polynomial in F[x] that kills all the A_i is a multiple of ϕ .

Let *F* be a field. Let A_1, A_2, \ldots, A_k be $n \times n$ matrices with entries from *F*. **Problem**: What is a polynomial *f* such that $f(A_i) = 0$ for all *i*?

Answers:

- Use characteristic polynomials. Let χ_i be the characteristic polynomial of A_i . Take $f = \chi_1 \chi_2 \cdots \chi_k$.
- Use minimal polynomials. Let μ_i be the minimal polynomial of A_i . Take $f = \mu_1 \mu_2 \cdots \mu_k$.
- We really just need the least common multiple of all the min. polys. Let $\phi = \text{lcm}(\mu_1, \dots, \mu_k)$.
 - ϕ is the unique monic polynomial in F[x] of minimal degree that kills all the A_i
 - Any polynomial in F[x] that kills all the A_i is a multiple of ϕ .

All the polynomials above have coefficients from *F*. What if we allow polynomials with matrix coefficients?

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$. We will write just N(S) if R is clear from context.

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$. We will write just N(S) if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.

This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$. We will write just N(S) if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.

This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

• Let
$$f(x) = cx$$
, $g(x) = dx$ $(c, d, \in R)$, and $h(x) = f(x)g(x)$

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$. We will write just N(S) if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.

This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

- Let f(x) = cx, g(x) = dx $(c, d, \in R)$, and h(x) = f(x)g(x)
- In R[x], $h(x) = (cx)(dx) = cdx^2$

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$. We will write just N(S) if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.

This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

- Let f(x) = cx, g(x) = dx $(c, d, \in R)$, and h(x) = f(x)g(x)
- In R[x], $h(x) = (cx)(dx) = cdx^2$
- To evaluate (cx)(dx), we must first express it as cdx^2

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$. We will write just N(S) if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.

This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

- Let f(x) = cx, g(x) = dx $(c, d, \in R)$, and h(x) = f(x)g(x)
- In R[x], $h(x) = (cx)(dx) = cdx^2$
- To evaluate (cx)(dx), we must first express it as cdx^2
- So, h(a) = cda² while f(a)g(a) = cada
 It is possible that h(a) ≠ f(a)g(a)!

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$. We will write just N(S) if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.

This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

Small example:

- Let f(x) = cx, g(x) = dx $(c, d, \in R)$, and h(x) = f(x)g(x)
- In R[x], $h(x) = (cx)(dx) = cdx^2$
- To evaluate (cx)(dx), we must first express it as cdx^2
- So, h(a) = cda² while f(a)g(a) = cada
 It is possible that h(a) ≠ f(a)g(a)!

Problem V.2 : Understand null ideals of subsets of matrix rings.

$$S \subseteq R$$
 $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$

Easy observations:

$$S \subseteq R$$
 $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$

Easy observations:

1. For any ring R, $N_R(S)$ is a left R[x]-module.

 $S \subseteq R$ $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$

Easy observations:

- 1. For any ring R, $N_R(S)$ is a left R[x]-module.
- 2. When R is commutative, then $N_R(S)$ is a (two-sided) ideal of R[x].
- 3. When R is an integral domain, $N_R(S) \neq \{0\}$ if and only if S is finite.
- 4. When R is an integral domain and $S = \{a_1, \ldots, a_k\}$, $N_R(S)$ is generated by $(x a_1) \cdots (x a_k)$.

Each of #2, #3, and #4 can fail if R is noncommutative.

 $S \subseteq R$ $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$

Easy observations:

- 1. For any ring R, $N_R(S)$ is a left R[x]-module.
- 2. When R is commutative, then $N_R(S)$ is a (two-sided) ideal of R[x].
- 3. When R is an integral domain, $N_R(S) \neq \{0\}$ if and only if S is finite.
- 4. When R is an integral domain and $S = \{a_1, \ldots, a_k\}$, $N_R(S)$ is generated by $(x a_1) \cdots (x a_k)$.

Each of #2, #3, and #4 can fail if R is noncommutative.

Example: #4 need not hold if *R* is noncommutative.

• Let $a, b \in R$ be such that $ab \neq ba$.

• Let
$$h(x) = (x - a)(x - b) = x^2 - (a + b)x + ab$$
.

 $S \subseteq R$ $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$

Easy observations:

- 1. For any ring R, $N_R(S)$ is a left R[x]-module.
- 2. When R is commutative, then $N_R(S)$ is a (two-sided) ideal of R[x].
- 3. When R is an integral domain, $N_R(S) \neq \{0\}$ if and only if S is finite.
- 4. When R is an integral domain and $S = \{a_1, \ldots, a_k\}$, $N_R(S)$ is generated by $(x a_1) \cdots (x a_k)$.

Each of #2, #3, and #4 can fail if R is noncommutative.

Example: #4 need not hold if *R* is noncommutative.

