Null Ideals of Subsets of Matrix Rings

Nicholas J. Werner
State University of New York at Old Westbury

July 12, 2023

Basic Problem

Let F be a field.
Let $A_{1}, A_{2}, \ldots, A_{k}$ be $n \times n$ matrices with entries from F.
Problem: What is a polynomial f such that $f\left(A_{i}\right)=0$ for all i ?

Basic Problem

Let F be a field.
Let $A_{1}, A_{2}, \ldots, A_{k}$ be $n \times n$ matrices with entries from F.
Problem: What is a polynomial f such that $f\left(A_{i}\right)=0$ for all i ?

Answers:

- Use characteristic polynomials.

Let χ_{i} be the characteristic polynomial of A_{i}. Take $f=\chi_{1} \chi_{2} \cdots \chi_{k}$.

Basic Problem

Let F be a field.
Let $A_{1}, A_{2}, \ldots, A_{k}$ be $n \times n$ matrices with entries from F.
Problem: What is a polynomial f such that $f\left(A_{i}\right)=0$ for all i ?

Answers:

- Use characteristic polynomials.

Let χ_{i} be the characteristic polynomial of A_{i}.
Take $f=\chi_{1} \chi_{2} \cdots \chi_{k}$.

- Use minimal polynomials.

Let μ_{i} be the minimal polynomial of A_{i}.
Take $f=\mu_{1} \mu_{2} \cdots \mu_{k}$.

Basic Problem

Let F be a field.
Let $A_{1}, A_{2}, \ldots, A_{k}$ be $n \times n$ matrices with entries from F.
Problem: What is a polynomial f such that $f\left(A_{i}\right)=0$ for all i ?

Answers:

- Use characteristic polynomials.

Let χ_{i} be the characteristic polynomial of A_{i}.
Take $f=\chi_{1} \chi_{2} \cdots \chi_{k}$.

- Use minimal polynomials.

Let μ_{i} be the minimal polynomial of A_{i}.
Take $f=\mu_{1} \mu_{2} \cdots \mu_{k}$.

- We really just need the least common multiple of all the min. polys.

Let $\phi=\operatorname{Icm}\left(\mu_{1}, \ldots, \mu_{k}\right)$.

- ϕ is the unique monic polynomial in $F[x]$ of minimal degree that kills all the A_{i}
- Any polynomial in $F[x]$ that kills all the A_{i} is a multiple of ϕ.

Basic Problem

Let F be a field.
Let $A_{1}, A_{2}, \ldots, A_{k}$ be $n \times n$ matrices with entries from F.
Problem: What is a polynomial f such that $f\left(A_{i}\right)=0$ for all i ?

Answers:

- Use characteristic polynomials.

Let χ_{i} be the characteristic polynomial of A_{i}.
Take $f=\chi_{1} \chi_{2} \cdots \chi_{k}$.

- Use minimal polynomials.

Let μ_{i} be the minimal polynomial of A_{i}.
Take $f=\mu_{1} \mu_{2} \cdots \mu_{k}$.

- We really just need the least common multiple of all the min. polys.

Let $\phi=\operatorname{Icm}\left(\mu_{1}, \ldots, \mu_{k}\right)$.

- ϕ is the unique monic polynomial in $F[x]$ of minimal degree that kills all the A_{i}
- Any polynomial in $F[x]$ that kills all the A_{i} is a multiple of ϕ.

All the polynomials above have coefficients from F. What if we allow polynomials with matrix coefficients?

Null Ideals

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_{R}(S)=\{f \in R[x] \mid f(a)=0$ for all $a \in S\}$. We will write just $N(S)$ if R is clear from context.

Null Ideals

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_{R}(S)=\{f \in R[x] \mid f(a)=0$ for all $a \in S\}$. We will write just $N(S)$ if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation. This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

Null Ideals

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_{R}(S)=\{f \in R[x] \mid f(a)=0$ for all $a \in S\}$.
We will write just $N(S)$ if R is clear from context.
When R is noncommutative, polynomials will satisfy right evaluation.
This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

Small example:

- Let $f(x)=c x, g(x)=d x(c, d, \in R)$, and $h(x)=f(x) g(x)$

Null Ideals

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_{R}(S)=\{f \in R[x] \mid f(a)=0$ for all $a \in S\}$.
We will write just $N(S)$ if R is clear from context.
When R is noncommutative, polynomials will satisfy right evaluation.
This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

Small example:

- Let $f(x)=c x, g(x)=d x(c, d, \in R)$, and $h(x)=f(x) g(x)$
- In $R[x], h(x)=(c x)(d x)=c d x^{2}$

Null Ideals

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_{R}(S)=\{f \in R[x] \mid f(a)=0$ for all $a \in S\}$.
We will write just $N(S)$ if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.
This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

Small example:

- Let $f(x)=c x, g(x)=d x(c, d, \in R)$, and $h(x)=f(x) g(x)$
- In $R[x], h(x)=(c x)(d x)=c d x^{2}$
- To evaluate $(c x)(d x)$, we must first express it as $c d x^{2}$

Null Ideals

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_{R}(S)=\{f \in R[x] \mid f(a)=0$ for all $a \in S\}$.
We will write just $N(S)$ if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.
This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

Small example:

- Let $f(x)=c x, g(x)=d x(c, d, \in R)$, and $h(x)=f(x) g(x)$
- In $R[x], h(x)=(c x)(d x)=c d x^{2}$
- To evaluate $(c x)(d x)$, we must first express it as $c d x^{2}$
- So, $h(a)=c d a^{2}$ while $f(a) g(a)=c a d a$ It is possible that $h(a) \neq f(a) g(a)$!

Null Ideals

Let R be a ring (associative, with identity, not necessarily commutative) and $S \subseteq R$.

Definition

The null ideal of S in R is $N_{R}(S)=\{f \in R[x] \mid f(a)=0$ for all $a \in S\}$.
We will write just $N(S)$ if R is clear from context.

