On special ideals of non commutative rings

Nico Groenewald

Nelson Mandela University

n-ideals in commutative rings

In 2017 Tekir, Koc and Oral introduced the notion of *n*-ideals for a commutative ring *R* with identity element: Let $\mathcal{P}(R) = \{a \in R : a^n = 0 \text{ for some } n \in \mathbb{N}\}$ be the prime radical of *R*.

Definition

A proper ideal I of R is called an n-ideal if whenever $a, b \in R$ with $ab \in I$ and $a \notin \mathcal{P}(R)$, then $b \in I$.

n-ideals in commutative rings

In 2017 Tekir, Koc and Oral introduced the notion of *n*-ideals for a commutative ring *R* with identity element: Let $\mathcal{P}(R) = \{a \in R : a^n = 0 \text{ for some } n \in \mathbb{N}\}$ be the prime radical of *R*.

Definition

A proper ideal I of R is called an n-ideal if whenever $a, b \in R$ with $ab \in I$ and $a \notin \mathcal{P}(R)$, then $b \in I$.

We have:

- **()** If *I* is an *n*-ideal of the commutative ring *R*, then $I \subseteq \mathcal{P}(R)$.

n-ideals in commutative rings

In 2017 Tekir, Koc and Oral introduced the notion of *n*-ideals for a commutative ring *R* with identity element: Let $\mathcal{P}(R) = \{a \in R : a^n = 0 \text{ for some } n \in \mathbb{N}\}$ be the prime radical of *R*.

Definition

A proper ideal I of R is called an n-ideal if whenever $a, b \in R$ with $ab \in I$ and $a \notin \mathcal{P}(R)$, then $b \in I$.

We have:

- **()** If *I* is an *n*-ideal of the commutative ring *R*, then $I \subseteq \mathcal{P}(R)$.
- 2 \mathbb{Z}_n has an *n*-ideal if and only if $n = p^k$ for some $k \in \mathbb{Z}^+$ and *p* a prime.

Compare notion of prime ideals and n-ideals:

- 3Z is a prime ideal of Z but not an *n*−ideal since 3Z ⊈
 P(Z) = {0}.
- 2 In \mathbb{Z}_{27} $\langle \overline{9} \rangle$ is an *n*-ideal but not a prime ideal

J-ideals in commutative rings

Following this Khashan et al. introduced the notion of a J-ideal for a commutative ring.

Let $\mathcal{J}(R)$ be the Jacobson radical of R.

Definition

A proper ideal I of R is called an \mathcal{J} -ideal if whenever $a, b \in R$ with $ab \in I$ and $a \notin \mathcal{J}(R)$, then $b \in I$.

J-ideals in commutative rings

Following this Khashan et al. introduced the notion of a J-ideal for a commutative ring.

Let $\mathcal{J}(R)$ be the Jacobson radical of R.

Definition

A proper ideal I of R is called an \mathcal{J} -ideal if whenever $a, b \in R$ with $ab \in I$ and $a \notin \mathcal{J}(R)$, then $b \in I$.

Examples

- If *I* is a \mathcal{J} -ideal of a ring *R*, then $I \subseteq \mathcal{J}(R)$.
- **2** If R is a quasi-local ring, then every proper ideal of R is a \mathcal{J} -ideal.
- In any ring R, every n-ideal I of R is a J-ideal.

Radical ideals in noncommutative rings

In this note we extend these notions to non-commutative rings and show that it is a special case of more a general type of ideal connected to a special radical. The following are some of the well known special radicals, prime radical \mathcal{P} , Levitski radical \mathcal{L} , Kőthe's nil radical \mathcal{N} , Jacobson radical \mathcal{J} and the Brown McCoy radical \mathcal{G} .

Definition

Let ρ be a special radical. A proper ideal I of the ring R is called a ρ -ideal if whenever $a, b \in R$ and $aRb \subseteq I$ and $a \notin \rho(R)$, then $b \in I$.

Radical ideals in noncommutative rings

In this note we extend these notions to non-commutative rings and show that it is a special case of more a general type of ideal connected to a special radical. The following are some of the well known special radicals, prime radical \mathcal{P} , Levitski radical \mathcal{L} , Kőthe's nil radical \mathcal{N} , Jacobson radical \mathcal{J} and the Brown McCoy radical \mathcal{G} .

Definition

Let ρ be a special radical. A proper ideal I of the ring R is called a ρ -ideal if whenever $a, b \in R$ and $aRb \subseteq I$ and $a \notin \rho(R)$, then $b \in I$.