- Let $a, b \in R$ be such that $ab \neq ba$.
- Let $h(x) = (x a)(x b) = x^2 (a + b)x + ab$.
- Then, h(b) = 0, but $h(a) = ab ba \neq 0$.

 $S \subseteq R$ $N_R(S) = \{f \in R[x] \mid f(a) = 0 \text{ for all } a \in S\}$

Easy observations:

- 1. For any ring R, $N_R(S)$ is a left R[x]-module.
- 2. When R is commutative, then $N_R(S)$ is a (two-sided) ideal of R[x].
- 3. When R is an integral domain, $N_R(S) \neq \{0\}$ if and only if S is finite.
- 4. When R is an integral domain and $S = \{a_1, \ldots, a_k\}$, $N_R(S)$ is generated by $(x a_1) \cdots (x a_k)$.

Each of #2, #3, and #4 can fail if R is noncommutative.

Example: #4 need not hold if *R* is noncommutative.

- Let $a, b \in R$ be such that $ab \neq ba$.
- Let $h(x) = (x a)(x b) = x^2 (a + b)x + ab$.
- Then, h(b) = 0, but $h(a) = ab ba \neq 0$.

• So,
$$(x - a)(x - b) \notin N_R(\{a, b\})$$

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

Example: Describe N(S) and N(T)

• Each matrix has min. poly. x^2 . So, $x^2 \in N(S)$ and $x^2 \in N(T)$.

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

- Each matrix has min. poly. x^2 . So, $x^2 \in N(S)$ and $x^2 \in N(T)$.
- N(S) contains linear polynomials: $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} x \in N(S)$ for all $b, d \in F$.

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

- Each matrix has min. poly. x^2 . So, $x^2 \in N(S)$ and $x^2 \in N(T)$.
- N(S) contains linear polynomials: $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} x \in N(S)$ for all $b, d \in F$.
- N(T) contains no linear polynomials

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

- Each matrix has min. poly. x^2 . So, $x^2 \in N(S)$ and $x^2 \in N(T)$.
- N(S) contains linear polynomials: $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} x \in N(S)$ for all $b, d \in F$.
- *N*(*T*) contains no linear polynomials **Proof**
 - Suppose $\alpha x + \beta \in N(T)$ (here, $\alpha, \beta \in M_2(F)$)

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

Example: Describe N(S) and N(T)

• Each matrix has min. poly. x^2 . So, $x^2 \in N(S)$ and $x^2 \in N(T)$.

• N(S) contains linear polynomials: $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} x \in N(S)$ for all $b, d \in F$.

- *N*(*T*) contains no linear polynomials **Proof**
 - Suppose $\alpha x + \beta \in N(T)$ (here, $\alpha, \beta \in M_2(F)$)
 - ▶ Then, $\alpha A + \beta = \mathbf{0} = \alpha C + \beta$

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

Example: Describe N(S) and N(T)

• Each matrix has min. poly. x^2 . So, $x^2 \in N(S)$ and $x^2 \in N(T)$.

• N(S) contains linear polynomials: $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} x \in N(S)$ for all $b, d \in F$.

- *N*(*T*) contains no linear polynomials **Proof**
 - Suppose $\alpha x + \beta \in N(T)$ (here, $\alpha, \beta \in M_2(F)$)
 - ▶ Then, $\alpha A + \beta = 0 = \alpha C + \beta \rightsquigarrow \alpha (A C) = 0$

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

- Each matrix has min. poly. x^2 . So, $x^2 \in N(S)$ and $x^2 \in N(T)$.
- N(S) contains linear polynomials: $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} x \in N(S)$ for all $b, d \in F$.
- *N*(*T*) contains no linear polynomials **Proof**
 - Suppose $\alpha x + \beta \in N(T)$ (here, $\alpha, \beta \in M_2(F)$)
 - ► Then, $\alpha A + \beta = 0 = \alpha C + \beta \rightsquigarrow \alpha (A C) = 0$
 - ▶ But, A C is invertible $\rightsquigarrow \alpha = 0 \rightsquigarrow \beta = 0$

Let *F* be a field, char(*F*) $\neq 2$. Let $R = M_2(F)$, the ring of 2 × 2 matrices over *F* Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ Let $S = \{A, B\}$ and $T = \{A, C\}$

Example: Describe N(S) and N(T)

• Each matrix has min. poly. x^2 . So, $x^2 \in N(S)$ and $x^2 \in N(T)$.

• N(S) contains linear polynomials: $\begin{pmatrix} 0 & b \\ 0 & d \end{pmatrix} x \in N(S)$ for all $b, d \in F$.

- *N*(*T*) contains no linear polynomials **Proof**
 - Suppose $\alpha x + \beta \in N(T)$ (here, $\alpha, \beta \in M_2(F)$)
 - ► Then, $\alpha A + \beta = 0 = \alpha C + \beta \rightsquigarrow \alpha (A C) = 0$
 - ▶ But, A C is invertible $\rightsquigarrow \alpha = 0 \rightsquigarrow \beta = 0$
- In fact, N(T) is generated (as a two-sided ideal of R[x]) by x^2

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$Int(S, D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

is the ring of integer-valued polynomials on S.