When R is noncommutative, polynomials will satisfy right evaluation.
This means that polynomials can only be evaluated when the indeterminate appears to the right of any coefficients

Small example:

- Let $f(x)=c x, g(x)=d x(c, d, \in R)$, and $h(x)=f(x) g(x)$
- In $R[x], h(x)=(c x)(d x)=c d x^{2}$
- To evaluate $(c x)(d x)$, we must first express it as $c d x^{2}$
- So, $h(a)=c d a^{2}$ while $f(a) g(a)=c a d a$ It is possible that $h(a) \neq f(a) g(a)$!

Problem V. 2 : Understand null ideals of subsets of matrix rings.

Basic Properties of Null Ideals

$$
S \subseteq R \quad N_{R}(S)=\{f \in R[x] \mid f(a)=0 \text { for all } a \in S\}
$$

Easy observations:

Basic Properties of Null Ideals

$$
S \subseteq R \quad N_{R}(S)=\{f \in R[x] \mid f(a)=0 \text { for all } a \in S\}
$$

Easy observations:

1. For any ring $R, N_{R}(S)$ is a left $R[x]$-module.

Basic Properties of Null Ideals

$$
S \subseteq R \quad N_{R}(S)=\{f \in R[x] \mid f(a)=0 \text { for all } a \in S\}
$$

Easy observations:

1. For any ring $R, N_{R}(S)$ is a left $R[x]$-module.
2. When R is commutative, then $N_{R}(S)$ is a (two-sided) ideal of $R[x]$.
3. When R is an integral domain, $N_{R}(S) \neq\{0\}$ if and only if S is finite.
4. When R is an integral domain and $S=\left\{a_{1}, \ldots, a_{k}\right\}$, $N_{R}(S)$ is generated by $\left(x-a_{1}\right) \cdots\left(x-a_{k}\right)$.

Each of \#2, \#3, and \#4 can fail if R is noncommutative.

Basic Properties of Null Ideals

$$
S \subseteq R \quad N_{R}(S)=\{f \in R[x] \mid f(a)=0 \text { for all } a \in S\}
$$

Easy observations:

1. For any ring $R, N_{R}(S)$ is a left $R[x]$-module.
2. When R is commutative, then $N_{R}(S)$ is a (two-sided) ideal of $R[x]$.
3. When R is an integral domain, $N_{R}(S) \neq\{0\}$ if and only if S is finite.
4. When R is an integral domain and $S=\left\{a_{1}, \ldots, a_{k}\right\}$, $N_{R}(S)$ is generated by $\left(x-a_{1}\right) \cdots\left(x-a_{k}\right)$.

Each of \#2, \#3, and \#4 can fail if R is noncommutative.
Example: \#4 need not hold if R is noncommutative.

- Let $a, b \in R$ be such that $a b \neq b a$.
- Let $h(x)=(x-a)(x-b)=x^{2}-(a+b) x+a b$.

Basic Properties of Null Ideals

$$
S \subseteq R \quad N_{R}(S)=\{f \in R[x] \mid f(a)=0 \text { for all } a \in S\}
$$

Easy observations:

1. For any ring $R, N_{R}(S)$ is a left $R[x]$-module.
2. When R is commutative, then $N_{R}(S)$ is a (two-sided) ideal of $R[x]$.
3. When R is an integral domain, $N_{R}(S) \neq\{0\}$ if and only if S is finite.
4. When R is an integral domain and $S=\left\{a_{1}, \ldots, a_{k}\right\}$, $N_{R}(S)$ is generated by $\left(x-a_{1}\right) \cdots\left(x-a_{k}\right)$.

Each of \#2, \#3, and \#4 can fail if R is noncommutative.
Example: \#4 need not hold if R is noncommutative.

- Let $a, b \in R$ be such that $a b \neq b a$.
- Let $h(x)=(x-a)(x-b)=x^{2}-(a+b) x+a b$.
- Then, $h(b)=0$, but $h(a)=a b-b a \neq 0$.

Basic Properties of Null Ideals

$$
S \subseteq R \quad N_{R}(S)=\{f \in R[x] \mid f(a)=0 \text { for all } a \in S\}
$$

Easy observations:

1. For any ring $R, N_{R}(S)$ is a left $R[x]$-module.
2. When R is commutative, then $N_{R}(S)$ is a (two-sided) ideal of $R[x]$.
3. When R is an integral domain, $N_{R}(S) \neq\{0\}$ if and only if S is finite.
4. When R is an integral domain and $S=\left\{a_{1}, \ldots, a_{k}\right\}$, $N_{R}(S)$ is generated by $\left(x-a_{1}\right) \cdots\left(x-a_{k}\right)$.

Each of \#2, \#3, and \#4 can fail if R is noncommutative.
Example: \#4 need not hold if R is noncommutative.

- Let $a, b \in R$ be such that $a b \neq b a$.
- Let $h(x)=(x-a)(x-b)=x^{2}-(a+b) x+a b$.
- Then, $h(b)=0$, but $h(a)=a b-b a \neq 0$.
- So, $(x-a)(x-b) \notin N_{R}(\{a, b\})$

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

- Each matrix has min. poly. x^{2}. So, $x^{2} \in N(S)$ and $x^{2} \in N(T)$.

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

- Each matrix has min. poly. x^{2}. So, $x^{2} \in N(S)$ and $x^{2} \in N(T)$.
- $N(S)$ contains linear polynomials: $\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right) x \in N(S)$ for all $b, d \in F$.