Remark

If *R* is an Artinian ring, then since $\mathcal{P}(R) = \mathcal{L}(R) = \mathcal{N}(R) = \mathcal{J}(R) = \mathcal{G}(R)$ the notions of $\mathcal{P}, \mathcal{L}, \mathcal{N}, \mathcal{J}$ and \mathcal{G} -ideals are the same. For a commutative ring *R*, we have $\mathcal{P}(R) = \mathcal{L}(R) = \mathcal{N}(R)$. Hence for commutative rings the notions \mathcal{P}, \mathcal{L} and \mathcal{N} -ideals are the same.

イロト イヨト イヨト イヨト

If the ring R is commutative

As was mentioned the notions of N-ideals and J-ideals were introduced by Tekir et al. and Khashan et al.for commutative rings.

Definition

If ρ is the prime radical or the Jacobson radical of a commutative ring, then a proper ideal I of R is a ρ -ideal if whenever $a, b \in R$ with $ab \in I$ and $a \notin \rho(R)$, then $b \in I$.

Example

If R is a prime ring, then the zero ideal is a ρ -ideal.

< 47 ▶

Example

If R is a prime ring, then the zero ideal is a ρ -ideal.

Proposition

If I is a ρ -ideal ideal of R, then $I \subseteq \rho(R)$.

Example

If R is a prime ring, then the zero ideal is a ρ -ideal.

Proposition

If I is a ρ -ideal ideal of R, then $I \subseteq \rho(R)$.

Remark

In general the converse of the above result is not true.

Example

If R is a prime ring, then the zero ideal is a ρ -ideal.

Proposition

If I is a ρ -ideal ideal of R, then $I \subseteq \rho(R)$.

Remark

In general the converse of the above result is not true. Consider the Jacobson radical and the ring \mathbb{Z}_{36} . Now $\mathcal{J}(\mathbb{Z}_{36}) = \left\langle \overline{6} \right\rangle$ and $I = \left\langle \overline{12} \right\rangle \subseteq \mathcal{J}(\mathbb{Z}_{36})$. But I is not a $\mathcal{J}-ideal$ since $\overline{3}\mathbb{Z}_{36}\overline{4} \subseteq I$ with $\overline{3} \notin \mathcal{J}(\mathbb{Z}_{36})$ and $\overline{4} \notin I$.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem

Let R and S be rings and $f : R \rightarrow S$ be a surjective ring-homomorphism. If ρ is a special radical, then the following statements hold:

- If I is a ρ -ideal of R and ker $(f) \subseteq I$, then f(I) is a ρ -ideal of S.
- If J is a p-ideal of S and ker(f) ⊆ p(R), then f⁻¹(J) is a p-ideal of R.

Corollary

Let ρ be a special radical and let R be a ring and let I, K be two ideals of R with $K \subseteq I$. Then the following hold.

- **1** If I is a ρ -ideal of R, then I/K is a ρ -ideal of R/K.
- **2** If I/K is a ρ -ideal of R/K and $K \subseteq \rho(R)$, then I is a ρ -ideal of R.
- If I/K is a ρ-ideal of R/K and K is a ρ-ideal of R, then I is a ρ-ideal of R.

Let ρ be a special radical and R a ring. If $I \triangleleft R$ such that $R/I \in S_{\rho} \cap \mathcal{P} = \{R : \rho(R) = 0\} \cap \mathcal{P}$ where , \mathcal{P} is the class of prime rings, then I is a ρ -ideal if and only if $I = \rho(R)$.

Let ρ be a special radical and R a ring. If $I \triangleleft R$ such that $R/I \in S_{\rho} \cap \mathcal{P} = \{R : \rho(R) = 0\} \cap \mathcal{P}$ where , \mathcal{P} is the class of prime rings, then I is a ρ -ideal if and only if $I = \rho(R)$.

Corollary

Let ρ be a special radical.

- For a ring R we have that ρ(R) is a ρ-ideal if and only if ρ(R) is a prime ideal.
- **2** If R is a ring such that $R \in S_{\rho}$ but $R \notin \mathcal{P}$, then R has no ρ -ideals.
- **3** Let $R \in S_{\rho}$. Then 0 is a ρ -ideal if and only if R is a prime ring.