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$\mathsf{Int}(S,D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

is the ring of integer-valued polynomials on S.

Elements of Int(S, D) correspond to elements of null ideals in residue rings of D.

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$\mathsf{Int}(S,D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

is the ring of integer-valued polynomials on S.

Elements of Int(S, D) correspond to elements of null ideals in residue rings of D.

Given
$$f \in K[x]$$
, write f as $f = \frac{g}{d}$, where $g \in D[x]$ and $d \in D$.
Use a bar to denote passage from D to D/dD . Then,

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$\mathsf{Int}(S,D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

is the ring of integer-valued polynomials on S.

Elements of Int(S, D) correspond to elements of null ideals in residue rings of D.

Given $f \in K[x]$, write f as $f = \frac{g}{d}$, where $g \in D[x]$ and $d \in D$. Use a bar to denote passage from D to D/dD. Then,

$$f \in \operatorname{Int}(S, D) \Longleftrightarrow rac{g(s)}{d} \in D$$
 for all $s \in S$

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$Int(S, D) = \{ f \in K[x] \mid f(s) \in D \text{ for all } s \in S \}$$

is the ring of integer-valued polynomials on S.

Elements of Int(S, D) correspond to elements of null ideals in residue rings of D.

Given $f \in K[x]$, write f as $f = \frac{g}{d}$, where $g \in D[x]$ and $d \in D$. Use a bar to denote passage from D to D/dD. Then,

$$f \in \operatorname{Int}(S, D) \iff \frac{g(s)}{d} \in D \text{ for all } s \in S$$

 $\iff g(s) \in dD \text{ for all } s \in S$
 $\iff \overline{g} \in N_{\overline{D}}(\overline{S})$

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$Int(S, D) = \{ f \in K[x] \mid f(s) \in D \text{ for all } s \in S \}$$

is the ring of integer-valued polynomials on S.

Elements of Int(S, D) correspond to elements of null ideals in residue rings of D.

Given $f \in K[x]$, write f as $f = \frac{g}{d}$, where $g \in D[x]$ and $d \in D$. Use a bar to denote passage from D to D/dD. Then,

$$f \in \operatorname{Int}(S, D) \iff rac{g(s)}{d} \in D ext{ for all } s \in S$$

 $\iff g(s) \in dD ext{ for all } s \in S$
 $\iff \overline{g} \in N_{\overline{D}}(\overline{S})$

Null ideals can give information about Int(S, D) even in noncommutative settings.

Nicholas J. Werner (SUNY at Old Westbury)

Integer-valued Polynomials over Matrix Rings

D: integral domain, K: fraction field of D, $S \subseteq D$

$$\mathsf{Int}(S,D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

We will make a "matrix version" of Int(S, D).

- $M_n(D)$: $n \times n$ matrices over D, $M_n(K)$: $n \times n$ matrices over K
- Embed $K \hookrightarrow M_n(K)$ by $a \mapsto$ scalar matrix aI

Integer-valued Polynomials over Matrix Rings

D: integral domain, K: fraction field of D, $S \subseteq D$

$$\mathsf{Int}(S,D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

We will make a "matrix version" of Int(S, D).

- $M_n(D)$: $n \times n$ matrices over D, $M_n(K)$: $n \times n$ matrices over K
- Embed $K \hookrightarrow M_n(K)$ by $a \mapsto$ scalar matrix aI

For $S \subseteq M_n(D)$, we define

 $\operatorname{Int}(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$

D: integral domain, K: fraction field of D, $S \subseteq D$

$$\mathsf{Int}(S,D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

We will make a "matrix version" of Int(S, D).

- $M_n(D)$: $n \times n$ matrices over D, $M_n(K)$: $n \times n$ matrices over K
- Embed $K \hookrightarrow M_n(K)$ by $a \mapsto$ scalar matrix aI

For $S \subseteq M_n(D)$, we define

 $\operatorname{Int}(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$

Big question here: Is $Int(S, M_n(D))$ a ring?

D: integral domain, K: fraction field of D, $S \subseteq D$

$$\mathsf{Int}(S,D) = \{ f \in K[x] \mid f(s) \in D \text{ for all } s \in S \}$$

We will make a "matrix version" of Int(S, D).

- $M_n(D)$: $n \times n$ matrices over D, $M_n(K)$: $n \times n$ matrices over K
- Embed $K \hookrightarrow M_n(K)$ by $a \mapsto$ scalar matrix aI

For $S \subseteq M_n(D)$, we define

 $\operatorname{Int}(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$

Big question here: Is $Int(S, M_n(D))$ a ring?

• $Int(S, M_n(D))$ is closed under addition (easy)

D: integral domain, K: fraction field of D, $S \subseteq D$

$$\mathsf{Int}(S,D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

We will make a "matrix version" of Int(S, D).