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

- Each matrix has min. poly. x^{2}. So, $x^{2} \in N(S)$ and $x^{2} \in N(T)$.
- $N(S)$ contains linear polynomials: $\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right) x \in N(S)$ for all $b, d \in F$.
- $N(T)$ contains no linear polynomials

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

- Each matrix has min. poly. x^{2}. So, $x^{2} \in N(S)$ and $x^{2} \in N(T)$.
- $N(S)$ contains linear polynomials: $\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right) x \in N(S)$ for all $b, d \in F$.
- $N(T)$ contains no linear polynomials Proof
- Suppose $\alpha x+\beta \in N(T)$ (here, $\left.\alpha, \beta \in M_{2}(F)\right)$

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

- Each matrix has min. poly. x^{2}. So, $x^{2} \in N(S)$ and $x^{2} \in N(T)$.
- $N(S)$ contains linear polynomials: $\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right) x \in N(S)$ for all $b, d \in F$.
- $N(T)$ contains no linear polynomials Proof
- Suppose $\alpha x+\beta \in N(T)$ (here, $\left.\alpha, \beta \in M_{2}(F)\right)$
- Then, $\alpha A+\beta=0=\alpha C+\beta$

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

- Each matrix has min. poly. x^{2}. So, $x^{2} \in N(S)$ and $x^{2} \in N(T)$.
- $N(S)$ contains linear polynomials: $\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right) x \in N(S)$ for all $b, d \in F$.
- $N(T)$ contains no linear polynomials Proof
- Suppose $\alpha x+\beta \in N(T)$ (here, $\left.\alpha, \beta \in M_{2}(F)\right)$
- Then, $\alpha A+\beta=0=\alpha C+\beta \rightsquigarrow \alpha(A-C)=0$

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

- Each matrix has min. poly. x^{2}. So, $x^{2} \in N(S)$ and $x^{2} \in N(T)$.
- $N(S)$ contains linear polynomials: $\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right) x \in N(S)$ for all $b, d \in F$.
- $N(T)$ contains no linear polynomials Proof
- Suppose $\alpha x+\beta \in N(T)$ (here, $\alpha, \beta \in M_{2}(F)$)
- Then, $\alpha A+\beta=0=\alpha C+\beta \rightsquigarrow \alpha(A-C)=0$
- But, $\boldsymbol{A}-\mathrm{C}$ is invertible $\rightsquigarrow \alpha=0 \rightsquigarrow \beta=0$

Matrix Examples

Let F be a field, $\operatorname{char}(F) \neq 2$. Let $R=M_{2}(F)$, the ring of 2×2 matrices over F
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right)$, and $C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S=\{A, B\}$ and $T=\{A, C\}$
Example: Describe $N(S)$ and $N(T)$

- Each matrix has min. poly. x^{2}. So, $x^{2} \in N(S)$ and $x^{2} \in N(T)$.
- $N(S)$ contains linear polynomials: $\left(\begin{array}{ll}0 & b \\ 0 & d\end{array}\right) x \in N(S)$ for all $b, d \in F$.
- $N(T)$ contains no linear polynomials Proof
- Suppose $\alpha x+\beta \in N(T)$ (here, $\alpha, \beta \in M_{2}(F)$)
- Then, $\alpha A+\beta=0=\alpha C+\beta \rightsquigarrow \alpha(A-C)=0$
- But, $\boldsymbol{A}-\mathrm{C}$ is invertible $\rightsquigarrow \alpha=0 \rightsquigarrow \beta=0$
- In fact, $N(T)$ is generated (as a two-sided ideal of $R[x]$) by x^{2}

Connection to Integer-valued Polynomials

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

is the ring of integer-valued polynomials on S.

Connection to Integer-valued Polynomials

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

is the ring of integer-valued polynomials on S.
Elements of $\operatorname{Int}(S, D)$ correspond to elements of null ideals in residue rings of D.

Connection to Integer-valued Polynomials

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

is the ring of integer-valued polynomials on S.
Elements of $\operatorname{lnt}(S, D)$ correspond to elements of null ideals in residue rings of D.
Given $f \in K[x]$, write f as $f=\frac{g}{d}$, where $g \in D[x]$ and $d \in D$.
Use a bar to denote passage from D to $D / d D$. Then,

Connection to Integer-valued Polynomials

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

is the ring of integer-valued polynomials on S.
Elements of $\operatorname{lnt}(S, D)$ correspond to elements of null ideals in residue rings of D.
Given $f \in K[x]$, write f as $f=\frac{g}{d}$, where $g \in D[x]$ and $d \in D$.
Use a bar to denote passage from D to $D / d D$. Then,

$$
f \in \operatorname{lnt}(S, D) \Longleftrightarrow \frac{g(s)}{d} \in D \text { for all } s \in S
$$

Connection to Integer-valued Polynomials

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

is the ring of integer-valued polynomials on S.
Elements of $\operatorname{lnt}(S, D)$ correspond to elements of null ideals in residue rings of D.
Given $f \in K[x]$, write f as $f=\frac{g}{d}$, where $g \in D[x]$ and $d \in D$. Use a bar to denote passage from D to $D / d D$. Then,

$$
\begin{aligned}
f \in \operatorname{lnt}(S, D) & \Longleftrightarrow \frac{g(s)}{d} \in D \text { for all } s \in S \\
& \Longleftrightarrow g(s) \in d D \text { for all } s \in S \\
& \Longleftrightarrow \bar{g} \in N_{\bar{D}}(\bar{S})
\end{aligned}
$$

Connection to Integer-valued Polynomials

Let D be a (commutative) integral domain with field of fractions K. Let $S \subseteq D$. Then,

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

is the ring of integer-valued polynomials on S.
Elements of $\operatorname{lnt}(S, D)$ correspond to elements of null ideals in residue rings of D.
Given $f \in K[x]$, write f as $f=\frac{g}{d}$, where $g \in D[x]$ and $d \in D$.
Use a bar to denote passage from D to $D / d D$. Then,

$$
\begin{aligned}
f \in \operatorname{lnt}(S, D) & \Longleftrightarrow \frac{g(s)}{d} \in D \text { for all } s \in S \\
& \Longleftrightarrow g(s) \in d D \text { for all } s \in S \\
& \Longleftrightarrow \bar{g} \in N_{\bar{D}}(\bar{S})
\end{aligned}
$$

Null ideals can give information about $\operatorname{Int}(S, D)$ even in noncommutative settings.

Integer-valued Polynomials over Matrix Rings

D : integral domain, K : fraction field of $D, \quad S \subseteq D$

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

We will make a "matrix version" of $\operatorname{Int}(S, D)$.