< /⊒ ► < Ξ ► <

Let ρ be a special radical and let R be a ring with identity. If P is a proper ideal of R, then the following are equivalent:

- **9** P is a ρ -ideal of R.
- **2** If A, B are ideals of R such that $AB \subseteq P$ and $A \not\subseteq \rho(R)$, then $B \subseteq P$.

Let ρ be a special radical and let R be a ring with identity. If P is a proper ideal of R, then the following are equivalent:

- **9** P is a ρ -ideal of R.
- **2** If A, B are ideals of R such that $AB \subseteq P$ and $A \not\subseteq \rho(R)$, then $B \subseteq P$.

Proposition

Let ρ be a special radical and let R be a ring with identity and S a nonempty subset of R. If I is a ρ -ideal of R and $S \nsubseteq I$, then $(I : \langle S \rangle) = \{r \in R : r \langle S \rangle \subseteq I\}$ is a ρ -ideal of R.

Let ρ be a special radical and let R be a ring with identity. If P is a proper ideal of R, then the following are equivalent:

- **9** P is a ρ -ideal of R.
- **2** If A, B are ideals of R such that $AB \subseteq P$ and $A \not\subseteq \rho(R)$, then $B \subseteq P$.

Proposition

Let ρ be a special radical and let R be a ring with identity and S a nonempty subset of R. If I is a ρ -ideal of R and $S \nsubseteq I$, then $(I : \langle S \rangle) = \{r \in R : r \langle S \rangle \subseteq I\}$ is a ρ -ideal of R.

Proposition

If ρ is a special radical and I a maximal ρ -ideal of R, then I is a prime ideal. If in particular $\rho(R) = I$, then the converse is true.

< ロト < 同ト < ヨト < ヨト

Let S be a nonempty subset of R with $R - \rho(R) \subseteq S$. S is called a ρ -m-system if $\langle x \rangle \langle y \rangle \cap S \neq \emptyset$ for all $x \in R - \rho(R)$ and $y \in S$.

Let S be a nonempty subset of R with $R - \rho(R) \subseteq S$. S is called a ρ -m-system if $\langle x \rangle \langle y \rangle \cap S \neq \emptyset$ for all $x \in R - \rho(R)$ and $y \in S$.

Proposition

For a proper ideal I of R, I is a ρ -ideal of R if and only if R - I is a ρ -m-system of R.

Let S be a nonempty subset of R with $R - \rho(R) \subseteq S$. S is called a ρ -m-system if $\langle x \rangle \langle y \rangle \cap S \neq \emptyset$ for all $x \in R - \rho(R)$ and $y \in S$.

Proposition

For a proper ideal I of R, I is a ρ -ideal of R if and only if R - I is a ρ -m-system of R.

Recall that if *I* is an ideal which is disjoint from a m-system *S* of *R*, then there exists a prime ideal *P* of *R* containing *I* such that $P \cap S = \emptyset$. The following proposition states a similar result for ρ -ideals.

Let S be a nonempty subset of R with $R - \rho(R) \subseteq S$. S is called a ρ -m-system if $\langle x \rangle \langle y \rangle \cap S \neq \emptyset$ for all $x \in R - \rho(R)$ and $y \in S$.

Proposition

For a proper ideal I of R, I is a ρ -ideal of R if and only if R - I is a ρ -m-system of R.

Recall that if *I* is an ideal which is disjoint from a m-system *S* of *R*, then there exists a prime ideal *P* of *R* containing *I* such that $P \cap S = \emptyset$. The following proposition states a similar result for ρ -ideals.

Proposition

Let I be an ideal of R such that $I \cap S = \emptyset$ where S is a ρ -m-system of R. Then there exists a ρ -ideal K of R containing I such that $K \cap S = \emptyset$.

Let ρ be a special radical and let M be an R-module. The proper submodule N of M is a ρ -submodule if for all $a \in R$ and $m \in M$, whenever $aRm \subseteq N$ and $a \notin (\rho(R)M : M)$, then $m \in N$.

Let ρ be a special radical and let M be an R-module. The proper submodule N of M is a ρ -submodule if for all $a \in R$ and $m \in M$, whenever $aRm \subseteq N$ and $a \notin (\rho(R)M : M)$, then $m \in N$.

Proposition

Let ρ be a special radical and let M be an R-module. For N a submodule of M and I an ideal of R. If N is a ρ -submodule of M and $(\rho(R)M:M) = \rho(R)$, then (N:M) = is a ρ -ideal of R.