- $M_n(D)$: $n \times n$ matrices over D, $M_n(K)$: $n \times n$ matrices over K
- Embed $K \hookrightarrow M_n(K)$ by $a \mapsto$ scalar matrix aI

For $S \subseteq M_n(D)$, we define

 $\operatorname{Int}(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$

Big question here: Is $Int(S, M_n(D))$ a ring?

- $Int(S, M_n(D))$ is closed under addition (easy)
- Is it closed under multiplication?

D: integral domain, K: fraction field of D, $S \subseteq D$

$$\mathsf{Int}(S,D) = \{f \in K[x] \mid f(s) \in D \text{ for all } s \in S\}$$

We will make a "matrix version" of Int(S, D).

- $M_n(D)$: $n \times n$ matrices over D, $M_n(K)$: $n \times n$ matrices over K
- Embed $K \hookrightarrow M_n(K)$ by $a \mapsto$ scalar matrix aI

For $S \subseteq M_n(D)$, we define

 $\operatorname{Int}(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$

Big question here: Is $Int(S, M_n(D))$ a ring?

- $Int(S, M_n(D))$ is closed under addition (easy)
- Is it closed under multiplication?
- Difficulty: polynomials in $M_n(K)[x]$ have noncommuting coefficients!

Back to Null Ideals

 $Int(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$ Question: For which subsets S is $Int(S, M_n(D))$ a ring?

Back to Null Ideals

 $\mathsf{Int}(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$

Question: For which subsets S is $Int(S, M_n(D))$ a ring?

We can translate this into a question about null ideals.

Back to Null Ideals

 $\operatorname{Int}(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$

Question: For which subsets S is $Int(S, M_n(D))$ a ring?

We can translate this into a question about null ideals.

Recall: given $f \in M_n(K)[x]$, write $f = \frac{g}{d}$, where $g \in M_n(D)$ and $d \in D$. A bar denotes passage from D to D/dD. Then,

 $f \in \operatorname{Int}(S, M_n(D)) \Longleftrightarrow \overline{g} \in N_{M_n(\overline{D})}(\overline{S})$

 $\mathsf{Int}(S, M_n(D)) := \{ f \in M_n(K)[x] \mid f(A) \in M_n(D) \text{ for all } A \in S \}$

Question: For which subsets S is $Int(S, M_n(D))$ a ring?

We can translate this into a question about null ideals.

Recall: given $f \in M_n(K)[x]$, write $f = \frac{g}{d}$, where $g \in M_n(D)$ and $d \in D$. A bar denotes passage from D to D/dD. Then,

$$f \in \operatorname{Int}(S, M_n(D)) \Longleftrightarrow \overline{g} \in N_{M_n(\overline{D})}(\overline{S})$$

Theorem

 $Int(S, M_n(D))$ is a ring if and only if $N_{M_n(\overline{D})}(\overline{S})$ is a two-sided ideal of $M_n(D/dD)[x]$ for each $d \neq 0$.

For the remainder of the talk, we will assume:

- F is a field, $R = M_n(F)$, and $S \subseteq M_n(F)$
- F corresponds to the ring of scalar matrices in $M_n(F)$

 $F \hookrightarrow M_n(F)$ $a \mapsto aI$

• $N(S) = N_R(S)$, and $f \in N(S)$ has matrix coefficients

For the remainder of the talk, we will assume:

- F is a field, $R = M_n(F)$, and $S \subseteq M_n(F)$
- F corresponds to the ring of scalar matrices in $M_n(F)$

 $F \hookrightarrow M_n(F)$ $a \mapsto aI$

• $N(S) = N_R(S)$, and $f \in N(S)$ has matrix coefficients

Questions to consider:

For the remainder of the talk, we will assume:

- F is a field, $R = M_n(F)$, and $S \subseteq M_n(F)$
- F corresponds to the ring of scalar matrices in $M_n(F)$

 $F \hookrightarrow M_n(F)$ $a \mapsto aI$

• $N(S) = N_R(S)$, and $f \in N(S)$ has matrix coefficients

Questions to consider:

- 1. When is N(S) a two-sided ideal of $M_n(F)[x]$?
- 2. When is $N(S) \neq \{0\}$?
- 3. What are the generators for N(S) (as a two-sided ideal, if possible; otherwise, as a left $M_n(F)[x]$ -module)?

For the remainder of the talk, we will assume:

- F is a field, $R = M_n(F)$, and $S \subseteq M_n(F)$
- F corresponds to the ring of scalar matrices in $M_n(F)$

 $F \hookrightarrow M_n(F)$ $a \mapsto aI$

• $N(S) = N_R(S)$, and $f \in N(S)$ has matrix coefficients

Questions to consider:

- 1. When is N(S) a two-sided ideal of $M_n(F)[x]$?
- 2. When is $N(S) \neq \{0\}$?
- 3. What are the generators for N(S) (as a two-sided ideal, if possible; otherwise, as a left $M_n(F)[x]$ -module)?