- $M_{n}(D): n \times n$ matrices over $D, M_{n}(K): n \times n$ matrices over K
- Embed $K \hookrightarrow M_{n}(K)$ by $a \mapsto$ scalar matrix $a I$

Integer-valued Polynomials over Matrix Rings

D : integral domain, K : fraction field of $D, \quad S \subseteq D$

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

We will make a "matrix version" of $\operatorname{Int}(S, D)$.

- $M_{n}(D): n \times n$ matrices over $D, \quad M_{n}(K): n \times n$ matrices over K
- Embed $K \hookrightarrow M_{n}(K)$ by $a \mapsto$ scalar matrix $a I$

For $S \subseteq M_{n}(D)$, we define

$$
\operatorname{lnt}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Integer-valued Polynomials over Matrix Rings

D : integral domain, K : fraction field of $D, \quad S \subseteq D$

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

We will make a "matrix version" of $\operatorname{Int}(S, D)$.

- $M_{n}(D): n \times n$ matrices over $D, \quad M_{n}(K): n \times n$ matrices over K
- Embed $K \hookrightarrow M_{n}(K)$ by $a \mapsto$ scalar matrix $a I$

For $S \subseteq M_{n}(D)$, we define

$$
\operatorname{lnt}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Big question here: Is $\operatorname{lnt}\left(S, M_{n}(D)\right)$ a ring?

Integer-valued Polynomials over Matrix Rings

D : integral domain, K : fraction field of $D, \quad S \subseteq D$

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

We will make a "matrix version" of $\operatorname{Int}(S, D)$.

- $M_{n}(D): n \times n$ matrices over $D, \quad M_{n}(K): n \times n$ matrices over K
- Embed $K \hookrightarrow M_{n}(K)$ by $a \mapsto$ scalar matrix $a I$

For $S \subseteq M_{n}(D)$, we define

$$
\operatorname{Int}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Big question here: Is $\operatorname{lnt}\left(S, M_{n}(D)\right)$ a ring?

- $\operatorname{Int}\left(S, M_{n}(D)\right)$ is closed under addition (easy)

Integer-valued Polynomials over Matrix Rings

D : integral domain, K : fraction field of $D, \quad S \subseteq D$

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

We will make a "matrix version" of $\operatorname{lnt}(S, D)$.

- $M_{n}(D): n \times n$ matrices over $D, \quad M_{n}(K): n \times n$ matrices over K
- Embed $K \hookrightarrow M_{n}(K)$ by $a \mapsto$ scalar matrix $a I$

For $S \subseteq M_{n}(D)$, we define

$$
\operatorname{lnt}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Big question here: Is $\operatorname{lnt}\left(S, M_{n}(D)\right)$ a ring?

- $\operatorname{Int}\left(S, M_{n}(D)\right)$ is closed under addition (easy)
- Is it closed under multiplication?

Integer-valued Polynomials over Matrix Rings

D : integral domain, K : fraction field of $D, \quad S \subseteq D$

$$
\operatorname{lnt}(S, D)=\{f \in K[x] \mid f(s) \in D \text { for all } s \in S\}
$$

We will make a "matrix version" of $\operatorname{lnt}(S, D)$.

- $M_{n}(D): n \times n$ matrices over $D, \quad M_{n}(K): n \times n$ matrices over K
- Embed $K \hookrightarrow M_{n}(K)$ by $a \mapsto$ scalar matrix $a I$

For $S \subseteq M_{n}(D)$, we define

$$
\operatorname{lnt}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Big question here: Is $\operatorname{lnt}\left(S, M_{n}(D)\right)$ a ring?

- $\operatorname{Int}\left(S, M_{n}(D)\right)$ is closed under addition (easy)
- Is it closed under multiplication?
- Difficulty: polynomials in $M_{n}(K)[x]$ have noncommuting coefficients!

Back to Null Ideals

$$
\operatorname{Int}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Question: For which subsets S is $\operatorname{lnt}\left(S, M_{n}(D)\right)$ a ring?

Back to Null Ideals

$$
\operatorname{Int}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Question: For which subsets S is $\operatorname{lnt}\left(S, M_{n}(D)\right)$ a ring?
We can translate this into a question about null ideals.

Back to Null Ideals

$$
\operatorname{Int}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Question: For which subsets S is $\operatorname{Int}\left(S, M_{n}(D)\right)$ a ring?
We can translate this into a question about null ideals.
Recall: given $f \in M_{n}(K)[x]$, write $f=\frac{g}{d}$, where $g \in M_{n}(D)$ and $d \in D$. A bar denotes passage from D to $D / d D$. Then,

$$
f \in \operatorname{lnt}\left(S, M_{n}(D)\right) \Longleftrightarrow \bar{g} \in N_{M_{n}(\bar{D})}(\bar{S})
$$

Back to Null Ideals

$$
\operatorname{Int}\left(S, M_{n}(D)\right):=\left\{f \in M_{n}(K)[x] \mid f(A) \in M_{n}(D) \text { for all } A \in S\right\}
$$

Question: For which subsets S is $\operatorname{lnt}\left(S, M_{n}(D)\right)$ a ring?
We can translate this into a question about null ideals.
Recall: given $f \in M_{n}(K)[x]$, write $f=\frac{g}{d}$, where $g \in M_{n}(D)$ and $d \in D$. A bar denotes passage from D to $D / d D$. Then,

$$
f \in \operatorname{lnt}\left(S, M_{n}(D)\right) \Longleftrightarrow \bar{g} \in N_{M_{n}(\bar{D})}(\bar{S})
$$

Theorem

$\operatorname{lnt}\left(S, M_{n}(D)\right)$ is a ring if and only if $N_{M_{n}(\bar{D})}(\bar{S})$ is a two-sided ideal of $M_{n}(D / d D)[x]$ for each $d \neq 0$.