Let ρ be a special radical and let M be an R-module. The proper submodule N of M is a ρ -submodule if for all $a \in R$ and $m \in M$, whenever $aRm \subseteq N$ and $a \notin (\rho(R)M : M)$, then $m \in N$.

Proposition

Let ρ be a special radical and let M be an R-module. For N a submodule of M and I an ideal of R. If N is a ρ -submodule of M and $(\rho(R)M:M) = \rho(R)$, then (N:M) = is a ρ -ideal of R.

Remark

If $(\rho(R)M : M) \nsubseteq \rho(R)$, it need not be true. Let \mathcal{P} be the prime radical. For the \mathbb{Z} module $M = \mathbb{Z}_2$ we have $\mathcal{P}(\mathbb{Z}) = (0)$ and $(\mathcal{P}(\mathbb{Z})\mathbb{Z}_2 : \mathbb{Z}_2) = ((0) : \mathbb{Z}_2) = 2\mathbb{Z}$. Now, N = (0) is clearly a \mathcal{P} submodule. $(N : M) = ((0) : \mathbb{Z}_2) = 2\mathbb{Z}$ is not a \mathcal{P} ideal of \mathbb{Z} . We have $2\mathbb{Z}_3 \subseteq 2\mathbb{Z}$ with $3 \notin 2\mathbb{Z}$.

Characterization of ρ submodules

In the following proposition, we give a characterization of ρ -submodules for a special radical ρ .

Characterization of ρ submodules

In the following proposition, we give a characterization of $\rho\text{-submodules}$ for a special radical $\rho.$

Proposition

Let ρ be a special radical and let M be an R-module where R is a ring with identity. Let N be a proper submodule of M. Then N is a ρ -submodule of M if and only if for any ideal I of R and every submodule K of M, we have $IK \subseteq N$ with $I \nsubseteq (\rho(R)M : M)$ implies $K \subseteq N$.

Idealization

We now show how to construct ρ -ideals using the Method of Idealization. In what follows, R is a ring (associative, not necessarily commutative and not necessarily with identity) and M is an R - R-bimodule. The idealization of M is the ring $R \boxplus M$ with $(R \boxplus M, +) = (R, +) \oplus (M, +)$ and the multiplication is given by (r, m)(s, n) = (rs, rn + ms)

Idealization

We now show how to construct ρ -ideals using the Method of Idealization. In what follows, R is a ring (associative, not necessarily commutative and not necessarily with identity) and M is an R - R-bimodule. The idealization of M is the ring $R \boxplus M$ with $(R \boxplus M, +) = (R, +) \oplus (M, +)$ and the multiplication is given by (r, m)(s, n) = (rs, rn + ms)

Proposition

Let ρ is a special radical. Let I be a ρ -ideal of R and N an R - R-bi-submodule of the R - R-bi-module M. Then

- **1** \boxplus *M* is a ρ -ideal of *R* \boxplus *M*.
- ② If $(\rho(R)M : M) = \rho(R)$ and N is a ρ -submodule of M with $IM + MI \subseteq N$, then $I \boxplus N$ is a ρ -ideal of $R \boxplus M$.

Example

If *I* is a ρ -ideal of a ring *R* and *N* is a R - R-bi-submodule of *M* with $IM + MI \subseteq N$, then $I \boxplus N$ need not be a ρ -ideal of $R \boxplus M$. For example if ρ is the prime radical, $\{0\}$ is a ρ -ideal of the ring of integers \mathbb{Z} and 0 is a submodule of the \mathbb{Z} -module \mathbb{Z}_6 . But $0 \boxplus (0)$ is not a ρ -ideal of $\mathbb{Z} \boxplus \mathbb{Z}_6$ since $(2, 0)\mathbb{Z} \boxplus \mathbb{Z}_6(0, 3) \subseteq 0 \boxplus (0)$ and $(2, 0) \notin \mathcal{P}(\mathbb{Z} \boxplus \mathbb{Z}_6) = \mathcal{P}(\mathbb{Z}) \boxplus \mathbb{Z}_6$ but $(0, 3) \notin 0 \boxplus (0)$.