We will focus on Question #1.

Core Sets

Definitions

Let F be a field and $S \subseteq M_n(F)$.

• We say S is core if N(S) is a two-sided ideal of $M_n(F)[x]$.

Definitions

Let F be a field and $S \subseteq M_n(F)$.

- We say S is core if N(S) is a two-sided ideal of $M_n(F)[x]$.
- For $A \in M_n(F)$, μ_A is the minimal polynomial of A.
- We define φ_S = lcm{μ_A}_{A∈S}.
 So, φ_S is the monic least common multiple of all minimal polynomials of elements of S.

Definitions

Let F be a field and $S \subseteq M_n(F)$.

- We say S is core if N(S) is a two-sided ideal of $M_n(F)[x]$.
- For $A \in M_n(F)$, μ_A is the minimal polynomial of A.
- We define φ_S = lcm{μ_A}_{A∈S}.
 So, φ_S is the monic least common multiple of all minimal polynomials of elements of S.

Problem V.3 : Classify/characterize the core subsets of $M_n(F)$.

F: field, $S \subseteq M_n(F)$, S is core when N(S) is a two-sided ideal

F: field, $S \subseteq M_n(F)$, *S* is core when N(S) is a two-sided ideal • $S = \{A\}$ is core if and only if *A* is a scalar matrix

- F: field, $S \subseteq M_n(F)$, S is core when N(S) is a two-sided ideal • $S = \{A\}$ is core if and only if A is a scalar matrix **Proof**: (\Leftarrow) Evaluation at central elements behaves as usual. For (\Rightarrow):
 - Suppose B is such that $AB \neq BA$.
 - ▶ Then, $x A \in N(S)$, but $(x A)(x B) \notin N(S)$.

- F: field, $S \subseteq M_n(F)$, S is core when N(S) is a two-sided ideal
 - S = {A} is core if and only if A is a scalar matrix
 Proof: (⇐) Evaluation at central elements behaves as usual.
 For (⇒):
 - Suppose B is such that $AB \neq BA$.
 - ▶ Then, $x A \in N(S)$, but $(x A)(x B) \notin N(S)$.
 - Given two subsets S_1 and S_2 , $N(S_1 \cup S_2) = N(S_1) \cap N(S_2)$. It follows that unions of core sets are core.

- F: field, $S \subseteq M_n(F)$, S is core when N(S) is a two-sided ideal
 - S = {A} is core if and only if A is a scalar matrix
 Proof: (⇐) Evaluation at central elements behaves as usual.
 For (⇒):
 - Suppose B is such that $AB \neq BA$.
 - ▶ Then, $x A \in N(S)$, but $(x A)(x B) \notin N(S)$.
 - Given two subsets S_1 and S_2 , $N(S_1 \cup S_2) = N(S_1) \cap N(S_2)$. It follows that unions of core sets are core.
 - Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

- F: field, $S \subseteq M_n(F)$, S is core when N(S) is a two-sided ideal
 - S = {A} is core if and only if A is a scalar matrix
 Proof: (⇐) Evaluation at central elements behaves as usual.
 For (⇒):
 - Suppose B is such that $AB \neq BA$.
 - ▶ Then, $x A \in N(S)$, but $(x A)(x B) \notin N(S)$.
 - Given two subsets S_1 and S_2 , $N(S_1 \cup S_2) = N(S_1) \cap N(S_2)$. It follows that unions of core sets are core.
 - Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Theorems

- F: field, $S \subseteq M_n(F)$, S is core when N(S) is a two-sided ideal
 - S = {A} is core if and only if A is a scalar matrix
 Proof: (⇐) Evaluation at central elements behaves as usual.
 For (⇒):
 - Suppose B is such that $AB \neq BA$.
 - ▶ Then, $x A \in N(S)$, but $(x A)(x B) \notin N(S)$.
 - Given two subsets S_1 and S_2 , $N(S_1 \cup S_2) = N(S_1) \cap N(S_2)$. It follows that unions of core sets are core.
 - Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Theorems

1. S is core if and only if N(S) is generated by ϕ_S . Equivalently,

- F: field, $S \subseteq M_n(F)$, S is core when N(S) is a two-sided ideal
 - S = {A} is core if and only if A is a scalar matrix
 Proof: (⇐) Evaluation at central elements behaves as usual.
 For (⇒):
 - Suppose B is such that $AB \neq BA$.
 - ▶ Then, $x A \in N(S)$, but $(x A)(x B) \notin N(S)$.
 - Given two subsets S_1 and S_2 , $N(S_1 \cup S_2) = N(S_1) \cap N(S_2)$. It follows that unions of core sets are core.
 - Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Theorems

1. *S* is core if and only if N(S) is generated by ϕ_S . Equivalently, *S* is not core if and only if there exists $f \in N(S)$ with deg $f < \deg \phi_S$.