Focus on Matrices

For the remainder of the talk, we will assume:

- F is a field, $R=M_{n}(F)$, and $S \subseteq M_{n}(F)$
- F corresponds to the ring of scalar matrices in $M_{n}(F)$

$$
\begin{aligned}
F & \hookrightarrow M_{n}(F) \\
a & \mapsto a I
\end{aligned}
$$

- $N(S)=N_{R}(S)$, and $f \in N(S)$ has matrix coefficients

Focus on Matrices

For the remainder of the talk, we will assume:

- F is a field, $R=M_{n}(F)$, and $S \subseteq M_{n}(F)$
- F corresponds to the ring of scalar matrices in $M_{n}(F)$

$$
\begin{aligned}
F & \hookrightarrow M_{n}(F) \\
a & \mapsto a I
\end{aligned}
$$

- $N(S)=N_{R}(S)$, and $f \in N(S)$ has matrix coefficients

Questions to consider:

Focus on Matrices

For the remainder of the talk, we will assume:

- F is a field, $R=M_{n}(F)$, and $S \subseteq M_{n}(F)$
- F corresponds to the ring of scalar matrices in $M_{n}(F)$

$$
\begin{aligned}
& F \hookrightarrow M_{n}(F) \\
& a \mapsto a I
\end{aligned}
$$

- $N(S)=N_{R}(S)$, and $f \in N(S)$ has matrix coefficients

Questions to consider:

1. When is $N(S)$ a two-sided ideal of $M_{n}(F)[x]$?
2. When is $N(S) \neq\{0\}$?
3. What are the generators for $N(S)$ (as a two-sided ideal, if possible; otherwise, as a left $M_{n}(F)[x]$-module)?

Focus on Matrices

For the remainder of the talk, we will assume:

- F is a field, $R=M_{n}(F)$, and $S \subseteq M_{n}(F)$
- F corresponds to the ring of scalar matrices in $M_{n}(F)$

$$
\begin{aligned}
& F \hookrightarrow M_{n}(F) \\
& a \mapsto a I
\end{aligned}
$$

- $N(S)=N_{R}(S)$, and $f \in N(S)$ has matrix coefficients

Questions to consider:

1. When is $N(S)$ a two-sided ideal of $M_{n}(F)[x]$?
2. When is $N(S) \neq\{0\}$?
3. What are the generators for $N(S)$ (as a two-sided ideal, if possible; otherwise, as a left $M_{n}(F)[x]$-module)?

We will focus on Question \#1.

Core Sets

Definitions

Let F be a field and $S \subseteq M_{n}(F)$.

- We say S is core if $N(S)$ is a two-sided ideal of $M_{n}(F)[x]$.

Core Sets

Definitions

Let F be a field and $S \subseteq M_{n}(F)$.

- We say S is core if $N(S)$ is a two-sided ideal of $M_{n}(F)[x]$.
- For $A \in M_{n}(F), \mu_{A}$ is the minimal polynomial of A.
- We define $\phi_{S}=\operatorname{Icm}\left\{\mu_{A}\right\}_{A \in S}$. So, ϕ_{S} is the monic least common multiple of all minimal polynomials of elements of S.

Core Sets

Definitions

Let F be a field and $S \subseteq M_{n}(F)$.

- We say S is core if $N(S)$ is a two-sided ideal of $M_{n}(F)[x]$.
- For $A \in M_{n}(F), \mu_{A}$ is the minimal polynomial of A.
- We define $\phi_{S}=\operatorname{Icm}\left\{\mu_{A}\right\}_{A \in S}$. So, ϕ_{S} is the monic least common multiple of all minimal polynomials of elements of S.

Problem V. 3 : Classify/characterize the core subsets of $M_{n}(F)$.

Initial Observations and First Results

$F:$ field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal

Initial Observations and First Results

$F:$ field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal - $S=\{A\}$ is core if and only if A is a scalar matrix

Initial Observations and First Results

$F:$ field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal

- $S=\{A\}$ is core if and only if A is a scalar matrix Proof: (\Leftarrow) Evaluation at central elements behaves as usual. For (\Rightarrow) :
- Suppose B is such that $A B \neq B A$.
- Then, $x-A \in N(S)$, but $(x-A)(x-B) \notin N(S)$.

Initial Observations and First Results

$F:$ field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal

- $S=\{A\}$ is core if and only if A is a scalar matrix Proof: (\Leftarrow) Evaluation at central elements behaves as usual. For (\Rightarrow) :
- Suppose B is such that $A B \neq B A$.
- Then, $x-A \in N(S)$, but $(x-A)(x-B) \notin N(S)$.
- Given two subsets S_{1} and $S_{2}, N\left(S_{1} \cup S_{2}\right)=N\left(S_{1}\right) \cap N\left(S_{2}\right)$. It follows that unions of core sets are core.

Initial Observations and First Results

F : field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal

- $S=\{A\}$ is core if and only if A is a scalar matrix Proof: (\Leftarrow) Evaluation at central elements behaves as usual. For (\Rightarrow) :
- Suppose B is such that $A B \neq B A$.
- Then, $x-A \in N(S)$, but $(x-A)(x-B) \notin N(S)$.
- Given two subsets S_{1} and $S_{2}, N\left(S_{1} \cup S_{2}\right)=N\left(S_{1}\right) \cap N\left(S_{2}\right)$. It follows that unions of core sets are core.
- Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Initial Observations and First Results

$F:$ field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal

- $S=\{A\}$ is core if and only if A is a scalar matrix

Proof: (\Leftarrow) Evaluation at central elements behaves as usual. For (\Rightarrow) :

- Suppose B is such that $A B \neq B A$.
- Then, $x-A \in N(S)$, but $(x-A)(x-B) \notin N(S)$.
- Given two subsets S_{1} and $S_{2}, N\left(S_{1} \cup S_{2}\right)=N\left(S_{1}\right) \cap N\left(S_{2}\right)$. It follows that unions of core sets are core.
- Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Theorems

Initial Observations and First Results

F : field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal

- $S=\{A\}$ is core if and only if A is a scalar matrix

Proof: (\Leftarrow) Evaluation at central elements behaves as usual. For (\Rightarrow) :