Example

If *I* is a ρ -ideal of a ring *R* and *N* is a R - R-bi-submodule of *M* with $IM + MI \subseteq N$, then $I \boxplus N$ need not be a ρ -ideal of $R \boxplus M$. For example if ρ is the prime radical, $\{0\}$ is a ρ -ideal of the ring of integers \mathbb{Z} and 0 is a submodule of the \mathbb{Z} -module \mathbb{Z}_6 . But $0 \boxplus (0)$ is not a ρ -ideal of $\mathbb{Z} \boxplus \mathbb{Z}_6$ since $(2,0)\mathbb{Z} \boxplus \mathbb{Z}_6(0,3) \subseteq 0 \boxplus (0)$ and $(2,0) \notin \mathcal{P}(\mathbb{Z} \boxplus \mathbb{Z}_6) = \mathcal{P}(\mathbb{Z}) \boxplus \mathbb{Z}_6$ but $(0,3) \notin 0 \boxplus (0)$.

Proposition

Let ρ is a special radical. Let I be an ideal of R and N a proper R - R-bi-submodule of the R - R-bi-module M. If $I \boxplus N$ is a ρ -ideal of $R \boxplus M$, then I is a ρ -ideal of R and N is a ρ -submodule of M.

Product rings

Suppose that R_1, R_2 are two noncommutative rings with nonzero identities and $R = R_1 \times R_2$. Then R becomes a noncommutative ring with coordinate-wise addition and multiplication. Also, every ideal I of R has the form $I = I_1 \times I_2$, where I_i is an ideal of R_i for i = 1, 2. Now, we give the following result.

Proposition

Let R_1 and R_2 be two noncommutative rings and let ρ be a special radical then $R_1 \times R_2$ has no ρ -ideals

P-ideals

In this section the special radical will be the prime radical. Tekir et.al introduced the notion of N-ideals for commutative rings with identity element. They investigate many properties of N-ideals with properties similar to that of prime ideals. We show that for the prime radical many of the results proved by Tekir et.al are also true for non-commutative rings.

P-ideals

In this section the special radical will be the prime radical. Tekir et.al introduced the notion of N-ideals for commutative rings with identity element. They investigate many properties of N-ideals with properties similar to that of prime ideals. We show that for the prime radical many of the results proved by Tekir et.al are also true for non-commutative rings.

In what follows for the non-commutative ring R, $\mathcal{P}(R)$ will denote the prime radical of the ring R. Throughout this section the rings are non-commutative but not necessarily assumed to have a unity unless indicated.

P-ideals

In this section the special radical will be the prime radical. Tekir et.al introduced the notion of N-ideals for commutative rings with identity element. They investigate many properties of N-ideals with properties similar to that of prime ideals. We show that for the prime radical many of the results proved by Tekir et.al are also true for non-commutative rings.

In what follows for the non-commutative ring R, $\mathcal{P}(R)$ will denote the prime radical of the ring R. Throughout this section the rings are non-commutative but not necessarily assumed to have a unity unless indicated.

Definition

A proper ideal I of a ring R is a \mathcal{P} -ideal if whenever $a, b \in R$ such that $aRb \subseteq I$ and $a \notin \mathcal{P}(R)$, then $b \in I$.

If R is a commutative ring, then the notion of a \mathcal{P} -ideal coincides with an N-ideal as been defined by Tekir et.al

Example

In any prime ring R the zero ideal is a \mathcal{P} -ideal. Let $a, b \in R$ such that aRb = 0 and $a \notin \mathcal{P}(R) = (0)$. Since R is a prime ring and $a \neq 0$, we have b = 0. Hence the zero ideal is a \mathcal{P} -ideal.

Results of Tekir et al for non-commutative rings

For the prime radical and a non-commutative ring we now have the following results from which the results of Tekir et al follow as special cases.

- **1** If a proper ideal *I* of a ring *R* is a \mathcal{P} -ideal, then $I \subseteq \mathcal{P}(R)$.
- **2** For a prime ideal *I* of *R*, *I* is a \mathcal{P} -ideal of *R* if and only if $I = \mathcal{P}(R)$.
- So For a ring R we have that $\mathcal{P}(R)$ is a \mathcal{P} -ideal if and only if $\mathcal{P}(R)$ is a prime ideal.
- If R is a semi-prime ring which is not a prime ring, then R has no \mathcal{P} -ideals.
- So Let R be a semi-prime ring. Then R is a prime ring if and only if 0 is a \mathcal{P} -ideal.
- **()** If *I* is a maximal \mathcal{P} -ideal of *R*, then $I = \mathcal{P}(R)$.

Theorem

For any ring the following are equivalent:

- **1** *R* is a prime ring.
- **2** (0) is the only \mathcal{P} -ideal of R.