- F: field, $S \subseteq M_n(F)$, S is core when N(S) is a two-sided ideal
 - S = {A} is core if and only if A is a scalar matrix
 Proof: (⇐) Evaluation at central elements behaves as usual.
 For (⇒):
 - Suppose B is such that $AB \neq BA$.
 - ▶ Then, $x A \in N(S)$, but $(x A)(x B) \notin N(S)$.
 - Given two subsets S_1 and S_2 , $N(S_1 \cup S_2) = N(S_1) \cap N(S_2)$. It follows that unions of core sets are core.
 - Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Theorems

- 1. S is core if and only if N(S) is generated by ϕ_S . Equivalently, S is not core if and only if there exists $f \in N(S)$ with deg $f < \deg \phi_S$.
- 2. Assume that S is a full conjugacy class. That is, $S = \{UAU^{-1} \mid U \in GL(n, F)\}$ for some $A \in M_n(F)$. Then, S is core.

Example: Intersections of Core Sets Need Not be Core

Let F be a field, $char(F) \neq 2$

Let
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 0 & -1 \\ 0 & 0 \end{pmatrix}$, and $C = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

Let $S_1 = \{A, C\}$ and $S_2 = \{B, C\}$

•
$$\phi_{S_1}(x) = x^2$$
 and $\phi_{S_2}(x) = x^2$

- Neither N(S₁) nor N(S₂) contains a linear polynomial. (Ultimately, this is because both A - C and B - C are invertible.) Thus, both S₁ and S₂ are core (both are generated by x²)
- However, $S_1 \cap S_2 = \{C\}$, which is not core.

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

- Fact: $A, B \in M_2(F)$ are conjugate if and only if $\mu_A = \mu_B$.
- In $M_2(F)$, "conjugacy class" = "minimal polynomial class"
- Notation: Given $m \in F[x]$, let $C(m) = \{A \in M_2(F) \mid \mu_A = m\}$.

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

- Fact: $A, B \in M_2(F)$ are conjugate if and only if $\mu_A = \mu_B$.
- In $M_2(F)$, "conjugacy class" = "minimal polynomial class"
- Notation: Given $m \in F[x]$, let $C(m) = \{A \in M_2(F) \mid \mu_A = m\}$.

Overall (and ultimately successful!) strategy to decide if S is core:

1. Partition S into conjugacy classes:

$$S = S_1 \cup S_2 \cup \cdots \cup S_k$$

each $S_i = (S \cap \mathcal{C}(m_i))$ for some $m_i \in F[x]$

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

- Fact: $A, B \in M_2(F)$ are conjugate if and only if $\mu_A = \mu_B$.
- In $M_2(F)$, "conjugacy class" = "minimal polynomial class"
- Notation: Given $m \in F[x]$, let $C(m) = \{A \in M_2(F) \mid \mu_A = m\}$.

Overall (and ultimately successful!) strategy to decide if S is core:

1. Partition S into conjugacy classes:

$$S = S_1 \cup S_2 \cup \cdots \cup S_k$$

each $S_i = (S \cap C(m_i))$ for some $m_i \in F[x]$

Each S_i is a subset of a conjugacy class.
 Find necessary and sufficient conditions for a subset of a conjugacy class to be core.

This is not too difficult!

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

- Fact: $A, B \in M_2(F)$ are conjugate if and only if $\mu_A = \mu_B$.
- In $M_2(F)$, "conjugacy class" = "minimal polynomial class"
- Notation: Given $m \in F[x]$, let $C(m) = \{A \in M_2(F) \mid \mu_A = m\}$.

Overall (and ultimately successful!) strategy to decide if S is core:

1. Partition S into conjugacy classes:

$$S = S_1 \cup S_2 \cup \cdots \cup S_k$$

each $S_i = (S \cap C(m_i))$ for some $m_i \in F[x]$

Each S_i is a subset of a conjugacy class.
 Find necessary and sufficient conditions for a subset of a conjugacy class to be core.

This is not too difficult!

3. Figure out what happens when the S_i are combined back into the original S. This gets wild.

Nicholas J. Werner (SUNY at Old Westbury)

```
Let m \in F[x] have degree 1 or 2.
```

Let $S \subseteq \mathcal{C}(m)$

```
Let m \in F[x] have degree 1 or 2.
Let S \subseteq C(m)
```

Easy case: *m* linear

```
Let m \in F[x] have degree 1 or 2.
```

Let $S \subseteq \mathcal{C}(m)$

Easy case: *m* linear $\rightsquigarrow C(m) = \{A\}$ for a scalar matrix *A*

Let $m \in F[x]$ have degree 1 or 2.

Let $S \subseteq \mathcal{C}(m)$

Easy case: *m* linear $\rightsquigarrow C(m) = \{A\}$ for a scalar matrix $A \rightsquigarrow S = \{A\}$ is core.