- Suppose B is such that $A B \neq B A$.
- Then, $x-A \in N(S)$, but $(x-A)(x-B) \notin N(S)$.
- Given two subsets S_{1} and $S_{2}, N\left(S_{1} \cup S_{2}\right)=N\left(S_{1}\right) \cap N\left(S_{2}\right)$. It follows that unions of core sets are core.
- Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Theorems

1. S is core if and only if $N(S)$ is generated by ϕ_{S}. Equivalently,

Initial Observations and First Results

$F:$ field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal

- $S=\{A\}$ is core if and only if A is a scalar matrix

Proof: (\Leftarrow) Evaluation at central elements behaves as usual. For (\Rightarrow) :

- Suppose B is such that $A B \neq B A$.
- Then, $x-A \in N(S)$, but $(x-A)(x-B) \notin N(S)$.
- Given two subsets S_{1} and $S_{2}, N\left(S_{1} \cup S_{2}\right)=N\left(S_{1}\right) \cap N\left(S_{2}\right)$. It follows that unions of core sets are core.
- Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Theorems

1. S is core if and only if $N(S)$ is generated by ϕ_{S}. Equivalently, S is not core if and only if there exists $f \in N(S)$ with $\operatorname{deg} f<\operatorname{deg} \phi_{S}$.

Initial Observations and First Results

$F:$ field, $\quad S \subseteq M_{n}(F), \quad S$ is core when $N(S)$ is a two-sided ideal

- $S=\{A\}$ is core if and only if A is a scalar matrix

Proof: (\Leftarrow) Evaluation at central elements behaves as usual. For (\Rightarrow) :

- Suppose B is such that $A B \neq B A$.
- Then, $x-A \in N(S)$, but $(x-A)(x-B) \notin N(S)$.
- Given two subsets S_{1} and $S_{2}, N\left(S_{1} \cup S_{2}\right)=N\left(S_{1}\right) \cap N\left(S_{2}\right)$. It follows that unions of core sets are core.
- Unfortunately, intersections of core sets need not be core. (Example coming... stay tuned!)

Theorems

1. S is core if and only if $N(S)$ is generated by ϕ_{S}. Equivalently, S is not core if and only if there exists $f \in N(S)$ with $\operatorname{deg} f<\operatorname{deg} \phi_{S}$.
2. Assume that S is a full conjugacy class.

That is, $S=\left\{U A U^{-1} \mid U \in G L(n, F)\right\}$ for some $A \in M_{n}(F)$.
Then, S is core.

Example: Intersections of Core Sets Need Not be Core

Let F be a field, $\operatorname{char}(F) \neq 2$
Let $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \quad B=\left(\begin{array}{cc}0 & -1 \\ 0 & 0\end{array}\right), \quad$ and $\quad C=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$
Let $S_{1}=\{A, C\}$ and $S_{2}=\{B, C\}$

- $\phi_{S_{1}}(x)=x^{2}$ and $\phi_{s_{2}}(x)=x^{2}$
- Neither $N\left(S_{1}\right)$ nor $N\left(S_{2}\right)$ contains a linear polynomial. (Ultimately, this is because both $A-C$ and $B-C$ are invertible.)
Thus, both S_{1} and S_{2} are core (both are generated by x^{2})
- However, $S_{1} \cap S_{2}=\{C\}$, which is not core.

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

- Fact: $A, B \in M_{2}(F)$ are conjugate if and only if $\mu_{A}=\mu_{B}$.
- In $M_{2}(F)$, "conjugacy class" $=$ "minimal polynomial class"
- Notation: Given $m \in F[x]$, let $\mathcal{C}(m)=\left\{A \in M_{2}(F) \mid \mu_{A}=m\right\}$.

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

- Fact: $A, B \in M_{2}(F)$ are conjugate if and only if $\mu_{A}=\mu_{B}$.
- In $M_{2}(F)$, "conjugacy class" $=$ "minimal polynomial class"
- Notation: Given $m \in F[x]$, let $\mathcal{C}(m)=\left\{A \in M_{2}(F) \mid \mu_{A}=m\right\}$.

Overall (and ultimately successful!) strategy to decide if S is core:

1. Partition S into conjugacy classes:

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \cup \cdots \cup S_{k} \\
& \text { each } S_{i}=\left(S \cap \mathcal{C}\left(m_{i}\right)\right) \text { for some } m_{i} \in F[x]
\end{aligned}
$$

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

- Fact: $A, B \in M_{2}(F)$ are conjugate if and only if $\mu_{A}=\mu_{B}$.
- In $M_{2}(F)$, "conjugacy class" $=$ "minimal polynomial class"
- Notation: Given $m \in F[x]$, let $\mathcal{C}(m)=\left\{A \in M_{2}(F) \mid \mu_{A}=m\right\}$.

Overall (and ultimately successful!) strategy to decide if S is core:

1. Partition S into conjugacy classes:

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \cup \cdots \cup S_{k} \\
& \text { each } S_{i}=\left(S \cap \mathcal{C}\left(m_{i}\right)\right) \text { for some } m_{i} \in F[x]
\end{aligned}
$$

2. Each S_{i} is a subset of a conjugacy class.

Find necessary and sufficient conditions for a subset of a conjugacy class to be core.
This is not too difficult!

Strategy for 2×2 matrices

For the sake of sanity: focus only on 2×2 matrices, and assume that S is finite.

- Fact: $A, B \in M_{2}(F)$ are conjugate if and only if $\mu_{A}=\mu_{B}$.
- In $M_{2}(F)$, "conjugacy class" $=$ "minimal polynomial class"
- Notation: Given $m \in F[x]$, let $\mathcal{C}(m)=\left\{A \in M_{2}(F) \mid \mu_{A}=m\right\}$.