\mathcal{P} -m systems

Definition

Let S be a nonempty subset of R with $R - \mathcal{P}(R) \subseteq S$. S is called a \mathcal{P} -m-system if $\langle x \rangle \langle y \rangle \cap S \neq \emptyset$ for all $x \in R - \mathcal{P}(R)$ and $y \in S$.

< ロト < 同ト < ヨト < ヨト

\mathcal{P} -m systems

Definition

Let S be a nonempty subset of R with $R - \mathcal{P}(R) \subseteq S$. S is called a \mathcal{P} -m-system if $\langle x \rangle \langle y \rangle \cap S \neq \emptyset$ for all $x \in R - \mathcal{P}(R)$ and $y \in S$.

Proposition

For a proper ideal I of R, I is a \mathcal{P} -ideal of R if and only if R - I is a \mathcal{P} -m-system of R.

\mathcal{P} -m systems

Definition

Let S be a nonempty subset of R with $R - \mathcal{P}(R) \subseteq S$. S is called a \mathcal{P} -m-system if $\langle x \rangle \langle y \rangle \cap S \neq \emptyset$ for all $x \in R - \mathcal{P}(R)$ and $y \in S$.

Proposition

For a proper ideal I of R, I is a \mathcal{P} -ideal of R if and only if R - I is a \mathcal{P} -m-system of R.

Proposition

Let I be an ideal of R such that $I \cap S = \emptyset$ where S is a \mathcal{P} -m-system of R. Then there exists a \mathcal{P} -ideal K of R containing I such that $K \cap S = \emptyset$.

J-ideals

In this section the special radical will be the Jacobson radical. Khashan et.al introduced the notion of J-ideals for commutative rings with identity element. We show that for the Jacobson radical many of the results proved by Khashan et.al are also true for non-commutative rings. In what follows for the non-commutative ring R, $\mathcal{J}(R)$ will denote the Jacobson radical of the ring R. Throughout this section the rings are non-commutative but not necessarily assumed to have a unity unless indicated.

J-ideals

In this section the special radical will be the Jacobson radical. Khashan et.al introduced the notion of J-ideals for commutative rings with identity element. We show that for the Jacobson radical many of the results proved by Khashan et.al are also true for non-commutative rings. In what follows for the non-commutative ring R, $\mathcal{J}(R)$ will denote the Jacobson radical of the ring R. Throughout this section the rings are non-commutative but not necessarily assumed to have a unity unless indicated.

Definition

A proper ideal I of a ring R is a \mathcal{J} -ideal if whenever $a, b \in R$ such that $aRb \subseteq I$ and $a \notin \mathcal{J}(R)$, then $b \in I$.

If R is a commutative ring, then the notion of a \mathcal{J} -ideal coincides with a J-ideal as been defined by Khashan et.al.

Results of Khashan et al for non-commutative rings

Proposition

Let R be a ring.

- If R is a semiprimitive ring which is not a prime ring, then R has no *J*-ideals.
- 2 Let R be a semiprimitive ring. Then R is a prime ring if and only if the zero ideal is a *J*-ideal of R.

Results of Khashan et al for non-commutative rings

Proposition

Let R be a ring.

- If R is a semiprimitive ring which is not a prime ring, then R has no *J*-ideals.
- 2 Let R be a semiprimitive ring. Then R is a prime ring if and only if the zero ideal is a *J*-ideal of R.

Theorem

Let R be a ring. The following are equivalent:

- R is a local ring.
- **2** Every proper ideal of R is a \mathcal{J} ideal.
- **(**) Every proper principal ideal of R is a \mathcal{J} ideal.

Nico Groenewald (Institute) On special ideals of non commutative rings

٠

イロト イヨト イヨト イヨト

Another result of Khashan et al for non-commutative rings

Proposition

Let R be a ring and I be a proper ideal of R. Then I[|x|] is a \mathcal{J} -ideal of R[|x|] if and only if I is a \mathcal{J} -ideal of R

Nico Groenewald (Institute) On special ideals of non commutative rings

٠

イロト イヨト イヨト イヨト

References

- Hani A. Khashan and Amal B. Bani-Ata, J-ideals of commutative rings, International Electronic Journal of Algebra Volume 29 (2021) 148-164
- U. Tekir, S. Koc and K.H. Oral, n-Ideals of commutative rings, *Filomat*, **31**(10) (2017), 2933-2941.

Thank You

3

<ロト < 四ト < 三ト < 三ト