Let $m \in F[x]$ have degree 1 or 2.

Let $S \subseteq \mathcal{C}(m)$

Easy case: *m* linear $\rightsquigarrow C(m) = \{A\}$ for a scalar matrix $A \rightsquigarrow S = \{A\}$ is core.

Theorems

Assume *m* is quadratic.

Let $m \in F[x]$ have degree 1 or 2.

Let $S \subseteq \mathcal{C}(m)$

Easy case: *m* linear $\rightsquigarrow C(m) = \{A\}$ for a scalar matrix $A \rightsquigarrow S = \{A\}$ is core.

Theorems

Assume *m* is quadratic.

1. If *m* is irreducible, then *S* is core if and only if $|S| \ge 2$.

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2.

Let $S \subseteq \mathcal{C}(m)$

Easy case: *m* linear $\rightsquigarrow C(m) = \{A\}$ for a scalar matrix $A \rightsquigarrow S = \{A\}$ is core.

Theorems

Assume *m* is quadratic.

- 1. If *m* is irreducible, then *S* is core if and only if $|S| \ge 2$.
- 2. If *m* is reducible, then *S* is core if and only if there exist $A, B \in S$ such that A B is invertible.

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2.

Let $S \subseteq \mathcal{C}(m)$

Easy case: *m* linear $\rightsquigarrow C(m) = \{A\}$ for a scalar matrix $A \rightsquigarrow S = \{A\}$ is core.

Theorems

Assume *m* is quadratic.

- 1. If *m* is irreducible, then *S* is core if and only if $|S| \ge 2$.
- 2. If *m* is reducible, then *S* is core if and only if there exist $A, B \in S$ such that A B is invertible.

3. Assume F is a finite field with q elements. If $|S| \ge q + 1$, then S is core.

$$S = S_1 \cup S_2 \cup \dots \cup S_k$$

each $S_i = (S \cap \mathcal{C}(m_i))$ for some $m_i \in F[x]$

If each S_i is core, then S is core. Does the converse hold?

$$S = S_1 \cup S_2 \cup \cdots \cup S_k$$

each $S_i = (S \cap C(m_i))$ for some $m_i \in F[x]$

If each S_i is core, then S is core. Does the converse hold?

Theorem

Assume m_i is quadratic and S_i is not core.

$$S = S_1 \cup S_2 \cup \cdots \cup S_k$$

each $S_i = (S \cap C(m_i))$ for some $m_i \in F[x]$

If each S_i is core, then S is core. Does the converse hold?

Theorem

Assume m_i is quadratic and S_i is not core.

1. Irreducible case: Assume *m_i* is irreducible. Then, *S* is not core.

$$S = S_1 \cup S_2 \cup \dots \cup S_k$$

each $S_i = (S \cap C(m_i))$ for some $m_i \in F[x]$

If each S_i is core, then S is core. Does the converse hold?

Theorem

Assume m_i is quadratic and S_i is not core.

- 1. Irreducible case: Assume *m_i* is irreducible. Then, *S* is not core.
- 2. Repeated root case: Assume $m_i(x) = (x a)^2$ for some $a \in F$. Then, S is not core.

 $S = S_1 \cup S_2 \cup \cdots \cup S_k$ each $S_i = (S \cap C(m_i))$ for some $m_i \in F[x]$

If each S_i is core, then S is core. Does the converse hold?

Theorem

Assume m_i is quadratic and S_i is not core.

- 1. Irreducible case: Assume *m_i* is irreducible. Then, *S* is not core.
- 2. Repeated root case: Assume $m_i(x) = (x a)^2$ for some $a \in F$. Then, S is not core.
- 3. Distinct root case: Assume m_i(x) = (x − a)(x − b) for a, b ∈ F with a ≠ b. Then, S may or may not be core. It depends on the other classes S_j with j ≠ i. (This is the "wild" case.)

Assume char(F) \neq 2 and let

$$A_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A_4 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Let $S = \{A_1, A_2, A_3\}$ and $T = \{A_1, A_2, A_4\}$. Then,

Assume char(F) \neq 2 and let

$$A_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A_4 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Let $S = \{A_1, A_2, A_3\}$ and $T = \{A_1, A_2, A_4\}$. Then, • $\phi_S(x) = \phi_T(x) = x(x-1)(x+1)$

Assume char(F) \neq 2 and let

$$A_{1} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ A_{2} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A_{4} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Let $S = \{A_1, A_2, A_3\}$ and $T = \{A_1, A_2, A_4\}$. Then, • $\phi_S(x) = \phi_T(x) = x(x-1)(x+1)$

• Conjugacy class breakdowns:

$$S = \{A_1\} \cup \{A_2\} \cup \{A_3\} \qquad T = \{A_1\} \cup \{A_2\} \cup \{A_4\}$$

Assume char(F) \neq 2 and let

$$A_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A_4 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Let $S = \{A_1, A_2, A_3\}$ and $T = \{A_1, A_2, A_4\}$. Then, • $\phi_S(x) = \phi_T(x) = x(x-1)(x+1)$

• Conjugacy class breakdowns:

$$S = \{A_1\} \cup \{A_2\} \cup \{A_3\} \qquad T = \{A_1\} \cup \{A_2\} \cup \{A_4\}$$

• It turns out that *S* is core.