Overall (and ultimately successful!) strategy to decide if S is core:

1. Partition S into conjugacy classes:

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \cup \cdots \cup S_{k} \\
& \text { each } S_{i}=\left(S \cap \mathcal{C}\left(m_{i}\right)\right) \text { for some } m_{i} \in F[x]
\end{aligned}
$$

2. Each S_{i} is a subset of a conjugacy class.

Find necessary and sufficient conditions for a subset of a conjugacy class to be core.
This is not too difficult!
3. Figure out what happens when the S_{i} are combined back into the original S. This gets wild.

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2 .
Let $S \subseteq \mathcal{C}(m)$

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2 .
Let $S \subseteq \mathcal{C}(m)$
Easy case: m linear

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2 .
Let $S \subseteq \mathcal{C}(m)$
Easy case: m linear $\rightsquigarrow \mathcal{C}(m)=\{A\}$ for a scalar matrix A

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2 .
Let $S \subseteq \mathcal{C}(m)$
Easy case: m linear $\rightsquigarrow \mathcal{C}(m)=\{A\}$ for a scalar matrix $A \rightsquigarrow S=\{A\}$ is core.

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2 .
Let $S \subseteq \mathcal{C}(m)$
Easy case: m linear $\rightsquigarrow \mathcal{C}(m)=\{A\}$ for a scalar matrix $A \rightsquigarrow S=\{A\}$ is core.

Theorems
Assume m is quadratic.

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2 .
Let $S \subseteq \mathcal{C}(m)$
Easy case: m linear $\rightsquigarrow \mathcal{C}(m)=\{A\}$ for a scalar matrix $A \rightsquigarrow S=\{A\}$ is core.

Theorems

Assume m is quadratic.

1. If m is irreducible, then S is core if and only if $|S| \geq 2$.

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2 .
Let $S \subseteq \mathcal{C}(m)$
Easy case: m linear $\rightsquigarrow \mathcal{C}(m)=\{A\}$ for a scalar matrix $A \rightsquigarrow S=\{A\}$ is core.

Theorems

Assume m is quadratic.

1. If m is irreducible, then S is core if and only if $|S| \geq 2$.
2. If m is reducible, then S is core if and only if there exist $A, B \in S$ such that $A-B$ is invertible.

Core Conditions for Subsets of Conjugacy Classes

Let $m \in F[x]$ have degree 1 or 2 .
Let $S \subseteq \mathcal{C}(m)$
Easy case: m linear $\rightsquigarrow \mathcal{C}(m)=\{A\}$ for a scalar matrix $A \rightsquigarrow S=\{A\}$ is core.

Theorems

Assume m is quadratic.

1. If m is irreducible, then S is core if and only if $|S| \geq 2$.
2. If m is reducible, then S is core if and only if there exist $A, B \in S$ such that $A-B$ is invertible.
3. Assume F is a finite field with q elements. If $|S| \geq q+1$, then S is core.

Combining Classes back into S

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \cup \cdots \cup S_{k} \\
& \text { each } S_{i}=\left(S \cap \mathcal{C}\left(m_{i}\right)\right) \text { for some } m_{i} \in F[x]
\end{aligned}
$$

If each S_{i} is core, then S is core. Does the converse hold?

Combining Classes back into S

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \cup \cdots \cup S_{k} \\
& \text { each } S_{i}=\left(S \cap \mathcal{C}\left(m_{i}\right)\right) \text { for some } m_{i} \in F[x]
\end{aligned}
$$

If each S_{i} is core, then S is core. Does the converse hold?
Theorem
Assume m_{i} is quadratic and S_{i} is not core.

Combining Classes back into S

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \cup \cdots \cup S_{k} \\
& \text { each } S_{i}=\left(S \cap \mathcal{C}\left(m_{i}\right)\right) \text { for some } m_{i} \in F[x]
\end{aligned}
$$

If each S_{i} is core, then S is core. Does the converse hold?
Theorem
Assume m_{i} is quadratic and S_{i} is not core.

1. Irreducible case: Assume m_{i} is irreducible.

Then, S is not core.

Combining Classes back into S

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \cup \cdots \cup S_{k} \\
& \text { each } S_{i}=\left(S \cap \mathcal{C}\left(m_{i}\right)\right) \text { for some } m_{i} \in F[x]
\end{aligned}
$$

If each S_{i} is core, then S is core. Does the converse hold?

Theorem

Assume m_{i} is quadratic and S_{i} is not core.

1. Irreducible case: Assume m_{i} is irreducible.

Then, S is not core.
2. Repeated root case: Assume $m_{i}(x)=(x-a)^{2}$ for some $a \in F$. Then, S is not core.

Combining Classes back into S

$$
\begin{aligned}
& S=S_{1} \cup S_{2} \cup \cdots \cup S_{k} \\
& \text { each } S_{i}=\left(S \cap \mathcal{C}\left(m_{i}\right)\right) \text { for some } m_{i} \in F[x]
\end{aligned}
$$

If each S_{i} is core, then S is core. Does the converse hold?

Theorem

Assume m_{i} is quadratic and S_{i} is not core.

1. Irreducible case: Assume m_{i} is irreducible.

Then, S is not core.
2. Repeated root case: Assume $m_{i}(x)=(x-a)^{2}$ for some $a \in F$. Then, S is not core.
3. Distinct root case: Assume $m_{i}(x)=(x-a)(x-b)$ for $a, b \in F$ with $a \neq b$. Then, S may or may not be core. It depends on the other classes S_{j} with $j \neq i$. (This is the "wild" case.)

Some Confounding Examples

Assume char $(F) \neq 2$ and let

$$
A_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right), A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Let $S=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $T=\left\{A_{1}, A_{2}, A_{4}\right\}$. Then,

Some Confounding Examples

Assume $\operatorname{char}(F) \neq 2$ and let

$$
A_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right), A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Let $S=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $T=\left\{A_{1}, A_{2}, A_{4}\right\}$. Then,

- $\phi_{S}(x)=\phi_{T}(x)=x(x-1)(x+1)$

Some Confounding Examples

Assume $\operatorname{char}(F) \neq 2$ and let

$$
A_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right), A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Let $S=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $T=\left\{A_{1}, A_{2}, A_{4}\right\}$. Then,

- $\phi_{S}(x)=\phi_{T}(x)=x(x-1)(x+1)$
- Conjugacy class breakdowns:

$$
S=\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup\left\{A_{3}\right\} \quad T=\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup\left\{A_{4}\right\}
$$

Some Confounding Examples

Assume $\operatorname{char}(F) \neq 2$ and let

$$
A_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right), A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Let $S=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $T=\left\{A_{1}, A_{2}, A_{4}\right\}$. Then,

- $\phi_{S}(x)=\phi_{T}(x)=x(x-1)(x+1)$
- Conjugacy class breakdowns:

$$
S=\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup\left\{A_{3}\right\} \quad T=\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup\left\{A_{4}\right\}
$$

- It turns out that S is core.

This can be shown with a calculation involving Vandermonde matrices.

Some Confounding Examples

Assume $\operatorname{char}(F) \neq 2$ and let

$$
A_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right), A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Let $S=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $T=\left\{A_{1}, A_{2}, A_{4}\right\}$. Then,

- $\phi_{S}(x)=\phi_{T}(x)=x(x-1)(x+1)$
- Conjugacy class breakdowns:

$$
S=\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup\left\{A_{3}\right\} \quad T=\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup\left\{A_{4}\right\}
$$

- It turns out that S is core.

This can be shown with a calculation involving Vandermonde matrices.

- $N(T)$ contains polynomials of degree 2 such as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x(x+1) \quad \text { and } \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) x(x-1)
$$

So, T is not core

Some Confounding Examples

Assume $\operatorname{char}(F) \neq 2$ and let

$$
A_{1}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right), A_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Let $S=\left\{A_{1}, A_{2}, A_{3}\right\}$ and $T=\left\{A_{1}, A_{2}, A_{4}\right\}$. Then,

- $\phi_{S}(x)=\phi_{T}(x)=x(x-1)(x+1)$
- Conjugacy class breakdowns:

$$
S=\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup\left\{A_{3}\right\} \quad T=\left\{A_{1}\right\} \cup\left\{A_{2}\right\} \cup\left\{A_{4}\right\}
$$

- It turns out that S is core.

This can be shown with a calculation involving Vandermonde matrices.

- $N(T)$ contains polynomials of degree 2 such as

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x(x+1) \quad \text { and } \quad\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) x(x-1)
$$

So, T is not core

- Why is S core but T is not core????

Some Confounding Examples

$$
\begin{aligned}
A_{1} & =\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), A_{2}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 0
\end{array}\right), & A_{3} & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), A_{4}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \\
S & =\left\{A_{1}, A_{2}, A_{3}\right\}, & & =\left\{A_{1}, A_{2}, A_{4}\right\} \\
\phi_{S}(x) & =x(x-1)(x+1) & \phi_{T}(x) & =x(x-1)(x+1)
\end{aligned}
$$

Why is S core but T is not core????

Sketch of an answer:

- We need to look at left annihilators of translations $A-a$, where a solves μ_{A}

	Translate by 0	Translate by 1	Translate by -1
A_{1}	$A_{1}-0=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$	$A_{1}-1=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$	
A_{2}	$A_{2}-0=\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right)$		$A_{2}+1=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
A_{3}		$A_{3}-1=\left(\begin{array}{cc}0 & 0 \\ 0 & -2\end{array}\right)$	$A_{3}+1=\left(\begin{array}{cc}-2 & 0 \\ 0 & 0\end{array}\right)$
A_{4}		$A_{4}-1=\left(\begin{array}{cc}-2 & 0 \\ 0 & 0\end{array}\right)$	$A_{4}+1=\left(\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right)$

- The matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ is in the left annihilator of each of $A_{1}-0, A_{2}+1$, and $A_{4}+1$. So, $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) x(x+1) \in N(T)$
- To obtain a similar element in $N(S)$, we need to translate by 0,1 , and -1 . The resulting polynomial is a multiple of $x(x-1)(x+1)$.

Algorithm to decide if a finite subset of $M_{2}(F)$ is core

Given a finite set $S \subseteq M_{2}(F)$:

1. Partition S into conjugacy classes $S=S_{1} \cup \cdots \cup S_{k}$.

For each i, let $\phi_{i}=\phi_{S_{i}}$. Then, $\operatorname{deg} \phi_{i} \leq 2$.
2. Determine whether each S_{i} is core.

- If each S_{i} is core, then S is core.
- If some S_{i} is not core and ϕ_{i} is either irreducible quadratic or quadratic with a repeated root, then S is not core.

3. Let S_{0} be the union of all the S_{i} that are core.

Let $T=S \backslash S_{0}$. Then, T is a union of non-core classes, and each class corresponds to a min. poly. of the form $(x-a)(x-b)$ with $a \neq b$.

Examine the left annihilators of translates of elements of T.
These annihilators can allow us to determine whether S is core.
Is there a better method to identify core sets?

Summary

- There is a connection between null ideals and integer-valued polynomials. This holds even in noncommutative settings! (e.g. for matrix rings)
- Solved problem: Determine all the finite core subsets of $M_{2}(F)$

Open problems:

1. For an integral domain D, which subsets $S \subseteq M_{n}(D)$ are such that $\operatorname{lnt}\left(S, M_{n}(D)\right)$ is a ring?

- Are null ideals the best method to find these subsets?

2. Enumerate or estimate the number of core subsets.

- Are core subsets common? Are they sparse?
- When F is finite, how many core subsets does $M_{2}(F)$ contain?

3. Classify/describe the infinite core subsets of $M_{2}(F)$.
4. Identify generators of non-core subsets of $M_{2}(F)$.
5. Explore null ideals and core subsets of $M_{n}(F)$ for $n \geq 3$.

THANK YOU!!

References

- E. Swartz, N. J. Werner. Null ideals of sets of 3×3 similar matrices with irreducible characteristic polynomial. arXiv: https://arxiv.org/abs/2212.14460
- N. J. Werner. Null ideals of subsets of matrix rings over fields. Linear Algebra Appl. 642 (2022), 50-72.