This can be shown with a calculation involving Vandermonde matrices.

Assume char(F) \neq 2 and let

$$A_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A_4 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Let $S = \{A_1, A_2, A_3\}$ and $T = \{A_1, A_2, A_4\}$. Then, • $\phi_S(x) = \phi_T(x) = x(x-1)(x+1)$

• Conjugacy class breakdowns:

$$S = \{A_1\} \cup \{A_2\} \cup \{A_3\} \qquad T = \{A_1\} \cup \{A_2\} \cup \{A_4\}$$

• It turns out that *S* is core.

This can be shown with a calculation involving Vandermonde matrices.

• N(T) contains polynomials of degree 2 such as

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x(x+1)$$
 and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x(x-1)$

So, T is not core

Assume char(F) \neq 2 and let

$$A_1 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ A_2 = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \ A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \ A_4 = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

Let $S = \{A_1, A_2, A_3\}$ and $T = \{A_1, A_2, A_4\}$. Then, • $\phi_S(x) = \phi_T(x) = x(x-1)(x+1)$

• Conjugacy class breakdowns:

$$S = \{A_1\} \cup \{A_2\} \cup \{A_3\} \qquad T = \{A_1\} \cup \{A_2\} \cup \{A_4\}$$

• It turns out that *S* is core.

This can be shown with a calculation involving Vandermonde matrices.

• N(T) contains polynomials of degree 2 such as

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x(x+1)$$
 and $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x(x-1)$

So, T is not core
Why is S core but T is not core????

$$\begin{aligned} A_1 &= \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \ A_2 &= \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}, \\ S &= \{A_1, A_2, A_3\}, \\ s(x) &= x(x-1)(x+1) \end{aligned}$$

$$egin{aligned} & A_3 = \begin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}, \ A_4 = \begin{pmatrix} -1 & 0 \ 0 & 1 \end{pmatrix} \ & \mathcal{T} = \{A_1, A_2, A_4\} \ & \mathcal{P}_{\mathcal{T}}(x) = x(x-1)(x+1) \end{aligned}$$

Why is S core but T is not core????

Sketch of an answer:

 ϕ

• We need to look at left annihilators of translations A - a, where a solves μ_A

¢

- The matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is in the left annihilator of each of $A_1 0$, $A_2 + 1$, and $A_4 + 1$. So, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x(x + 1) \in N(T)$
- To obtain a similar element in N(S), we need to translate by 0, 1, and -1. The resulting polynomial is a multiple of x(x-1)(x+1).

Algorithm to decide if a finite subset of $M_2(F)$ is core

Given a finite set $S \subseteq M_2(F)$:

- 1. Partition *S* into conjugacy classes $S = S_1 \cup \cdots \cup S_k$. For each *i*, let $\phi_i = \phi_{S_i}$. Then, deg $\phi_i \leq 2$.
- 2. Determine whether each S_i is core.
 - ▶ If each S_i is core, then S is core.
 - ▶ If some S_i is not core and ϕ_i is either irreducible quadratic or quadratic with a repeated root, then S is not core.
- 3. Let S_0 be the union of all the S_i that are core.

Let $T = S \setminus S_0$. Then, T is a union of non-core classes, and each class corresponds to a min. poly. of the form (x - a)(x - b) with $a \neq b$.

Examine the left annihilators of translates of elements of T.

These annihilators can allow us to determine whether S is core.

Is there a better method to identify core sets?

Summary

- There is a connection between null ideals and integer-valued polynomials. This holds even in noncommutative settings! (e.g. for matrix rings)
- Solved problem: Determine all the finite core subsets of $M_2(F)$

Open problems:

- 1. For an integral domain *D*, which subsets $S \subseteq M_n(D)$ are such that $Int(S, M_n(D))$ is a ring?
 - Are null ideals the best method to find these subsets?
- 2. Enumerate or estimate the number of core subsets.
 - Are core subsets common? Are they sparse?
 - ▶ When F is finite, how many core subsets does $M_2(F)$ contain?
- 3. Classify/describe the infinite core subsets of $M_2(F)$.
- 4. Identify generators of non-core subsets of $M_2(F)$.
- 5. Explore null ideals and core subsets of $M_n(F)$ for $n \ge 3$.

THANK YOU!!

References

- E. Swartz, N. J. Werner. Null ideals of sets of 3x3 similar matrices with irreducible characteristic polynomial. arXiv: https://arxiv.org/abs/2212.14460
- N. J. Werner. *Null ideals of subsets of matrix rings over fields*. Linear Algebra Appl. 642 (2022), 50–72.